Development / longitudinal / repeated measures / time series / (not cross-sectional)

Dorret Boomsma
Eveline de Zeeuw
Conor Dolan
Netherlands Twin Register
Department of Biological Psychology
Vrije Univ., Amsterdam, The Netherlands

General multivariate model for 1 person: Regression of observed variables (y) on latent variables (f)

Covariance among variables is accounted for by a smaller number of latent factors.

Model: $y=\Lambda f+e$,
where $\mathrm{y}=$ observed variables
$f=$ (latent) factor score(s)
$\mathrm{e}=$ unique factor / error
Λ = matrix of factor loadings

Structural equation models.

Sometimes $x=\Lambda f+e$ is referred to as the measurement model, and relations among latent factors as the structural equation model.

Multivariate model

If $\mathrm{T}=$ time and N of time points get large, what will happen?

Developmental model

Two general approaches to longitudinal modeling (not mutually exclusive)

Markov models:
(Vector) autoregressive models for continuous data
(Hidden) Markov transition models discrete data

Growth curve models:
Focus on linear and non-linear growth curves
Typically multilevel or random effects model

Which to use?
Use the model that fit the theory \& hypotheses

Growth curve modeling ? If you're interested in growth trajectories. Linear or non-linear:

Structured latent growth curves for twin data

Michael C Neale ${ }^{1}$ and John J McArdle ${ }^{2}$

Autoregressive modeling ? If you're interested in e.g. the genetic stability of a trait (e.g combining data).

Psycholosical Medicine (2015), 45, 1039-1049. © Cambridge University Press 2014 doi:10.1017/S003329171400213X

Stability in symptoms of anxiety and depression as a function of genotype and environment: a longitudinal twin study from ages 3 to 63 years
M. G. Nivard ${ }^{1,2 *}$, C. V. Dolan ${ }^{1,3}$, K. S. Kendler ${ }^{4}$, K.-J. Kan ${ }^{1}$, G. Willemsen ${ }^{1,5}$,
C.E. M. van Beijsterveldt ${ }^{1,5}$, R. J. L. Lindauer ${ }^{6}$, J. H. D. A. van Beek ${ }^{1,5}$, L. M. Geels ${ }^{1,5}$
M. Bartels ${ }^{1,5}$, C. M. Middeldorp ${ }^{1,2,7} \dagger$ and D. I. Boomsma ${ }^{1,2,5} \dagger$

Do the Genetic or Environmental
Determinants of Anxiety and Depression Change with Age? A Longitudinal Study of Australian Twins

Can be combined (Nathan Gillespie)

First order autoregression model.

$$
y_{t i}=b_{0 t}+x_{t i}+e_{t i}
$$

(measurement model)

$$
x_{t i}=b_{t-1, t} x_{t-1 i}+\zeta x_{t i}
$$

(structural model)

First order autoregression model.

Identification issue: $\operatorname{var}\left(\mathrm{e}_{1}\right)$ and $\operatorname{var}\left(\mathrm{e}_{4}\right)$ are not identified. Solution set to zero, or equate : $\operatorname{var}\left(\mathrm{e}_{1}\right)=\operatorname{var}\left(\mathrm{e}_{2}\right), \operatorname{var}\left(\mathrm{e}_{3}\right)=\operatorname{var}\left(\mathrm{e}_{4}\right)$

Covariance matrix

1.250	0.70	0.49	0.343
0.700	1.25	0.70	0.490
0.490	0.70	1.25	0.700
0.343	0.49	0.70	1.250

Correlation matrix 1.00000 .5600 .3920 .2744
0.56001 .0000 .5600 .3920
$0.3920 \quad 0.5601 .000 \quad 0.5600$
0.27440 .3920 .5601 .0000
$\operatorname{Cov} \mathrm{y} 1, y 2:\left(0.7^{*} 1=0.7 ; \operatorname{cov} \mathrm{y} 1, \mathrm{y} 2=0.7^{*} 0.7^{*} 1=0.49\right.$, etc.

