Where have we been and we are going?

Lucía Colodro Conde, Elizabeth Prom-Wormley, and Sarah Medland

Using SEM to model genetic and environmental effects on phenotypes

<u>https://www.colorado.edu/ibg/international-</u> workshop/2020-international-statistical-geneticsworkshop/workshop-2020-preliminary

Revisiting SEM

In summary, we have been doing processes of:

- Specification
- Identification
- Estimation
- Evaluation

Mean and Variance as a Path Diagram

1 μ_{x} vA1con

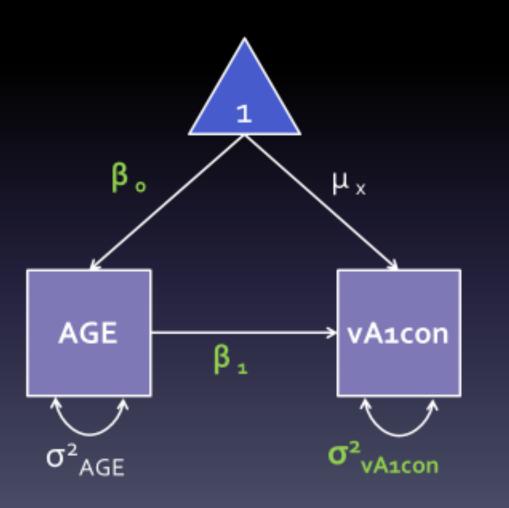
<u>Triangle</u>: a constant variable, usually a vector of ones (here, we use it to reflect a deviation from the mean (none for this picture)

<u>Single-headed arrows</u>: linear relationship between two variables. Starts from an independent variable and ends on a dependent variable

<u>Squares or rectangular boxes</u>: observed or manifest variables (MEASURED)

Double-headed arrows: variance of a variable or covariance between two variables

Linear Regression as a Path Diagram



Squares or rectangular boxes: observed or manifest variables

<u>Single-headed arrows</u>: linear relationship between two variables. Starts from an independent variable and ends on a dependent variable

Double-headed arrows: variance of a variable or covariance between two variables

Triangle: a constant variable, usually a vector of ones

Circles or ovals: errors, factors, latent variables

Regression Across All Twin 1 Members of a Twin Pair

require (OpenMx)

depVar <- 'vA1con_1'

Variance/Covariance matrix

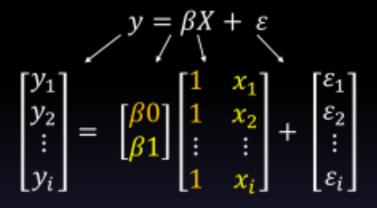
Variance <- mxMatrix(type="Full", nrow=1, ncol=1, free=TRUE, values=10, labels='resid', name="residualVar")

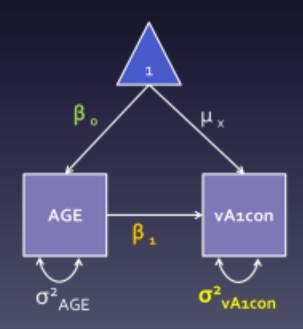
Regression betas

- b0 <-mxMatrix(type="Full", nrow=1, ncol=1, free=T, values=30, labels="beta0", name="Intercept")
- b1 <-mxMatrix(type="Full", nrow=1, ncol=1, free=T, values=0, labels="beta1", name="bAge")

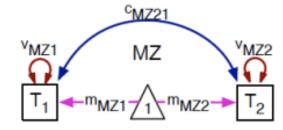
Independent variable

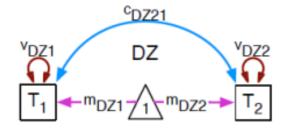
x <-mxMatrix(type="Full", nrow=1, ncol=1, free=F, labels="data.AGE_1", name="Age")





