
Behavior Genetics, VoL 21, No. 1, 1991 

Simultaneous Genetic Analysis of Longitudinal 
Means and Covariance Structure in the 
Simplex Model Using Twin Data 

Conor V.  Dolan, 1 Peter C. M. Molenaar, 1 and Dorret I. Boomsma 2 

Received 30 Sept. 1988--Final 10 Sept. 1990 

A longitudinal model based on the simplex model is presented to analyze 
simultaneously means and covariance structure using univariate longi- 
tudinal twin data. The objective of the model is to decompose the mean 
trend into components which can be attributed to those genetic and en- 
vironmental factors which give rise to phenotypic individual differences 
and a component of  unknown constitution which does not involve indi- 
vidual differences. Illustrations are given using simulated data and re- 
peatedly measured weight obtained in a sample of 82 female twin pairs 
on sbc occasions. 
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I N T R O D U C T I O N  

Longitudinal data can be examined from two distinct perspectives: the 
structure and stability of individual differences and the form and conti- 
nuity of the average growth curve (Wohlwill, 1977). McCall (1981) has 
stressed the importance of considering both the causes of individual dif- 
ferences and the trend in the species-specific developmental function in 
studying development. Moreover, McCall points out that the trend in the 
mean and the individual differences may well be related (see also Thomas, 
1980). 
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In behavior genetics, human development is viewed from the per- 
spective of individual differences (Plomin, 1986). This perspective, with 
its emphasis on the association between, on the one hand, phenotypic 
differences and, on the other, genetic and environmental differences, 
does not address the species-specific developmental function. The em- 
phasis on second-order moments in human behavior genetics springs 
from the limitations inherent in studying behavior in a genetically 
heterogeneous population where no differential predictions can be made 
regarding first-degree moments of  phenotypes measured within cur- 
rent, or between successive, generations (Mather and Jinks, 1977). 
Specifically, without the availability of true-breeding lines and the 
descendants of  crosses made between them, it is impossible to estimate 
genetic and environmental influences on the basis of first-order phe- 
notypic moments. 

The situation in human behavior genetics changes, however, if one 
considers genetic and environmental influences underlying individual dif- 
ferences in multivariate phenotypic measurements. After having deter- 
mined these genetic and environmental influences by means of a standard 
genetic analysis of covariance structure (e.g., Martin and Eaves, 1977), 
it is possible to test the hypothesis that the same influences can also 
account for the multivariate mean profile, i.e., the differences in uni- 
variate phenotypic means making up the multivariate mean vector. In a 
previous paper, this hypothesis was examined in the context of the static 
common factor model using twin data (Dolan et  al., 1989). In compar- 
ison with the approach set out in that paper, however, a genetic analysis 
of longitudinal means and covariance structure is attended by special 
difficulties. The issues at stake are discussed in the next sections, fol- 
lowed by illustrative applications to simulated and real data. 

The approach to the simultaneous analysis of means and covariance 
structure used in this paper is based on the work of S6rbom. S6rbom has 
shown how the difference in observed means between groups may be 
decomposed into differences in latent variable means in the static factor 
model (S6rbom, 1974) and in a longitudinal model (S6rbom, 1976; see 
also Hanna and Lei, 1985). S6rbom's approach can be applied to data 
obtained from relatives to test the role of biometric latent variable in a 
difference in means between male and female twins or parents and off- 
spring (Dolan et  a l . ,  1990). In the present paper, however, we apply 
S6rbom's approach to means observed in a single group where the issue 
is not the decomposition of the difference in means between groups, but 
the decomposition of the changes in mean trend in a single group of 
twins. 
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THE GENETIC SIMPLEX 

Consider a longitudinal design involving T consecutive measure- 
ment occasions, where a univariate phenotype is repeatedly measured at 
each occasion t = l  . . . .  7". We restrict attention to univariate phenotypic 
time series P(t), because these present the most intricate difficulties in a 
simultaneous genetic analysis of longitudinal means and covariance struc- 
ture. The first step in such an analysis, then, consists of the determination 
of the genetic and environmental influences by a standard analysis of 
covariance structure. Given that the phenotypic series constitute realis- 
ations of the same developmental process (i.e., constitute an ensemble 
of time series), the same holds for the underlying genetic and environ- 
mental structure. Accordingly, our analysis of covariance structure is 
based on the genetic (Markovian) simplex model involving nonstationary 
first-order autoregressive time-series models of these latent influences 
(Eaves et al., 1986; Boomsma and Molenaar, 1987). 

