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Abstract
For many multivariate twin models, the numerical Type I error rates are lower than theoretically expected rates using a likeli-
hood ratio test (LRT), which implies that the significance threshold for statistical hypothesis tests is more conservative than 
most twin researchers realize. This makes the numerical Type II error rates higher than theoretically expected. Furthermore, 
the discrepancy between the observed and expected error rates increases as more variables are included in the analysis and can 
have profound implications for hypothesis testing and statistical inference. In two simulation studies, we examine the Type I 
error rates for the Cholesky decomposition and Correlated Factors models. Both show markedly lower than nominal Type I 
error rates under the null hypothesis, a discrepancy that increases with the number of variables in the model. In addition, we 
observe slightly biased parameter estimates for the Cholesky decomposition and Correlated Factors models. By contrast, if 
the variance–covariance matrices for variance components are estimated directly (without constraints), the numerical Type 
I error rates are consistent with theoretical expectations and there is no bias in the parameter estimates regardless of the 
number of variables analyzed. We call this the direct symmetric approach. It appears that each model-implied boundary, 
whether explicit or implicit, increases the discrepancy between the numerical and theoretical Type I error rates by truncating 
the sampling distributions of the variance components and inducing bias in the parameters. The direct symmetric approach 
has several advantages over other multivariate twin models as it corrects the Type I error rate and parameter bias issues, 
is easy to implement in current software, and has fewer optimization problems. Implications for past and future research, 
and potential limitations associated with direct estimation of genetic and environmental covariance matrices are discussed.
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Introduction

The classic twin study design compares the covariances of 
monozygotic (MZ) and dizygotic (DZ) twin pairs reared by 
their biological parents in the same home. This approach 
has been popular since the 1960s and is the basis for most 
of the heritability estimates that have been obtained without 
direct measurement of genomic similarity. This approach 
estimates the degree to which genetic and environmental 
factors influence a phenotype using the path coefficients 
a, c and e (Fig. 1a). These path coefficients are regression 
weights of the phenotype of interest on latent genetic (A), 
common environmental (C) and unique environmental (E) 
factors (Neale and Cardon 1992). This approach is typically 
referred to as the “univariate ACE model”. Heritability (h2) 
is estimated by dividing the squared additive genetic path 
coefficient (a2) by the total phenotypic variance (a2 + c2 + e2).
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The statistical significance of the parameters from a uni-
variate ACE model is often assessed using a likelihood ratio 
test, where the − 2 log-likelihood of a model with a freely 
estimated parameter (e.g. c or the shared environment) is 
compared with − 2 log-likelihood of a nested model where 
the parameter is fixed to zero. Under certain regularity con-
ditions (Steiger 1980) this statistic is asymptotically distrib-
uted as chi-squared with one degree of freedom. Unfortu-
nately, these regularity conditions are not met when models 
have either implicit or explicit bounds. Using standard 
methods to estimate variance components in twin models, 
under the null hypothesis that a variance component is zero, 
this test is distributed as a 50:50 distribution of zero and 
Chi square with one degree of freedom. This parameteriza-
tion is entirely logical as variance is a squared quantity and 
we measure individual differences in real (not imaginary) 
number values and our statistical models have been param-
eterized accordingly (Fig. 1a). This approach, however, has 
adverse and unintended consequences.

Type I error rates in univariate genetic models

Squaring the path coefficients in a univariate twin model 
prevents negative estimates of the variance components 
which places an implicit, artificial boundary on the param-
eter space. The boundary truncates the sampling distribution 
of the variance components and leads to lower than nomi-
nal Type I error rates (Carey 2005; Dominicus et al. 2006; 
Visscher 2006).

In addition to affecting the Type I error rate, forcing 
A, C, and E variances to be positive also results in biased 
parameter estimates. For example, suppose that the null 
hypothesis of no common environment is true and con-
sider the expected distribution of MZ and DZ correlations 
for a trait where a2 = 0.5, c2 = 0 and e2 = 0.5. With finite 
sample sizes, both the MZ and DZ correlations will vary 
around their expected values of 0.5 and 0.25, respectively. 
We would expect that 50% of the time the MZ correlation 
(rMZ) will be greater than twice the DZ correlation (rDZ), 
and 50% of the time the opposite will hold. When rMZ < 
2rDZ, a non-zero estimate of c2 will be obtained, and when 
rMZ > 2rDZ an estimate of c2 at its lower bound of zero 
will be obtained. Thus, the true value of c2 is zero will be 
obtained 50% of the time, albeit because it falls exactly on 
the implicit boundary, but a positive estimate of c2 would 
be returned otherwise. Consequently, on average the esti-
mate of c2 would be positive, which is biased. The same 
thought experiment may be conducted for the case where 
the null hypothesis of a2 = 0 is true. For example, with 
a2 = 0, c2 = 0.5 and e2 = 0.5, the expected distributions of 
rMZ and rDZ would both vary around 0.5, with a 50:50 split 
of rMZ > rDZ and rMZ < rDZ. In the former case, a positive 
estimate of a2 would be obtained, whereas in the latter 
the lower bound of a2 = 0 would be estimated. Thus, both 
familial variance components, a2 and c2, are expected to 
be biased under the null.
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Fig. 1   Alternative parameterizations of the univariate ACE model 
for a pair of twins for a the standard path specification and b the 
direct variance specification. Note T1 and T2 represent the observed 
phenotypes for twin 1 and twin 2, respectively. The latent variables, 
depicted as circles representing the effects of additive genetic (A), 
common environment (C) and specific environment (E) variation gen-
erate phenotypic variation. Path labels in blue are estimated param-

eters and paths labels in red italics are fixed at the specified values. 
In (a), regression path coefficients a, c and e capture the relationship 
between the latent variable and the phenotypes, which are squared 
and summed to the phenotypic variance in the twin model. In (b), 
variance components VA, VC and VE are specified as variances which 
can be directly summed to the phenotypic variation. The phenotypic 
means are represented by μ. (Color figure online)
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Adjusting Type I error rates in the univariate ace 
model