reliability: $\operatorname{rel}\left(x_{t}\right)=\operatorname{var}\left(x_{t}\right) /\left\{\operatorname{var}\left(x_{t}\right)+\operatorname{var}\left(e_{t}\right)\right\}$
$=1 /(1+.25)=1 / 1.25=.8$
$R^{2}: b_{t-1, t}{ }^{2} \operatorname{var}\left(x_{t-1}\right) /\left\{b_{t-1, t}{ }^{2} \operatorname{var}\left(x_{t-1}\right)+\operatorname{var}\left(\zeta x_{t}\right)\right\}$
$=\left\{.7^{2} * 1\right\} /\left(.7^{2} * 1+.51\right)=.49 / 1=.49$
Correlation $(\mathrm{t}, \mathrm{t}+1): \mathrm{b}_{\mathrm{t}-1, \mathrm{t}} \operatorname{var}\left(\mathrm{x}_{\mathrm{t}-1}\right) /\left\{\mathrm{sd}\left(\mathrm{y}_{\mathrm{t}-1}\right) * \mathrm{sd}\left(\mathrm{y}_{\mathrm{t}}\right)\right\}$
$=\left\{.7^{*} 1\right\} /\left\{\vee 1.25^{*} \sqrt{ } 1.25\right\}=.56$

These models can be applied to phenoypic, genetic and environmental timeseries.

Estimation of genetic and environmental correlations

Animal / experimental studies
Bi /multivariate twin / family analyses
Bivariate SNP analyses
LD-score regression

$$
\begin{gathered}
\Sigma_{A}=\left(I-B_{A}\right)^{-1} \Psi_{A}\left(I-B_{A}\right)^{-1 t}+\Theta_{A} \\
B_{A}= \\
0
\end{gathered} 0
$$

$$
\begin{aligned}
& \Sigma_{\mathrm{A}}=\left(\mathrm{I}-\mathrm{B}_{\mathrm{A}}\right)^{-1} \Psi_{\mathrm{A}}\left(\mathrm{I}-\mathrm{B}_{\mathrm{A}}\right)^{-1 \mathrm{t}}+\Theta_{\mathrm{A}} \\
& \Psi_{\mathrm{A}}=\operatorname{var}\left(\mathrm{A}_{1}\right) \quad 0 \\
& 0 \quad 0 \\
& 0 \quad \operatorname{var}\left(\zeta_{A 2}\right) 0 \quad 0 \\
& 0 \quad 0 \quad \operatorname{var}\left(\zeta_{\text {A3 }}\right) 0 \\
& \begin{array}{llll}
0 & 0 & 0 & \operatorname{var}\left(\zeta_{A 4}\right)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma_{A}=\left(I-B_{A}\right)^{-1} \Psi_{A}\left(I-B_{A}\right)^{-1 \tau}+\Theta_{A} \\
& \Theta_{A}=\quad \operatorname{var}\left(a_{1}\right) \\
& 0
\end{aligned}
$$

Constraint on residuals, e.g.:
$\operatorname{var}(\mathrm{a} 1)=\operatorname{var}(\mathrm{a} 2)=\operatorname{var}(\mathrm{a} 3)=\operatorname{var}(\mathrm{a} 4)$

Stability in symptoms of anxiety and depression as a function of genotype and environment：a longitudinal twin study from ages 3 to 63 years

M．G．Nivard ${ }^{1,2 *}$ ，C．V．Dolan ${ }^{1,3}$ ，K．S．Kendler ${ }^{4}$ ，K．－J．Kan ${ }^{1}$ ，G．Willemsen ${ }^{1,5}$ ，
C．E．M．van Beijsterveldt ${ }^{1,5}$ ，R．J．L．Lindauer ${ }^{6}$ ，J．H．D．A．van Beek ${ }^{1,5}$ ，L．M．Geels ${ }^{1,5}$ ，
M．Bartels ${ }^{1,5}$ ，C．M．Middeldorp ${ }^{1,2,7} \dagger$ and D．I．Boomsma ${ }^{1,2,5} \dagger$

Do the Genetic or Environmental
Determinants of Anxiety and Depression Change with Age？A Longitudinal Study of Australian Twins