SAT Deconstructed: Covariance Matrices & Means

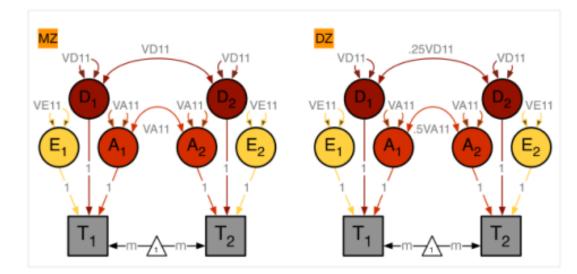




meanMZ <- mxMatrix(type="Full", nrow=1, ncol=ntv, free=TRUE, values=svMe, labels=c("mMZ1","mMZ2"),name="meanMZ") meanDZ <- mxMatrix(type="Full", nrow=1, ncol=ntv, free=TRUE, values=svMe, labels=c("mDZ1","mDZ2"),name="meanDZ") mDZ1 mDZ2 meanDZ 1x2

```
covMZ <- mxMatrix( type="Symm", nrow=ntv, ncol=ntv,
free=TRUE, values=svVas, lbound=lbVas,
labels=c("vMZ1","cMZ21","vMZ2"), name="covMZ" )
covDZ <- mxMatrix( type="Symm", nrow=ntv, ncol=ntv,
free=TRUE, values=svVas, lbound=lbVas,
labels=c("vDZ1","cDZ21","vDZ2"), name="covDZ" )
```

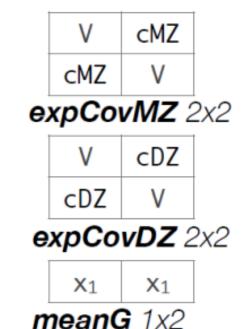

ACE Deconstructed: Covariance Matrices & Means

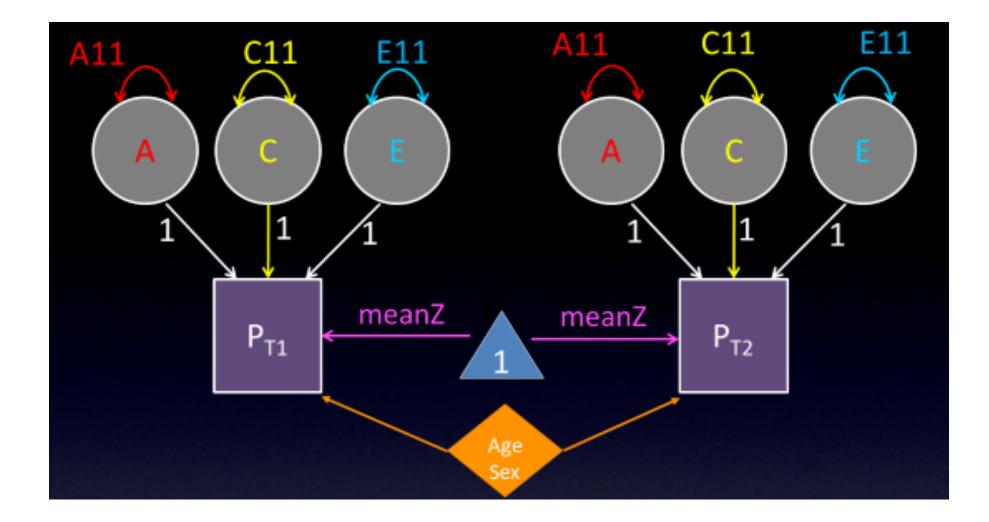


```
expCovMZ <- mxAlgebra( expression= rbind(
    cbind(V, cMZ), cbind(t(cMZ), V)), name="expCovMZ" )
```

```
expCovDZ <- mxAlgebra( expression= rbind(
    cbind(V, cDZ), cbind(t(cDZ), V)), name="expCovDZ" )
```

meanG <- mxMatrix(type="Full", nrow=1, ncol=ntv, free=TRUE, values=svMe, labels="x1", name="meanG")