One method to address the overly conservative Type I error 
rate for the univariate ACE model only requires the simple 
adjustment of dividing the observed p-value by two. How-
ever, this solution does not address the underlying issue of 
boundary constraints and the resulting bias in the estimates 
of the path coefficients a, c, and e. Therefore, the source of 
divergence in Type I error rates in the standard approach to 
the ACE model is that variance components have a lower 
bound of zero (Dominicus et al. 2006; Visscher 2006; Wu 
and Neale 2012). As an alternative, we propose the model 
parameterized in Fig. 1b, in which the quantities VA, VC and 
VE are estimated directly as unbounded free parameters 
(which therefore may take negative values). This model has 
neither implicit (due to squaring) nor explicit (imposed by 
software during optimization) boundaries.

Type I error rates in multivariate genetic models

Most current variance components modeling of multivari-
ate twin data involves estimating matrices that can be alge-
braically transformed into A, C and E covariance matrices 
with variances on the diagonal elements, and covariances 
in the off-diagonal elements. To date, there are two popular 
parameterizations for estimating multivariate genetic and 
environmental covariance matrices: the Cholesky or trian-
gular decomposition (Neale and Cardon 1992) and the Cor-
related Factors model (Neale et al. 2006).

In the Cholesky decomposition approach, the lower tri-
angular and diagonal elements of the matrix are freely esti-
mated, while the upper triangular (above the diagonal) are 
fixed at zero. The predicted variance–covariance matrix is 
obtained by post-multiplying the matrix by its transpose, 
e.g., A = aaT where a is the lower triangular matrix con-
taining the genetic path coefficients. This may be thought 
of as a multivariate analog to the square root of a variance 
and is exactly this in the single variable case. The “Triple 
Cholesky” model for twin data estimates separate Cholesky 
matrices for all three variance components (A, C and E). 
Importantly, Carey (2005) pointed out that the Cholesky 
decomposition imposes two important constraints on the 
parameter space: (1) an implicit lower bound of zero for the 
variance of each variable, and (2) that each variance compo-
nent is non-negative definite. In a Cholesky decomposition, 
both nonsensical variances less than 0 or nonsensical cor-
relations outside the range of − 1 to + 1 cannot be estimated. 
Both of these features of the Cholesky decomposition can 
influence the Type I error rate. The attraction of not having 
to explain such nonsensical estimates has, to some extent, 
contributed to the popularity of the approach for the past 
quarter century.

A second approach to parameterizing genetic and environ-
mental covariance matrices is the Correlated Factors model 
(Neale et al. 2006). Here, the predicted A, C and E covari-
ance matrices are calculated by pre- and post-multiplying an 
estimated correlation matrix by a diagonal matrix of stand-
ard deviations (e.g., A = a(RA)aT where a is diagonal and 
RA is the genetic correlation matrix). As with the Cholesky 
decomposition, the Correlated Factors model ensures that 
the variances are positive, algebraically imposing a lower 
bound on the standard deviation parameters. Furthermore, it 
is possible to bound the correlations to be less than or equal 
to 1 in absolute value, which aids interpretability, although 
it is not sufficient to keep the matrices non-negative definite. 
Imposing boundaries to prevent the nonsensical correlations 
enforces another set of explicit boundaries that can influence 
model fit and affect the Type I error rate. While this is prefer-
able in practice, we do not impose this boundary condition 
in the following simulations and allow the estimated correla-
tions to take nonsensical values.

For both the Cholesky decomposition and the Cor-
related Factors models, the divergence between numeri-
cal and theoretical in Type I error rates is exacerbated in 
multivariate models. As the number of variables in a twin 
model increases, the number of implicit boundaries in the 
model increase, and subsequently, the divergence between 
the theoretical and numerical Type I error rates increases. 
In both cases, the numerical Type I error rate is lower than 
the theoretical threshold. Therefore, the null hypotheses that 
either a2 = 0 or c2 = 0 are rejected less frequently than would 
be expected due to chance. This, in turn, causes an increase 
in Type II errors, where the researcher falsely concludes the 
variance component is not significant.

The alternative approach to parameterizing twin models 
proposed here is to directly estimate the symmetric A, C and 
E matrices with no restrictions. We call this the Direct Sym-
metric approach as it directly estimates a set of symmetrical 
variance components matrices. While this approach may 
return nonsensical values in some situations (e.g. heritability 
estimates larger than 1, or non-positive definite covariance 
matrices), the absence of boundaries on the estimates yields 
asymptotically unbiased parameter estimates and correct 
Type I and Type II error rates.

Adjusting Type I error rates in the multivariate ACE 
model

While adjusting the p-values for the univariate case is fairly 
straightforward, doing so for multivariate twin models is 
more complicated (Wu and Neale 2012). The sampling dis-
tribution of the parameters under the null follows a mixture 
of zero and chi-squared distributions from 1 to the number 
of implicitly bounded parameters being set to zero. Worse, 
the mixture proportions are unknown because they depend 
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upon: (i) the parameters’ estimates; (ii) the covariance 
between the estimates; and relatedly (iii) the study design, 
particularly ratio of MZ to DZ twins in the sample and the 
amounts of missing data. For example, in a bivariate twin 
model, the probability that all three shared environmental 
parameters are zero follows a mixture of chi-squared distri-
butions with 0, 1, 2 and 3 df, with mixing proportions that 
are not known a priori. This issue also affects likelihood-
based confidence intervals, which can be adjusted (and are 
automatically with OpenMx under certain circumstances; 
see Pritikin et al. 2017).