P(t) = G(t) + E(t) + e(t), t = 1,...T, (1) 

where G(t) and E(t) denote genetic and within-families environmental 
series, respectively, e(t) represents occasion-specific influences including 
measurement error, and E[P(t) ] = E[e(t) ] = O. 

G(t) = [3(g)tG(t - 1) -+- ~g(t), (2a) 

E(t) = [3(e),E(t- 1) + ~e(t), (2b) 

where fJ(g)t and fJ(e)t are autoregressive (transmission) coefficients, while 
~g(t) and ~e(t) denote random zero-mean innovations which are uncor- 
related with G ( t - 1 )  and E(t- -1) .  

Details concerning the analysis of covariance structure by means of 
the genetic (Markovian) simplex model are given by Boomsma and Mo- 
lenaar (1987). Notice that this model can include other, e.g., between- 
families environmental influences. Also, Eqs. (2) can be placed by other 
higher-order autoregressive-moving averages (Box and Jenkins, 1970). 
One thus arrives at a large class of genetic time-series models in which 
model selection for a given set of empirical covariance matrices proceeds 
according to the usual criteria such as the likelihood-ratio test and Akaike's 
(1987) information criterion. For our present purpose, however, it suf- 
fices to restrict attention to the simplest model in this class as defined 
by Eqs. (1) and (2). 

THE GENETIC SIMPLEX W I T H  STRUCTURED MEANS 

The present attempt to arrive at a decomposition of the longitudinal 
mean and covariance structure into genetic and environmental compo- 
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nents has to be distinguished from standard biometrical analyses of first- 
order phenotypic moments. In the latter analyses a genetic model is 
determined from the mean deviation of the true-breeding lines with re- 
spect to an origin reflecting the general genetic and environmental cir- 
cumstances of the observation (cf. Mather and Jinks, 1977, p. 32). 
Accordingly, this origin plays only a subsidiary role in the analyses 
concerned, while the identification of genetic and environmental com- 
ponents of the group deviations from this origin is based on knowledge 
of the genetic constitution of the subjects. 

In contrast, the identification of genetic and environmental com- 
ponents of repeatedly observed phenotypic means in a human sample 
cannot be established in this manner. A decomposition of the phenotypic 
mean trend can, however, be accomplished when the same genetic and 
environmental influences are hypothesized to underlie both the pheno- 
typic individual differences as well as the developmental mean curve. 
More specifically, it is hypothesized that the nonstationary first-order 
autoregressive models given by Eqs. (2a) and (2b) can account for time- 
dependent changes in both the longitudinal mean and the covariance 
structure. 

The first step in making this hypothesis testable is to extend Eqs. 
(2a) and (2b) in such a way that they can accommodate genetic and 
environmental mean trends. A general way to accomplish this is by 
letting the means of genetic and environmental innovations become time- 
varying: ~g(t)  ~ N { E [ ~ g ( t ) ] ,  ~2g(t)}, and ~e(t)  ~ N { E [ ~ e ( t ) ]  , xl2'2e(t)}, where 
N{~x, 0 -2} denotes the normal distribution with mean Ix and variance 0 -2. 
Consequently, 

E[G(0]  = 13(g), E [ G ( t -  1)] + E[@t] ,  
E{E(t)] = 6(e),E[E(t- 1)1 + E(r 

(2c) 

(2d) 

In Eqs. (2a) and (2c), both the mean and the individual random reali- 
zations of the genetic innovation process at time point t are transmitted 
to the next time point, t +  1, according to the same autoregressive model 
(similar remarks apply to the environmental innovations). 