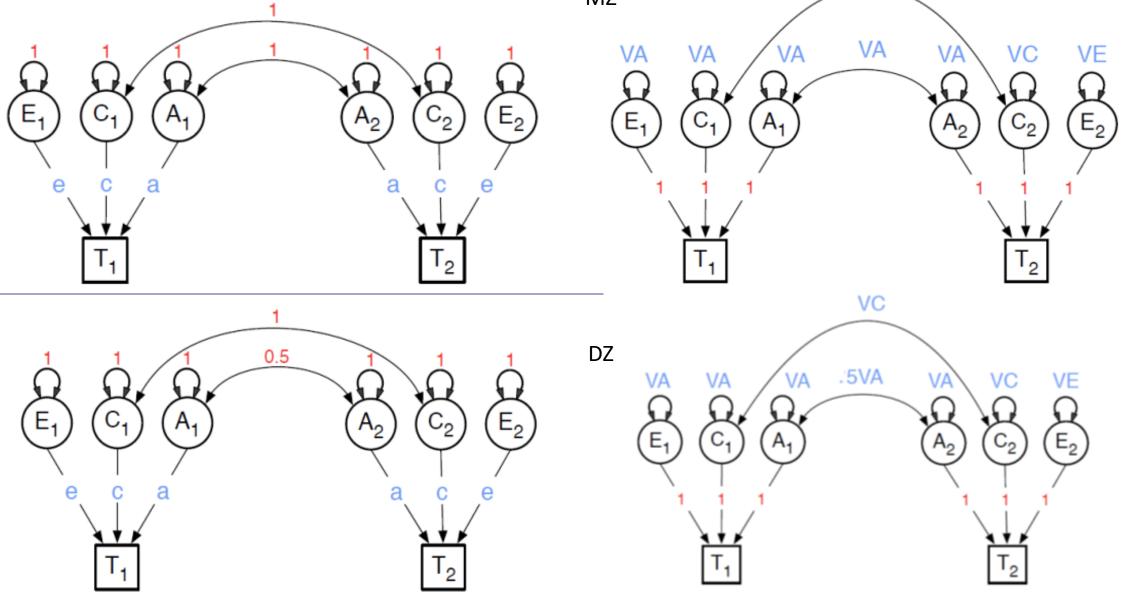
Conventions of path tracing

Reference – Path Tracing Rules for SEM

- 1 Find All Distinct Chains between Variables:
 - A) Go backwards along zero or more single-headed arrows
 - B) Change direction at one and only one Double-headed arrow
 C) Trace forwards along zero or more Single-headed arrows
- 2 Multiply path coefficients in a chain
- 3 Sum the results of step 2.
- Note- For covariance of a variable with itself (Variance), chains are distinct if they have different paths or a different order

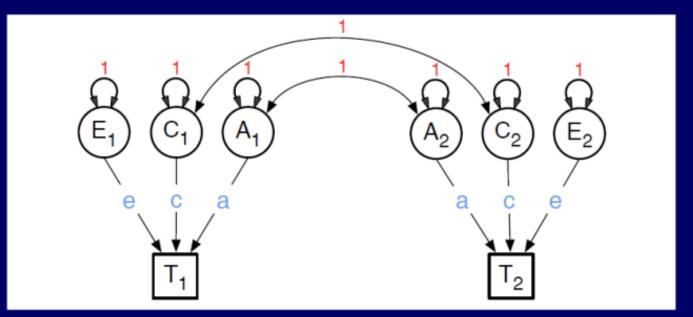
Estimation of path coefficients Estimation of variance components MZ 1 1 1 1 1 1 1 1 1 VA VA VA VA VA VA VA