Hypothesis‑driven multivariate behavioral genetic 
models

The common factor model for data from unrelated individ-
uals has been generalized in two main ways for variance 
components analyses of twin data. The first, known as the 
Common Pathway (CPM) or Psychometric Factor model, 
partitions both the common factor and residual components 
into biometrical A, C and E variance components, as shown 
in Fig. 2. As with non-twin factor analysis, the number of 
factors, and the pattern of factor loadings relating the latent 
factors to the observed measures, may be set to represent 
specific hypotheses. The second generalization of the com-
mon factor model, known as the Independent Pathway model 
(IPM) or Biometric Factor model, may be viewed as a modi-
fication of the CPM model, where each latent factor is speci-
fied to consist of only one source of variation, A, C or E, 
as shown in Fig. 3. Depending on the number of measured 
phenotypes, more than one of each of these variance com-
ponent factors may be specified.

Twin models that estimate A, C and E covariance matri-
ces, such as the Cholesky, are often used as a comparison 
against which these more restricted, hypothesis-driven 
models are compared. In particular, it is common practice 
to compare the fit of the IPM and CPM models to that of 
the Cholesky. Unfortunately, if the Type I error rate of the 
saturated model does not follow theoretical expectations, 
likelihood ratio tests and other measures of relative model fit 
of may diverge from expectations. In practice, a researcher 
who finds no significant loss of fit when, e.g., the C matrix is 
fixed to zero, may decide to exclude it from further consid-
eration when fitting IPM or CPM models. However, if that 
initial decision was erroneous, due to the use of an incorrect 
Type I error rate, the error may be perpetuated throughout 
the hypothesis-testing framework.

An alternative approach to addressing biases 
in the multivariate models

We address the previously identified biases in multivari-
ate genetic models by focusing on three goals. First, using 

simulation, we compare the Type I error rates for three 
models: the Cholesky decomposition, correlated factors, 
and the direct symmetric models. Second, we explore how 
the Type I error rates of these three models vary as a func-
tion of the number of phenotypes being analyzed. Third, 
we examine how the choice of saturated model affects the 
Type I error rates for the hypothesis-driven independ-
ent and common pathway models. Lastly, we discuss the 
implications of the results for prior research and consider 
potential limitations of the bias-free Direct Symmetric 
model.
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Fig. 2   Common Pathway model or Biometric Factor model for one 
twin. Note the CPM twin model is an extension of the common factor 
model. The latent factor, F1, is caused by additive genetic (A), com-
mon (C) and specific (E) environmental factors. The four individual 
phenotypes P1–P4 are each caused by these latent factors and by 
residual variance components, which are also partitioned into addi-
tive genetic, common and specific environment components (As1–As4, 
Cs1–Cs4 and Es1–Es4). Path labels in blue are estimated parameters 
and paths labels in red italics are fixed at the specified values. The 
variance components of the latent variable sum to 1 (the variance of 
the latent variable), while the residual variance components sum to 
the residual phenotypic variation. Only one twin is presented to sim-
plify the schematic diagram. (Color figure online)
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Methods

Two simulation studies were conducted to examine the 
research questions. All simulations were conducted in R 
version 3.4.2 (R Core Team 2017), using OpenMx 2.7.12 
(Neale et al. 2016; Boker et al. 2017) with the NPSOL 
5.0 optimization algorithm, and MASS 7.3 (Venables and 
Ripley 2002) for generating continuous data from a mul-
tivariate normal distribution.

Study 1

Type I error rates are estimated under the three model 
specifications: (i) direct symmetric; (ii) Cholesky; and (iii) 
correlated factors. The number of variables per twin is var-
ied from 1 to 4. To generate data under the null hypothesis 
of no common environment variation, data were generated 
using an AE model, in which half of the variance in each 
phenotype was due to additive genetic factors and half to 
unique environmental factors. In the multivariate simula-
tions, all genetic correlations were set to rG = 0.6. All 
unique environmental correlations were set to zero (rE = 
0). All three models were fitted to the same simulated data, 
to control stochastic variation between simulated datasets. 
The simulation was repeated 100,000 times to improve the 
empirical resolution in the tails of the sampling distribu-
tions that are particularly informative for the numerical 
Type I error rate.

For simulations with more than one phenotype, we also 
examined the Type I error rate for the common environ-
mental covariances (i.e., C variation, but no C covaria-
tion). In summary, three models were fitted to each data-
set: (i) the full ACE model, (ii) the AE model, and (iii) the 
no C covariance model.

Study 2

In study 2 we examined the Type I error rates when the 
data were generated according to a CPM. For each simula-
tion, the latent phenotype was specified to have unit vari-
ance, with equal parts due to additive genetic and specific 
environment components. Factor loadings for the four 
items were set to [λ = 1, 0.9, 0.8, 0.7]. Residual variance 
for each item was set to have an AE structure, such that the 
A and E residual variances were set to 

√

0.5. Each condi-
tion was repeated 100,000 times.

We fitted the following models to each dataset: (1) IPM, 
(2) CPM, (3) direct symmetric model, (4) the Cholesky 
decomposition, and (5) correlated factors model. For the 
IPM and CPM, three submodels were fit: (i) an AE model, 
(ii) the no latent C model, and (iii) a no residual C model. 
For the direct symmetric, Cholesky decomposition, and 
correlated factors models, the same models were fit as in 
the previous simulation study. The comparison between 
the saturated models with the IPM and CPM models pro-
vides information about the rejection rate of the hypothe-
sis-driven models.