Genetic and Environmental Stability of Neuroticism From Adolescence to Adulthood

Michel G．Nivard，${ }^{1}$ Christel M．Middeldorp，${ }^{1,2}$ Conor V．Dolan，${ }^{1}$ and Dorret I．Boomsma ${ }^{1,2,3}$ ${ }^{1}$ Department of Biological Psychology，VU University Amsterdam，the Netherlands
${ }^{2}$ Neuroscience Campus Amsterdam，Amsterdam，the Netherlands
${ }^{3}$ EMGO $^{+}$Institute for Health and Care Research，Amsterdam，the Netherlands

Genetic and Environmental Stability in

 Attention Problems Across the Lifespan：Evidence From the Netherlands Twin Register[^0]This stability model can be applied at the genetic and non－genetic level．

Anx/depression stability due to A and E from $3 y$ to 63 years

Genetic Simplex (type D personality). Latent factors in circles, twin-time data in squares. Loadings from latent to observed traits and variation of innovations constrained at 1 . Correlations between twins are specified at the level of the innovations (1 for MZ and 0.5 for $D Z$ pairs).

Innovation genetic variance				
Variance due to Genetic Transmission				
Total V(A)				

A Innovation	$0.81^{\wedge 2=0.66}$	$0.87^{\wedge} 2=0.76$	0	0
Transmission	-	$0.66^{*} 0.76=0.50$	$1.26^{*} 0.87=1.10$	$1.10^{*} 0.34$
Total V(A)	0.66	1.26	1.10	0.37

We will look at several approaches in an analysis of BMI data in young twins from the Netherlands Twin Register.

1) Saturated model
2) Cholesky 'model' (decomposition)
3) Simplex model

The BMI data set has data on 35,120 kids starting at birth. We selected kids with complete data only and will analyze BMI at age 4, 7, 9 and 12 years.

For 7 ages: $1.5,2,3,4,7,10$ and 12 years ($N=734$): individual data
Estimated Marginal Means of MEASURE_1

Correlations

BMI across age (bold: all data / below diagonal : complete data)

BMI 4 yr	1	.580	.493	.431
BMI 7 yr	.590	1	.729	.658
BMI 10 yr	.515	.743	1	.785
BMI 12 yr	.442	.670	.803	1

Bron: CBS Gezondheidsenquête (tot en met 2013); daarna
Gezondheidsenquête/Leefstijlmonitor CBS i.s.m. RIVM

- De gegevens zijn gestandaardiseerd naar de Nederlandse bevolking van 2017
- De BMI-grenswaarden van overgewicht en obesitas van kinderen en jongeren wijken af van die van volwassenen, zie Definities.

QUIZ

1) you have > 1 observation per person (from twin pairs) and fit a saturated model: what is the output / information ?
2) on the same data you fit a Cholesky decomposition: what is the information contained in the output?
3) if you aim for a model which recognizes time dependency in data what are the options?

André-Louis Cholesky

QUIZ

1) > 1 observation per person (from twin pairs) and fit a saturated model: what is the output / information ?
a) ?????????????????
b) ...
c) ...

QUIZ

1) > 1 observation per person (from twin pairs) and fit a saturated model: what is the output / information ?
a) ?????????????????
b) An estimate for the mean value of the traits in twins
c) An estimate of the correlation for all traits in (MZ and DZ) pairs
d) An estimate of the phenotypic correlation between traits
e) An estimate of the ($M Z$ and $D Z$) cross-correlations between traits
f) All of the above (except a))

QUIZ

2) on the same data you fit a Cholesky 'model' (decomposition): what is the information contained in the output?
a) The phenotypic correlations
b) The genetic correlations
c) The environmental correlations
d) b and c

[^0]: Kees－Jan Kan，Ph．D．，Conor V．Dolan，Ph．D．，Michel G．Nivard，M．Sc．，Christel M．Middeldorp，Ph．D．， Catharina E．M．van Beijsterveldt，ph．D．，Gonneke Willemsen，Ph．D．，Dorret I．Boomsma，ph．D．