DZ



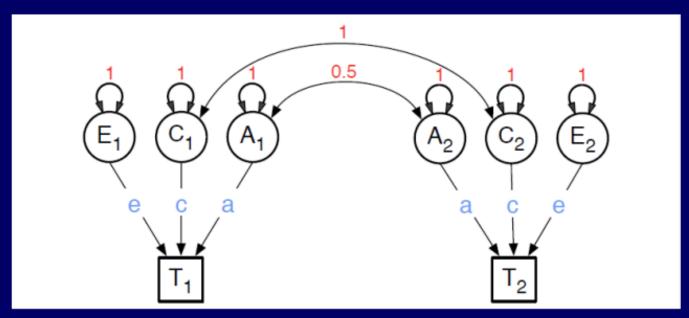
Estimation of path coefficients

Path Model for an MZ Pair

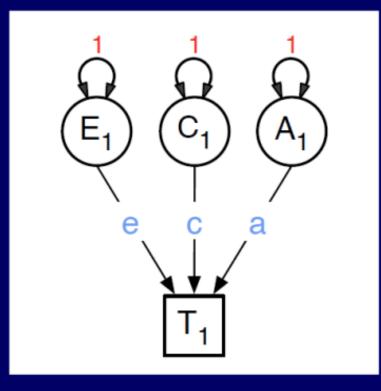


Latent variables A1 C1 and E1 have variance 1, and cause phenotype T1 via path coefficients a, c and e. Same model for T2. $Cov(A_1,A_2)=1$

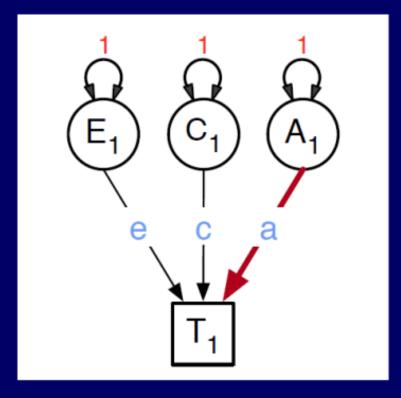
Path Model for a DZ Pair

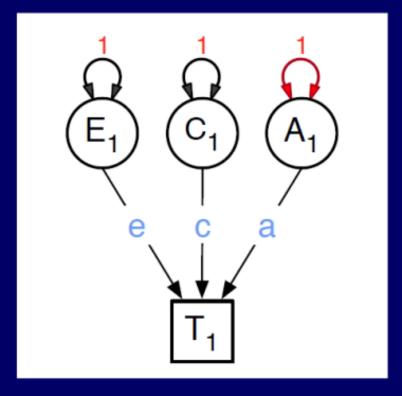


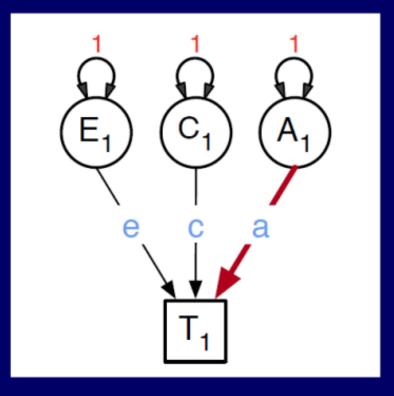
Latent variables A1 C1 and E1 have variance 1, and cause phenotype T1 via regression paths a, c and e. Same model for T2. Cov(A1,A2) = .5



What Chains?