Scripts used to conduct the simulations studies are 
available at http://psych​ology​.psy.msu.edu/Quant​Gen/
T1E/T1E.html.
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Fig. 3   Independent Pathway model or Psychometric Factor model 
for one twin. Note the IPM twin model is an extension of a three-fac-
tor confirmatory factor analysis. The latent factors F1 is exclusively 
caused by additive genetic (A) factors; the latent factors F2 is exclu-
sively caused by common (C) environmental factors; and the latent 
factors F3 is exclusively caused by specific (E) environmental factors. 
The association between F1, F2, and F3, and the phenotypes P1–P4 are 
a function of the additive genetic, common or specific environmen-
tal factors that contribute to F1, F2, and F3 and the respective factor 
loadings (e.g. VA × λa1) as well as the sum of the residual variance 
components. Path labels in blue are estimated parameters and paths 
labels in red italics are fixed at the specified values. Only one twin 
is presented to simplify the schematic diagram. (Color figure online)
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Results

Type I error rates

Table 1 shows the results of Study 1. The top panel shows 
that the univariate twin model Type I error rate is consistent 
with previous research (Carey 2005; Dominicus et al. 2006; 
Visscher 2006). When the standard deviation of the variance 
component is estimated (as is the case in both the univariate 
Cholesky decomposition and correlated factors model) the 
Type I error rate is half that of the theoretical rate. This is 
consistent with the notion that with this parameterization, 
the test statistic is distributed as a 50:50 mixture of a χ2 dis-
tribution with 1 df, and χ2 distribution with 0 df. However, 
when the A, C and E variance components are estimated 
directly (i.e., not bounded to be positive), the empirical Type 
I error rate approximates χ2 with 1 df.

A similar picture emerges in the multivariate case. With 
the direct symmetric model, the empirical and theoretical 
Type I error rates are consistent for both the AE model and 
the no C covariance conditions. That is, the likelihood ratio 

test for the existence of C components is distributed as χ2 
with df equal to the number of parameters fixed to zero. 
However, under the Cholesky, the empirical Type I error 
rates for both the AE and the no C covariance models are 
much lower than theoretically expected for a χ2 distribution 
for the appropriate df. For the correlated factors model, the 
empirical Type I error rate for the AE model is consistent 
with the explanation that the test statistics are mixture of 
multiple χ2 distributions with increasing dfs. By contrast, 
the Type I error rate of the test for no C contribution to 
covariance, is lower than would be expected if it were dis-
tributed as χ2 with df equal to the number of parameters 
fixed to zero.

Based upon these results, we conclude that when bounda-
ries are included, be they implicit or explicit, the Type I error 
rate is substantially lower than would be expected. Further-
more, as the number of phenotypes in the model increases, 
the greater the divergence from the nominal Type I error 
rates.

Table 2 shows the results of the second simulation study. 
The general pattern of results for the Cholesky, correlated 

Table 1   Numerical estimates of the Type I error rate for different parameterizations of the saturated multivariate biometrical twin model

95% confidence intervals in parentheses
The p-value threshold indicates the theoretical p-value and the cell entries indicate the percentage of the observed test statistics that exceeded 
the critical value of the χ2 distribution with the correct number of degrees of freedom (or the numerical Type I error rate). Data were simulated 
100,000 times under the assumption that the common environmental variance–covariance matrix was null, and then evaluated nine times using 
each parameterization method for the saturated model (ACE), the no common environmental model (AE), and the no common environmental 
covariance model (No Cov). The 95% confidence intervals are presented for each numerical estimate of the Type I error rate

Number of variables Estimation method Comparison model df p-value threshold

0.1 0.05 0.01

1 Variable Estimating the variance AE 1 0.099 (0.097, 0.101) 0.049 (0.047, 0.050) 0.0097 (0.0091, 0.0103)
Estimating the SD AE 1 0.049 (0.048, 0.050) 0.024 (0.023, 0.025) 0.0049 (0.0044, 0.0053)

2 Variables Direct symmetric AE 3 0.100 (0.098, 0.102) 0.050 (0.049, 0.051) 0.0106 (0.0100, 0.0113)
No Cov 1 0.097 (0.097, 0.100) 0.049 (0.048, 0.051) 0.0103 (0.0097, 0.0109)

Cholesky decomposition AE 3 0.021 (0.020, 0.022) 0.009 (0.009, 0.010) 0.0017 (0.0014, 0.0119)
No Cov 1 0.018 (0.018, 0.019) 0.007 (0.006, 0.007) 0.0008 (0.0007, 0.0010)

Correlated factors AE 3 0.048 (0.047, 0.050) 0.023 (0.022, 0.024) 0.0045 (0.0041, 0.0049)
No Cov 1 0.105 (0.103, 0.107) 0.053 (0.051, 0.054) 0.0111 (0.0104, 0.0117)

3 Variables Direct symmetric AE 6 0.101 (0.099, 0.103) 0.051 (0.050, 0.053) 0.0105 (0.0099, 0.0111)
No Cov 3 0.101 (0.099, 0.102) 0.050 (0.049, 0.051) 0.0099 (0.0093, 0.0105)

Cholesky decomposition AE 6 0.021 (0.020, 0.022) 0.009 (0.009, 0.010) 0.0015 (0.0013, 0.0018)
No Cov 3 0.018 (0.018, 0.019) 0.007 (0.006, 0.007) 0.0008 (0.0006, 0.0010)

Correlated factors AE 6 0.049 (0.048, 0.051) 0.023 (0.022, 0.024) 0.0041 (0.0037, 0.0045)
No Cov 3 0.106 (0.104, 0.108) 0.053 (0.052, 0.054) 0.0113 (0.0106, 0.0119)

4 Variables Direct symmetric AE 10 0.100 (0.098, 0.102) 0.050 (0.048, 0.051) 0.0103 (0.0097, 0.0109)
No Cov 6 0.100 (0.098, 0.102) 0.050 (0.049, 0.051) 0.0099 (0.0093, 0.0105)

Cholesky decomposition AE 10 0.012 (0.012, 0.013) 0.006 (0.005, 0.006) 0.0009 (0.0007, 0.0011)
No Cov 6 0.010(0.009, 0.010) 0.004 (0.003, 0.004) 0.0005 (0.0003, 0.0006)