It turns out, however, that Eqs. (2c) and (2d) constitute underiden- 
tiffed models of the genetic and environmental mean trends, which will 
therefore always fit the data. In order to obtain genuinely testable models, 
one has to narrow down the original hypothesis by imposing further 
constraints on the time variation of genetic and environmental means 
innovations. One way in which this can be accomplished is by positing 
a linear relationship between the mean and the standard deviation of the 
innovations at each time t: ~g(t)  - N { g . Z g ( t ) A ~ ) ,  atr2g(t)}, and ~(t) N 
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N{~tre(t)A(e), ~2e(t)},where the terms A(g) and A(e) represent time- 
invariant coefficients of proportionality. Accordingly, Eqs. (2c) and (2d) 
are replaced by 

E[G(t)] = [3(g),E[G(t - 1)] + +g(t)A(g),  (2e) 

E[E(t)] = f3(e),E{E(t - 1)] + t~e(t) A(e  ). (2f) 

The restricted model given by Eqs. (2e) and (2f) accounts for time- 
dependent changes of the latent genetic and environmental developmental 
curves. The phenotypic mean trend consists of a linear combination of 
these curves superimposed on a constant level v: 

E[P(t)] = v + E[G(t)] + E[E(t)]. (3) 

The decomposition of the phenotypic means presented can thus be 
viewed as a decomposition of the variation of the means about the overall 
level v. The parameter v expresses the time-invariant mean effect of the 
genetic and environmental influences which do not give rise to time- 
dependent mean differences in P(t). Also, the parameter v allows P(t) 
to be measured on an interval scale where the origin of measurement 
may be changed arbitrarily. Any such change in the origin of the mea- 
surements will be absorbed by this parameter without altering the con- 
tribution of E(t) and G(t) to the mean trend. So the parameter v consists 
of two indistinguishable components: (a) the constant effects of genetic 
and environmental influences which do not contribute to the individual 
differences and which combine in an unspecified manner and (b) the 
contribution of an arbitrary measurement origin. 

In an nutshell, the genetic simplex model with structured means 
defined by Eqs. (1), (2a), (2b), (2e), (2f), and (3) is based on the com- 
posite hypothesis that (a) the same genetic and environmental processes 
underlying the longitudinal covariance structure of the phenotypic indi- 
vidual differences also account for the time-dependent changes in the 
longitudinal mean curve, where (b) the means and variances of these 
underlying processes are linearly related (cf. McCall, 1981; Thomas, 
1980), while (c) genetic and environmental influences specific to the 
longitudinal mean have a time-invariant effect. Notice that part b of the 
composite hypothesis can be replaced by a suitable alternative and be- 
comes superfluous in the case of multivariate phenotypic time-series data 
are available (cf. Dolan et al. ,  1989). 

Furthermore, the requirement of a time-invariant overall level (part 
a) can be relaxed as the length of the observed time series increases. For 
instance, given the latent time series presented above and given T = 6  
measurement occasions, the overall level itself can become time varying. 
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It would be possible to introduce one level at occasions 1 to 3 and another 
at occasions 4 to 6 (see below). Knowledge concerning the variable 
observed or concerning the lengths of the interoccasion intervals may be 
helpful in the choice of the number and the location (in the series) of the 
overall level parameters. 

A P P L I C A T I O N  TO SIMULATED AND R E A L  TWIN DATA 

The model discussed above can be formulated as a LISREL model 
(J6reskog, 1977) for the analysis and monozygotic (MZ) and dizygotic 
(DZ) between and within mean squares and cross-product (MSCP) ma- 
trices. When the mean vector is unconstrained, i.e., in the standard 
analysis of MSCP structure, we follow the approach given by Boomsma 
and Molenaar (1987) to the formulation of the genetic simplex model as 
a LISREL model. The introduction of the mean structure requires the 
calculation of so-called augmented moment matrices. The definition of 
augmented MSCP matrices and a detailed specification of the genetic 
simplex with and without structured means as LISREL models are given 
in the Appendix. 