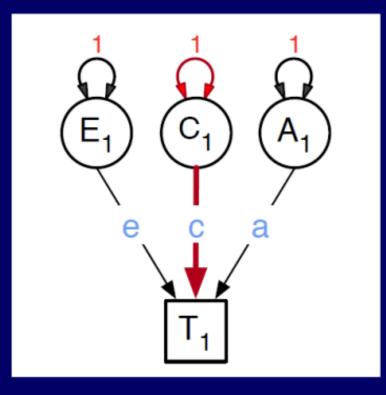




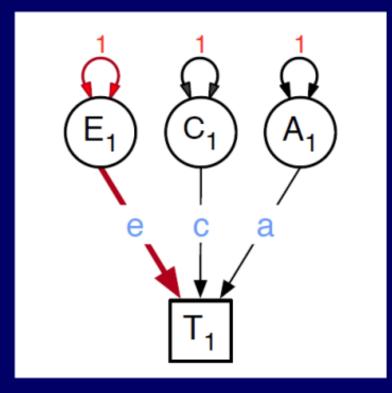


 $a^{1*a} = a^{2}$

Total Variance = $a^2 + ...$

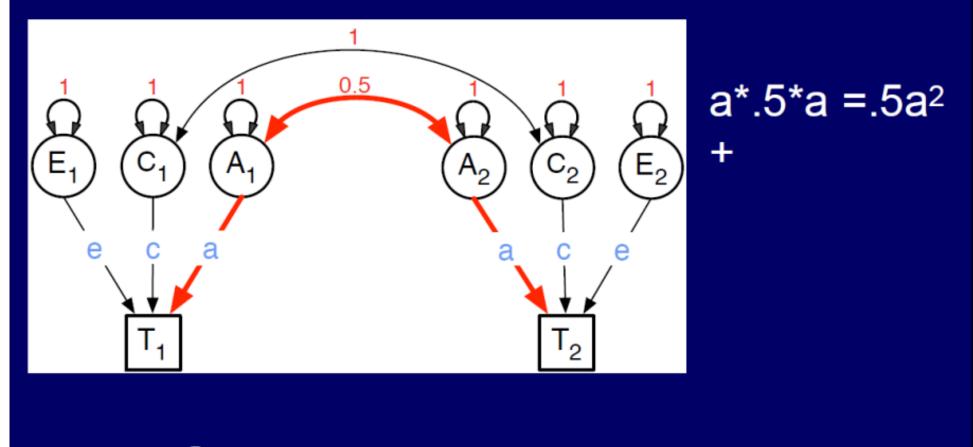


a*1*a = a² + c*1*c = c² +



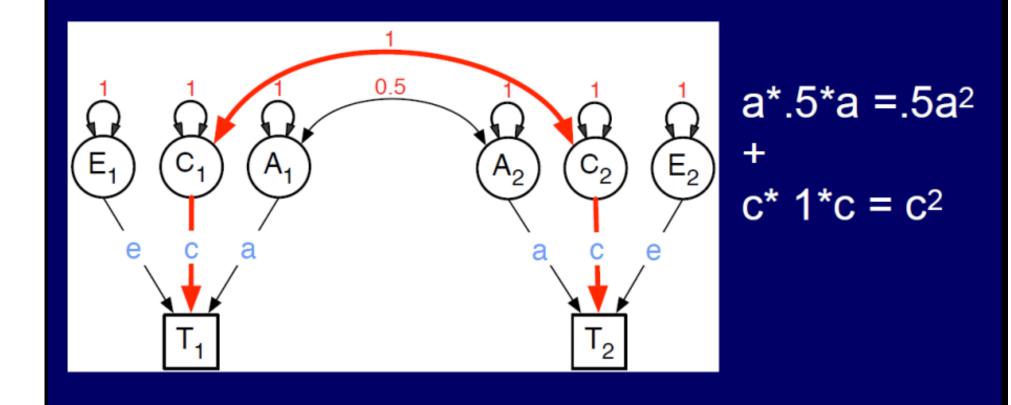
a*1*a = a² + c*1*c = c² + e*1*e = e²

Covariance of Twin 1 AND Twin 2 (for DZ pairs)