Correlated factors AE 10 0.046 (0.045, 0.047) 0.022 (0.021, 0.023) 0.0039 (0.0035, 0.0043)
No Cov 6 0.105 (0.103, 0.107) 0.053 (0.051, 0.054) 0.0111 (0.0104, 0.0118)
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factors and direct symmetric models follows those of Study 
1, replicating the results under different simulation condi-
tions. The results from the IPM and CPM models, presented 
in the middle panels of Table 2, show that when the reduced 
IPM or CPM is compared to the full IPM or CPM, respec-
tively, the numerical and theoretical Type I error rates are 
consistent with nominal rates. Thus, the deviation in the 
Type I error rate is not an inevitable feature of the IPM or 
CPM. Furthermore, when the IPM and CPM are compared 
with the direct symmetric model, the numerical and theoreti-
cal Type I error rates converge.1

Bias in the variance estimates

Another consequence of the implicit lower bound of zero 
on variance components is that the under the null hypoth-
esis, the parameters will be biased for the Cholesky 

decomposition and Correlated Factors models. Figure 4 
presents histograms for Cholesky decomposition, correlated 
factors, and direct symmetric methods for the common envi-
ronmental and additive genetic variance components of the 
first variable in simulation study 2. This specific variable 
was chosen because the algebraic calculation of this com-
mon environmental and additive genetic variance is exactly 
the same regardless of the number of variables in the model. 
In the figure, the solid red line indicates the mean of the 
numerically observed estimate and the dotted blue line indi-
cates the simulated value.

As can be seen in the top row of the figure, because the 
variance components of the Cholesky decomposition and the 
correlated factors models cannot be negative, a large portion 
of the sampling distribution of the common environmental 
variance component is truncated. Further, because the true 
value of this parameter is zero, which is the implicit bound-
ary, any deviations from the simulated value must be posi-
tive, inducing a small positive bias in the estimated common 
environmental parameters. This is not the case for the Direct 
Symmetric sampling distribution, where the distribution is 
approximately normal around zero.

Table 2   Numerical estimates of the Type I error rate for different parameterizations of common multivariate biometrical twin models

95% confidence intervals in parentheses
The p-value threshold indicates the theoretical p-value and the cell entries indicate the percentage of the observed test statistics that exceeded the 
critical value of the χ2 distribution with the correct number of degrees of freedom. Data for a 4-variable common pathway model were simulated 
100,000 times under the assumption that the common environmental did not contribute to variation in the items. The data were then evaluated 17 
times using each saturated model an each of the various reduced models listed. The 95% confidence intervals are presented for each numerical 
estimate of the Type I error rate

df p-value threshold

0.1 0.05 0.01

Direct symmetric AE 10 0.101 (0.099, 0.103) 0.050 (0.049, 0.052) 0.0103 (0.0098, 0.0110)
No C Cov 6 0.100 (0.098, 0.102) 0.049 (0.048, 0.051) 0.0099 (0.0093, 0.0106)

Cholesky decomposition AE 10 0.012 (0.011, 0.013) 0.005 (0.005, 0.006) 0.0008 (0.0006, 0.0009)
No C Cov 6 0.011 (0.010, 0.011) 0.004 (0.004, 0.004) 0.0005 (0.0003, 0.0006)

Correlated factors AE 10 0.060 (0.058, 0.061) 0.034 (0.033, 0.035) 0.0155 (0.0148, 0.0163)
No C Cov 6 0.122 (0.120, 0.124) 0.068 (0.067, 0.070) 0.0231 (0.0222, 0.0231)

Independent pathway AE 8 0.097 (0.095, 0.099) 0.050 (0.048, 0.051) 0.0099 (0.0093, 0.0105)
No latent C 4 0.096 (0.094, 0.098) 0.048 (0.047, 0.049) 0.0100 (0.0094, 0.0107)
No residual C 4 0.091 (0.089, 0.093) 0.051 (0.050, 0.053) 0.0210 (0.0201, 0.0219)

Common pathway AE 5 0.101 (0.099, 0.103) 0.051 (0.049, 0.052) 0.0103 (0.0097, 0.0110)
No latent C 1 0.101 (0.099, 0.103) 0.051 (0.049, 0.052) 0.0093 (0.0088, 0.0100)
No residual C 4 0.101 (0.099, 0.102) 0.051 (0.050, 0.052) 0.0100 (0.0094, 0.0106)

Direct symmetric vs IPM 6 0.109 (0.107, 0.110) 0.055 (0.054, 0.056) 0.0114 (0.0108, 0.0121)
Direct symmetric vs CPM 16 0.099 (0.097, 0.101) 0.050 (0.048, 0.051) 0.0100 (0.0094, 0.0107)
Cholesky vs IPM 6 0.017 (0.016, 0.018) 0.007 (0.007, 0.008) 0.0011 (0.0009, 0.0013)
Cholesky vs CPM 16 0.025 (0.024, 0.026) 0.010 (0.010, 0.011) 0.0016 (0.0014, 0.0019)
Correlated factors vs CPM 6 0.064 (0.063, 0.066) 0.032 (0.031, 0.033) 0.0060 (0.0055, 0.0065)
Correlated factors vs IPM 16 0.065 (0.064, 0.067) 0.031 (0.030, 0.032) 0.0060 (0.0055, 0.0065)

1  We repeated the second simulation study to examine whether the 
observed results were specific to the likelihood ratio test or whether 
they could generalize to other hypotheses testing techniques such as 
the Wald Test. The Wald test results were effectively equivalent with 
the LRT results above, making their presentation here unnecessary.
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The bottom row of the figure presents the distribution 
of the additive genetic variance component from the same 
analyses. Because there is a dependency between the com-
mon environmental and additive genetic variance compo-
nents, the slight upward bias in the common environmental 
variance corresponds with a slight downward bias in the 
additive genetic variance for the Cholesky decomposition 
and the Correlated Factors methods. Therefore, in repeated 
sampling, if the Cholesky decomposition or Correlated Fac-
tors models were used, we would expect a slight inflation 
of any variance components that are truly zero, and a cor-
responding deflation of the alternative variance components.