First, the model was explored using simulated data. To this end 100 
MZ and 100 DZ twin pairs were generated for T= 6 occasions using the 
IMSL routine FTGEN (IMSL, 1979). The phenotypic series consisted 
of an additive genetic series and a specific (unshared) environmental 
series which were uncorrelated. Both series contributed equally to the 
phenotypic variance, which was chosen to equal 200 at each occasion 
(heritability was therefore constant through out the series at .5). The data 
were analyzed in LISREL VI (J/Sreskog and S6bom, 1984) using maxi- 
mum-likelihood (ML) estimation (this method of estimation was used 
throughout). The true and recovered parameter estimates are given in 
Table I. It can be seen that the estimates are close to the true values and 
that the overall X 2 is good [X2(62) = 61.9, p .  = 0.52]. The parameter 
estimates were all significant judging by their standard errors. 

Subsequently the phenotypic means were introduced by augmenting 
the MSCP between-twin pair matrices in the manner explained in the 
Appendix. In the analysis the parameters A(e) and A(,g) were estimated 
along with the autoregressive coefficients [3(e), and [3(e),. The other pa- 
rameters, i.e., the innovation variances and their standard deviations, 
were taken from the previous analysis and introduced as fixed parame- 
ters. We do, however, subtract 12 degrees of freedom for these fixed 
parameters, as they are fixed at estimated values taken from the previous 
analysis. The parameters ~e(t) and xIrg(t), the standard deviations of the 
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Table  I. Results of  the Analysis of  Simulated data ~ 

Parameter True Coy, no means Coy with means 

13(g)t .5 .429 .381 
13(g)2 .6 .591 .631 
13(g)3 .7 .711 .675 
13(,g)4 .8 .713 .737 
13(g)5 .9 .985 1.00 
13(e)t .9 .922 .934 
13(e)2 .8 .891 .867 
[3(e)3 .7 .662 .681 
[3(e)4 .6 .641 .631 
13(e)5 .5 .530 .517 
�9 zg(1) 100 88.10 Fixe& 
W~(2) 75 75.01 Fixed 
~2(3) 64 53.82 Fixed 
~2(4) 51 43.90 Fixed 
~2(5)  36 48.39 Fixed 
~2g(6) 19 11.94 Fixed 
�9 2~(1) 100 97.92 Fixed 
~ze(2 ) 19 15.96 Fixed 
W2~(3) 36 42.71 Fixed 
�9 2~(4) 51 59.27 Fixed 
~a~(5) 64 70.80 Fixed 
W2~(6) 75 95.98 Fixed 
s 5 4.383 (2.12) 
s - 5 - 3.245 (1.87) 
v 100 90.927 (7.39) 

Goodness of fit X2(62) = 6t .9 >(2(71) = 62.9 
Probability. .52 .74 

- Maximum likelihood estimates obtained from LISREL. Standard errors for estimates 
of Ag, Ae, and v are given in parentheses. All other standard errors are omitted (all 
estimates are statistically greater than zero and do not deviate significantly from their 
true values). 

b Fixed to values obtained from the analysis of covariance structure without structured 
means, i.e., to the values under "Coy, no mean." 

i n n o v a t i o n  terms,  cont r ibu te  to the latent  mean  t rend in the m a n n e r  de- 
scr ibed in Eqs.  (2e) and (2f). 