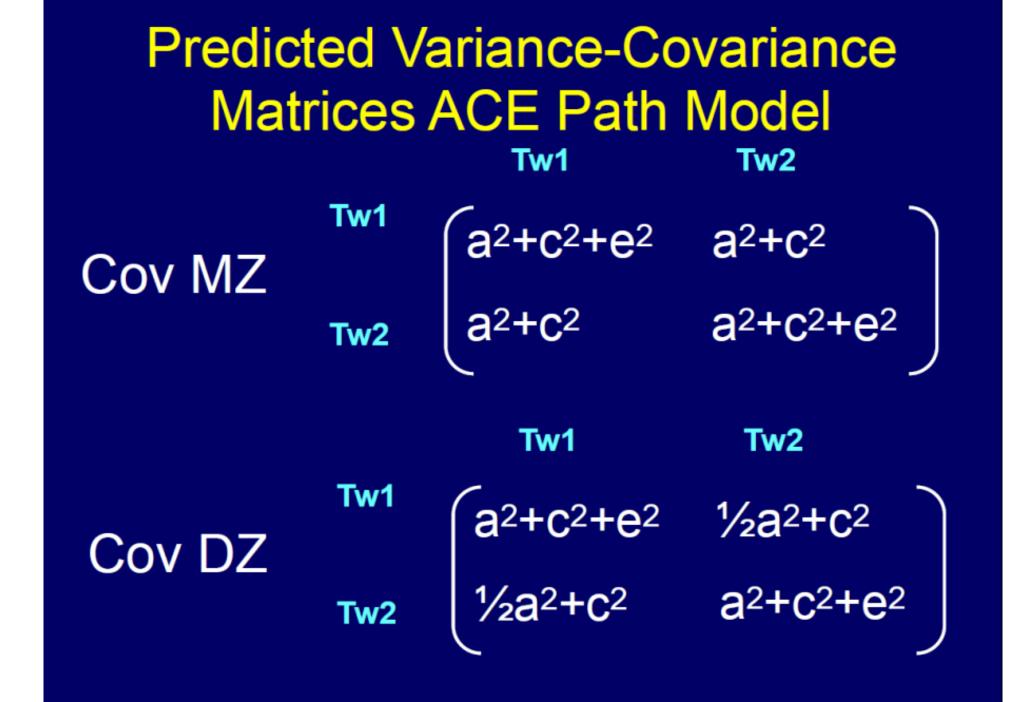


Covariance = $.5a^2 + ...$

Covariance of Twin 1 AND Twin 2 (for DZ pairs)



Total Covariance = $.5a^2 + c^2$



Code in estimation of path coefficients

pathA <- mxMatrix(type="Lower", nrow=nv, ncol=nv, free=TRUE, values=svPa, label="a11", lbound=lbPa, name="a")
pathC <- mxMatrix(type="Lower", nrow=nv, ncol=nv, free=TRUE, values=svPa, label="c11", lbound=lbPa, name="c")
pathE <- mxMatrix(type="Lower", nrow=nv, ncol=nv, free=TRUE, values=svPe, label="e11", lbound=lbPa, name="e")</pre>

Create Algebra for Variance Components

- covA <- mxAlgebra(expression=a %*% t(a), name="A")</pre>
- covC <- mxAlgebra(expression=c %*% t(c), name="C")</pre>
- covE <- mxAlgebra(expression=e %*% t(e), name="E")</pre>

Create Algebra for expected Variance/Covariance Matrices in MZ & DZ twins

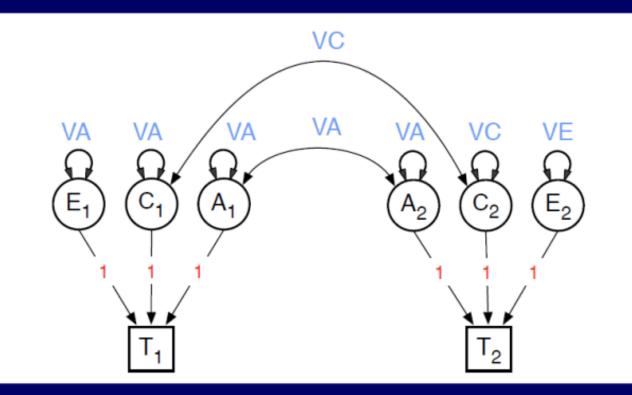
- covP <- mxAlgebra(expression= A+C+E, name="V")</pre>
- covMZ <- mxAlgebra(expression= A+C, name="cMZ")</pre>
- covDZ <- mxAlgebra(expression= 0.5%x%A+ C, name="cDZ")</pre>

expCovMZ <- mxAlgebra(expression= rbind(cbind(V, cMZ), cbind(t(cMZ), V)), name="expCovMZ")

avp(avD7 < mvAlgabra(avprossion = rbind(chind(V(cD7) chind(t(cD7) V)) nama="avp(avD7"))