Model convergence rates

The NPSOL optimizer used to fit the models here can result 
in one of five status codes, of which 0, 1, 4, 5, and 6 are of 
the most interest for the current project (Neale et al. 2016: 
see the note for Table 3 or the OpenMx manual for more 
detail on the status codes). Typically, codes 0 or 1 indicate 
good convergence, whereas codes 5 and 6 require additional 
scrutiny and caution because the optimizer may not have 
found a global minimum and report incorrect parameter 
estimates. Code 4 indicates that insufficient major iterations 

were undertaken (i.e., the iteration limit has been reached) 
and the results should not be trusted.

Table 3 presents the optimization status codes for both 
simulation studies. The Direct Symmetric method invariably 
returned optimization status code 0 or 1 (in 400,000 repeti-
tions). By contrast, the Cholesky method usually returned an 
optimization status of 0 or 1, but occasionally returned a sta-
tus of 5. The probability of status 5 codes seems to increase 
with the number of phenotypes being analyzed. Finally, the 
Correlated Factors model usually returned optimization sta-
tus 5 or 6, sometimes returns a code 4 (all of which demand 
additional scrutiny) and only occasionally returned code 0 
or 1. Moreover, the probability of observing a code 0 or 1 
decreased as the number of phenotypes increased.

Therefore, contrary to expectation, the direct symmetric 
method does not appear to increase optimization problems 
relative to the two other methods. Follow-up analyses reveal 
that optimization time is, on average, shortest for the direct 
symmetric method, slightly longer for the Cholesky, and 
longest for the correlated factors method, consistent with 
the expectation that it will take longer to estimate models 
that have issues with optimization (where the NPSOL status 
is greater than 1).

Comparison of the − 2 log-likelihood (− 2lnL) across the 
parameterization methods provides further insight into their 

Cholesky Decomposition

C
om

m
on

E
nv

iro
nm

en
t

Correlated Factors Direct Symmetric

A
dd

iti
ve

G
en

et
ic

Fig. 4   Density plots of the estimated common environmental and 
additive genetic variance components for the Cholesky, Correlated 
Factors, and Direct Symmetric estimation methods. Note the density 
plots depict the common environmental and additive genetic variance 
components for the first variable in simulation study 2. The solid red 

lines indicate the observed mean of the distribution while the dotted 
blue lines indicated the simulated value for the parameter. If the solid 
red line is on the right of the dotted blue line, then the parameter is 
overestimated and if the solid red line is on the left of the dotted blue 
line the parameter is underestimated. (Color figure online)
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Table 3   NPSOL status codes 
for all of the models that were 
estimated separated by the 
estimation algorithm and the 
data generation process

The five NPSOL status codes indicate: successful optimization (0), successful optimization but optimiza-
tion did not converge to a single likelihood (1: Mx status GREEN), the iteration limit was reached before a 
solution could be found (4: Mx status BLUE), the Hessian matrix is not convex at the solution (5), and the 
gradient is not close enough to zero to satisfy the optimization requirements, but that no improvement in 
the solution could be found (6: Mx status RED). The top four panels use the results from the first simula-
tion study and the bottom panel uses the results from the second simulation study

Number of variables Estimation method NPSOL status codes

0 1 4 5 6

1 Variable Variance 100,000
Std. dev 100,000

2 Variables Direct symmetric 85,721 14,279
Cholesky 60,768 36,276 2956
Correlated factors 15,894 13,649 1487 67,603 1367

3 Variables Direct symmetric 85,498 14,502
Cholesky 60,844 36,038 3118
Correlated factors 15,872 13,334 1445 68,020 1329

4 Variables Direct symmetric 96,792 3208
Cholesky 45,414 49,921 4665
Correlated factors 3776 4440 459 89,359 1966

5 Variables Direct symmetric 99,924 76
Cholesky 43,888 48,073 8039
Correlated factors 2507 4104 212 91,829 1348
IPM 3477 20,735 2 5335 70,451
CPM 77,598 22,402

Fig. 5   Pairwise comparisons between the negative 2 log-likelihoods 
of the Direct Symmetric, Cholesky and Correlated Factors methods 
of estimating variance components. Note the top panels show the full 
range of the − 2 log-likelihoods for each pairwise estimation method. 
The bottom panels depict a zoomed in view of the scatterplot consist-

ent with the red box in the panel above. The red line in the bottom 
panels indicates the equality of the − 2 log-likelihood for each param-
eterization method. The data are taken from the 4-variable model 
from the first simulation study. (Color figure online)
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differences, as presented in Fig. 5. The three parameteri-
zation methods fit models that are theoretically equivalent 
across the region of the parameter space when all three vari-
ance components are greater than zero. The − 2lnL should be 
equal across methods in these cases. However, the Cholesky 
and correlated factors models have a restricted parameter 
space, being unable to fit the data as well when one or more 
of the variance components is estimated to be less than zero. 
Figure 5 compares the − 2lnL between the three parameteri-
zations. The top panels show the entire range of the − 2lnL 
values for each model, and the bottom panels focus on a nar-
row range of the values to explore the differences in model 
fit in more detail. The red line depicts equality of the − 2lnL.

The top panels show high correspondence between the 
− 2lnL of the three parameterization methods. The correla-
tions between the models’ −2lnL are all > 0.99. These high 
correlations in the upper panels overstate the agreement in 
fit across the models. The bottom panels, with the narrower 
range of log-likelihoods, emphasize their differences. All 
points in the Figure are either on or above the diagonal, 
showing that the Direct Symmetric method always fits as 
well as, or better than, the other two methods. There is, how-
ever, considerable variation in the difference in model fit, 
with the alternative parameterizations occasionally having 
a difference in − 2lnL of up to approximately 50 (for the 
Cholesky) or 450 (for the Correlated Factors). With the Cor-
related Factors model, there is a cluster of − 2lnL that appear 
to be much worse than expected, likely due to the optimizer 
failing to find the global minimum. Such results highlight 
the robustness of the Direct Symmetric method.