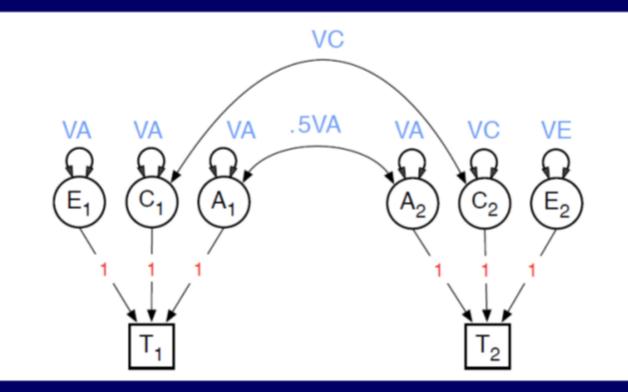
Estimation of variance components

Variance Component Model: MZ

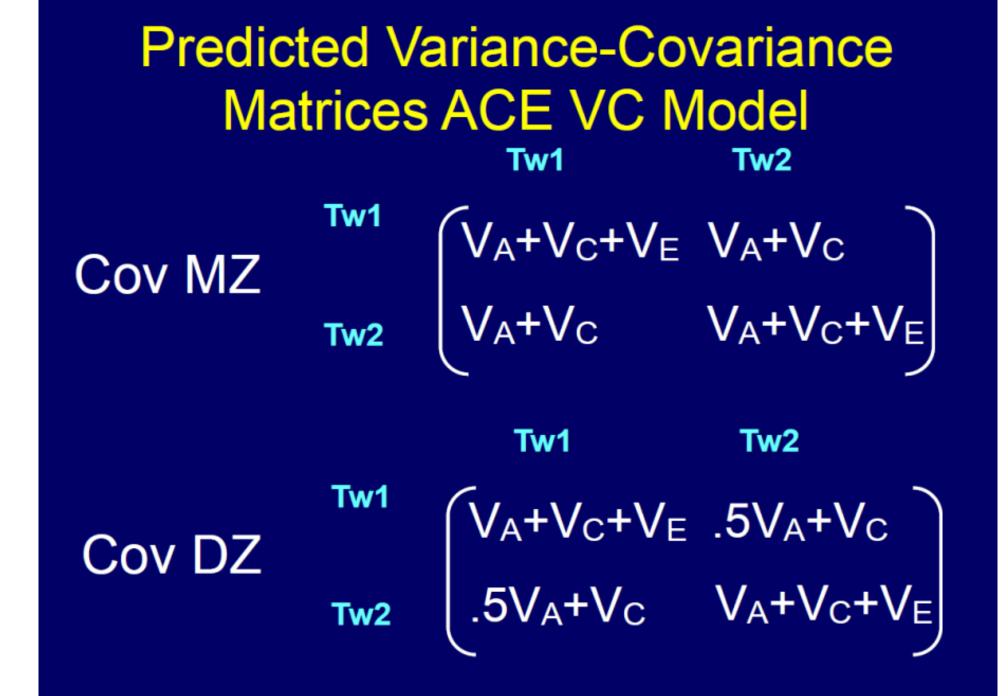


Latent variables A1 C1 and E1 have variances VA, VC and VE, and cause phenotype T1 via regression paths 1. Same model for T2

Variance Component Model: DZ



Latent variables A1 C1 and E1 have variances VA, VC and VE, and cause phenotype T1 via regression paths 1. Same model for T2



Code in estimation of variance components

Create Matrices for Variance Components

covA <- mxMatrix(type="Symm", nrow=nv, ncol=nv, free=TRUE, values=valDiag(svPa,nv), label=labLower("VA",nv), name="VA")

covC <- mxMatrix(type="Symm", nrow=nv, ncol=nv, free=TRUE, values=valDiag(svPa,nv), label=labLower("VC",nv), name="VC")

covE <- mxMatrix(type="Symm", nrow=nv, ncol=nv, free=TRUE, values=valDiag(svPa,nv), label=labLower("VE",nv), name="VE")

Create Algebra for expected Variance/Covariance Matrices in MZ & DZ twins

covP <- mxAlgebra(expression= VA+VC+VE, name="V")</pre>

covMZ <- mxAlgebra(expression= VA+VC, name="cMZ")</pre>

covDZ <- mxAlgebra(expression= 0.5%x%VA+ VC, name="cDZ")</pre>

expCovMZ <- mxAlgebra(expression= rbind(cbind(V, cMZ),

cbind(t(cMZ), V)), name="expCovMZ")

expCovDZ <- mxAlgebra(expression= rbind(cbind(V, cDZ),</pre>

cbind(t(cDZ), V)), name="expCovDZ")

What's the difference?

- Path: Implicit (artificial) boundary constraint
 - Estimate a but a² can *never* be negative.
 - As the number of variables in a twin model increases, the number of implicit boundaries in the model increase.
- Variance Component: Unbounded
 - Estimates VA, VC, and VE can be positive and negative

Why do we prefer the variance component approach?

The statistical significance of the parameters from a univariate ACE model is often assessed using a likelihood ratio test.

Under certain regularity conditions this statistic is asymptotically distributed as χ^2 with 1 d.f. BUT these regularity conditions are not met when models have either implicit or explicit bounds.

When boundaries are included, the numerical Type I error rates are lower than theoretically expected.

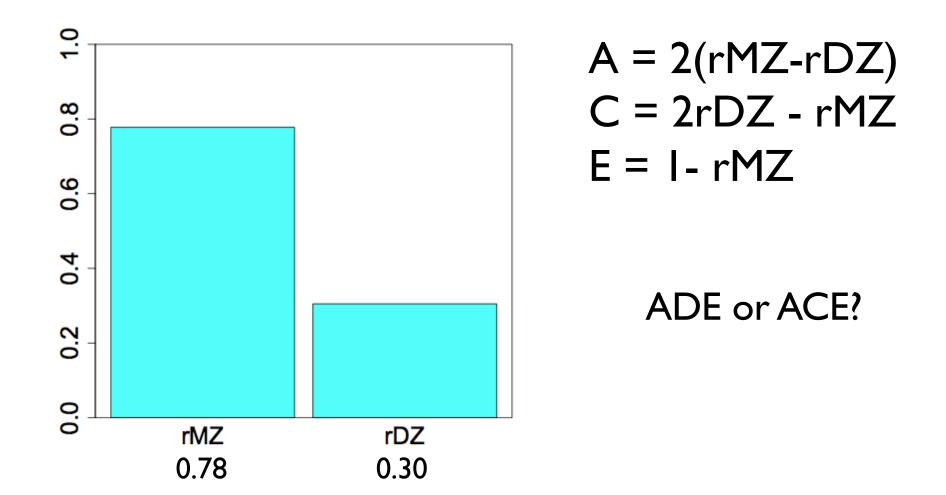
- The null hypotheses that either a²= 0 or c² = 0 are rejected less frequently than would be expected due to chance.
- This, causes an increase in Type II errors, where we can falsely conclude the variance component is not significant.

Why do we prefer the variance component approach?

- It may fit better
 - No bias from implicit boundary

• Negative variances? Model wrong?

BMI Twin Correlations



Why do we prefer the variance component approach?

Behavior Genetics (2019) 49:99–111 https://doi.org/10.1007/s10519-018-9942-y

ORIGINAL RESEARCH

Type I Error Rates and Parameter Bias in Multivariate Behavioral Genetic Models

Brad Verhulst¹ · Elizabeth Prom-Wormley² · Matthew Keller³ · Sarah Medland⁴ · Michael C. Neale⁵