Discussion

These simulation studies demonstrate that implicit and 
explicit boundaries lead to a deviation from the expected 
Type I error rate and can induce bias in the parameter 
estimates under the null hypothesis. Specifically, the more 
boundaries that exist within an estimation procedure, the 
more the numerical Type I error rate departs from the 
nominal rate. Each implied boundary contributes to this 
divergence, but not necessarily at the same rate. On a prac-
tical level this means that Type I error rates from analyses 
that directly estimate the A, C and E covariance matrices 
without boundaries will follow the theoretical Type I error 
rate, while analyses that place explicit or implicit bounda-
ries on parameters, such as a Cholesky decomposition, will 
deviate from the theoretical expectations, often by an order 
of magnitude or more. These incorrect Type I error rates 
can cause errors of inference, where researchers conclude 
that a statistically significant parameter is not significant 
because they are testing at a much more stringent alpha 
level than they realize. Furthermore, the implicit boundary 

of zero on variance components will also upwardly bias 
estimates of any variance components that are at, or near, 
zero. If the sampling distribution of a parameter includes 
an implicit or explicit boundary, the sampling distribu-
tion for the parameter will be truncated with all estimates 
outside the bounded space returning the bounded value. 
This will alter the observed mean of the sampling distribu-
tion, resulting in biased parameter estimates. Because the 
common environment and additive genetic variance com-
ponents in twin models are compensatory, an upward bias 
for one variance component will result in a downward bias 
in the estimate for the compensatory variance component.

While the current simulations focus on the common 
environment parameters, the results directly translate to 
the additive genetic variance components. Under the null 
hypothesis of no genetic variation, the expected value 
of the additive genetic variance component would be 
upwardly biased if implicit boundaries were included in 
the model, and the common environmental variance com-
ponent would be downwardly biased.

The method of estimating saturated models can influ-
ence subsequent statistical decision making for hypothe-
sis-driven IPM and CPM models. Note that comparing the 
reduced IPM or CPM to the full IPM or CPM is not the 
comparison that is generally made when assessing the fit 
of multivariate twin models. Typically, the IPM and CPM 
model fits are compared to that of the Cholesky. For both 
the Cholesky and correlated factors models, the Type I 
error rate is lower than nominal. This divergence results 
in concluding that the fit of the more parsimonious IPM 
or CPM is worse than the saturated model less often than 
would be expected by chance. Historically, the restricted 
IPM or CPM may have been accepted too frequently, by 
comparing their fit relative to that of the Cholesky. Com-
parison to the direct symmetric model is to be preferred. 
Accordingly, the choice of baseline model can strongly 
affect the statistical properties of the test statistics as well 
as the inferences that can be drawn from the results.

When discussing Type I error rate violations, it is typi-
cally in the context of inflation of the family-wise error 
rate (FEWR). In such cases, the nominal error rate is much 
higher than the specified error rate, due, for example, to 
multiple testing. In the current context, however, the error 
rate is downwardly biased, making it less likely that the 
null hypothesis will be rejected. For multivariate twin 
studies, this means that while researchers may think they 
are testing their hypotheses with a significance level of 
α = 0.05, in many cases they are actually testing with a 
significance level of α = 0.01 or less (depending on the 
number of variables in the model). When the test statistic 
is significant, however, the results are even more robust 
than the researcher implied. In cases where the statistic 
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did not reach the theoretical level of significance, however, 
Type II errors are likely quite common.

The fact that the Type I error rate is conservative implies 
that the Type II error rate is inflated. This problem is com-
pounded by the routine practice of dropping non-significant 
parameters to present more parsimonious models with nar-
rower parameter confidence intervals. Moreover, in twin 
models, the A and C parameters have a high dependency, 
such that by excluding one parameter the other parameter is 
inflated in a compensatory fashion. Because the evidence for 
common environmental variation is often much weaker than 
that for additive genetic variation, C is routinely dropped 
from analyses. It is possible that this practice has upwardly 
biased estimates of additive genetic variance. There has been 
a push in the literature to avoid dropping non-significant 
parameters, minimizing the overestimation of the A vari-
ance components (Sullivan and Eaves 2002). Alternatively, 
utilizing the Cholesky decomposition or Correlated Fac-
tors approach and retaining null parameters will have the 
opposite effect by downwardly biasing the compensatory 
variance component. The recent meta-analyses of Polderman 
et al. (2015) seem consistent with upward bias of variance 
components. They found smaller meta-analytic estimates of 
C when Holzinger’s formulas (commonly but incorrectly 
referred to as Falconer’s formulas) were used than from the 
implicitly bounded maximum likelihood (Newman et al. 
1937). In adequately powered studies, however, this bias is 
likely relatively small.

Before twin researchers started using structural equation 
modeling to fit twin models (Martin and Eaves 1977), her-
itability estimates were often calculated using Holzinger’s 
formulas (Newman et al. 1937), and these formulas also did 
not place boundaries on the heritability estimates (also see 
Falconer 1960). As such, heritability estimates were rou-
tinely calculated that were not bounded by 0 and 1 (when 
heritability is estimated from LD score regression methods, 
the estimates are also not bounded by 0 and 1; Bulik-Sulli-
van 2015; Zheng et al. 2016). This “inconvenience” played 
a role in the development of SEM methods to estimate twin 
models.

It is useful to consider the conditions where negative esti-
mates of variance components are likely to be observed. We 
discuss three scenarios where we expect they are most likely 
to be observed but other situations may arise with additional 
research.

First, it is possible that the negative variance components 
accurately reflect the underlying genetic or environmental 
mechanism under investigation (Steinsaltz et  al. 2017). 
For example, genes that have the opposite effects in subse-
quent generations, as has been observed for neonatal jaun-
dice (Haldane 1996). Alternatively, while most heritability 
estimates for epigenetic factors are positive, a non-trivial 
proportion appear to have negative heritability estimates 

(Steinsaltz et al. 2017). While we expect this to be rare in 
practice, it is a theoretically plausible expectation in some 
situations.

Second, due to sampling error, the observed MZ cor-
relations could be underestimated and the DZ correlations 
could be overestimated by chance alone. This is particularly 
likely in smaller samples, where there is more variability in 
the sampling distribution of the respective correlations. If 
this is the case, the estimate of the variance component will 
often be negative but not statistically significant, implying 
the parameter is not statistically distinguishable from zero. 
The substantially larger sample sizes in modern twin studies 
may ameliorate this problem, but it is unclear how frequently 
this will occur in practice.

Finally, an interesting situation arises when thinking 
about the possibility of using negative variance components 
as a method of evaluating model misspecification. For exam-
ple, in the analysis of MZ and DZ twin data, researchers are 
forced to choose between estimating a shared environmental 
variance component (C) or a non-additive genetic variance 
component (D), as one variance component must be fixed 
to zero to allow for model identification. If the shared envi-
ronmental variance component is negative, however, it may 
be due to stochastic variation in the estimate, or a genuinely 
different source of variation, such as genetic dominance. In 
fact, it is possible to calculate the expected value of C or 
D from the obtained negative parameter estimates. Specifi-
cally, D = − 2C and C = − D/2. While the prevalence of these 
illogical estimates is currently unknown, their presence will 
provide an opportunity to explore the biometrical model in 
a new light and hopefully lead to a better understanding of 
the phenotypes under investigation.

The above scenario assumes that either C or D is truly 
zero. Previous research has demonstrated that if both C 
and D are non-zero (i.e. positive), their estimates in a twins 
only model are confounded, and the observed value of A is 
inflated (Coventry and Keller 2005). It is necessary to note 
that the direct symmetric approach does not resolve any con-
founding between C and D. If both C and D are present for a 
phenotype, simply allowing the variance components to go 
negative will not negate the bias in A.

When analyses are expanded to multiple phenotypes, 
which exacerbates the Type I error rate issues, potential 
problems with negative definite matrices can arise. For 
example, in situations where one phenotype has a negative 
variance component, or the genetic or environmental cor-
relations are greater than 1, the entire matrix will be nega-
tive definite and difficult to interpret. If this should occur, 
analysts should delve deeper into the potential factors that 
give rise to the aberrant result, such as a peculiar pattern 
of covariation between variables, or marked differences 
between groups. These scenarios may provide the oppor-
tunity to learn something that would otherwise have been 
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masked by forcing matrices to be positive definite. It is 
worth noting that if the genetic and environmental covari-
ance between phenotypes are in the opposite direction (e.g. 
the genetic correlation is positive and the common environ-
mental correlation is negative), the proportion of genetic 
or environmental covariation between phenotypes can be 
greater than one or less than zero with any multivariate 
biometrical variance decomposition method. Researchers 
should also examine whether the parameters driving the 
results are statistically significant, or whether the observed 
parameter is potentially due to sampling variability. If the 
anomalous parameter is not significant, it should be noted, 
but drastic measures may not be justified. If, however, the 
results are completely uninterpretable, it may be necessary 
to impose constraints.

It is important to highlight that the Type I error rate and 
parameter bias issues do not affect all twin models equally. 
For example, models that test the basic assumptions of twin 
data, such as equal means, thresholds and variances across 
twin order and zygosity, are unaffected by the current issues 
because the statistical analyses do not include implicit or 
explicit boundaries. Furthermore, in some circumstances, 
all three methods are equivalent. If all of the estimated vari-
ance components are positive, the same model fit will be 
obtained for each approach, as can be seen in Fig. 5, and the 
parameters from one specification will be transformations 
of another. In this situation, the numerical Type I error rates 
from each model will follow the theoretical distribution and 
there will be no bias in any of the parameters. If any of the 
variance components from the direct symmetric approach 
are negative, the model fit for each algorithm will diverge 
and the any boundaries that are encountered will induce 
potential bias.

Despite the Type I error issue, the Cholesky decomposi-
tion approach to fitting models to twin data has several very 
useful properties. First, it generalizes well to fitting mod-
els to multigenerational data, e.g., twins and their parents 
or children (Rice et al. 1979; Neale and Fulker 1984). It is 
also of practical value in the specification of models of sex-
limitation and genotype by environment interaction (Pur-
cell 2002; Neale et al. 2006). Analogous direct symmetric 
implementations of these more elaborate models to handle 
more complex research designs and questions have yet to be 
developed. There are some issues with an expected opposite 
sex DZ twin covariance of 0.5√(VAm*VAf) if either the 
male or female additive genetic components, VAm and VAf, 
is less than zero. Research is currently being conducted to 
account for this situation.

As researchers consider modeling twin data in the future, 
it is important to consider the goals of such an exercise. 
First, does the model fit the data? And second, does the 
model make biological sense? In this paper we have dem-
onstrated that the divergence of the Type I error rates for 

the Cholesky decomposition and correlated factors models 
from their theoretical expectations is a result of implicit 
boundary conditions. Furthermore, these implicit boundaries 
can induce bias in the estimated parameters. The primary 
trade-off between the Cholesky, the correlated factors, and 
the direct symmetric model pits the statistical properties of 
the estimates and the inferences that can be drawn from the 
analyses against the interpretability of the estimates. While 
we do not wish to downplay the importance of interpret-
ability, we strongly believe that the statistical properties and 
subsequent inferences are of paramount concern and there-
fore urge future twin researchers to use the direct symmetric 
approach to fit twin models. In summary, the direct symmet-
ric approach has several advantages over other multivariate 
twin models as it corrects the Type I error rate and parameter 
bias issues, is easy to implement in current software, and has 
fewer optimization problems.
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