The  results of  the ana lyses  are shown  in Tab le  I. It can be seen that 
the overal l  goodness  of fit is acceptable ,  wi th  • of  62 .9  (see the 
A p p e n d i x  for the ca lcu la t ion  of the degrees  of f r eedom in this and sub-  

sequent  ana lyses  of  a u g m e n t e d  M S C P  matr ices) .  The  autoregress ive  
coeff ic ients  are s imi la r  to those ob ta ined  in the analys is  wi th  u n c o n -  
s t rained m e a n s .  The  parameters  A(g)  and ~ ( e )  are es t imated as 4 . 38 ( S E  

= 2.12)  and - 3 . 2 4 ( S E  = 1.87).  The  overal l  level  was  es t imated  as 
90 .92 (SE  = 7 .39) ,  wh ich  is close to the true va l ue  of  100. 
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Repeating the analysis with the parameter A(e)fixed at zero yielded 
a X 2 of 104.23 on 72 df. The difference between the goodness of fit with 
and without the parameter A(e) equals X 2 = 41.3 on one degree of 
freedom (p < 0.01). When A(,g) was fixed at zero, we obtained a X 2 of 
296.1 on 72 dr. Clearly the model correctly detects both the genetic and 
the environmental contributions to the mean trend. 

Finally, the genetic simplex model with structured means is applied 
to data consisting of repeatedly measured weight. The measures are taken 
from a larger data set obtained by Dr. S. Fischbein (see Fischbein, 1977). 
The data used here comprise weight obtained on six equidistant occasions 
in a sample of 51 DZ and 32 MZ female twins. On the first occasion 
the average age was 11.5 years (SD = .39) and the interoccasion interval 
equaled 6 months. The marginal distributions of the data did not show 
any departures from normality. The MSCP matrices are shown in Table 
II along with the mean trend. 

First, the covariance structure was anlayzed. The genetic simplex 
model with an additive genetic and an unshared environmental series was 
found to fit reasonably well, X2(62) = 74.87 (p = .13). Table III con- 
tains the estimated parameters with their associated standard errors. These 
results show that the variance is due mainly to the additive genetic series 
but that the unshared environmental series makes a significant, but small 
contribution. The heritabilities defined as the ratio of the genetic variance 
to the total variance at the successive occasions are fairly stable: .87, 
.89, .87, .89, .91, and .89. The innovation variances of both latent series 
are small, implying a large degree of stability of interindividual differ- 
ences. The genetic correlations between the successive occasion equal 
about .97, .96, .97, .97, and .97. The environmental correlations are a 
little lower but still considerable: .94, .88, .87, .89, and .88. 

Having established the genetic simplex as an adequate description 
of the covariance structure, the structured means were introduced. The 
parameters relating to the latent variances were fixed at the values ob- 
tained from the analysis of covariance structure. So, as in the simulation 
above, the estimated parameters were the autoregressive coefficients, 
[3(e)t and 13(e), and the parameters, A(g) and A(e). The parameter es- 
timates are shown in Table III. The goodness of fit was acceptable, X2(71) 
= 76.47 (p -- .31). The overall level v equals 28.69(SE = .862) and 
the parameters A(,g) and A(e) are estimated as 1.611(SE = .25) and 
.023(SE = .59), respectively. 

As such this analysis suggests that the mean trend of average weight 
above the overall level of 28.69 is entirely due to the same additive 
genetic influences which underlie the individual differences in weight. 
The decomposition of the mean trend as obtained from this analysis is 
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Table II. Means and Mean-Squares and Cross-Product Matrices for Repeatedly 
Measured Weight (Six Occasions, Interoccasion Interval of 6 Months Starting at Age  

11.5 

Means MZF: 36.458 38.791 41.484 43.772 46.098 48.183 
Means DZF: 35.557 37.775 40.475 42.806 45.275 47.525 

Mean squares and cross products 

MZ between ( d f =31 )  

70.7365 
75.1826 83.1750 
76.6457 83.9897 89.9740 
78.6866 86.8269 94.3119 102.1058 
80.0995 88.4632 95.9566 104.3920 
78.8358 86.1574 92.4451 99.9251 

MZ within (d r=  32) 

3.8652 
3.5611 3.5822 
3.6847 3.6150 4.4416 
3.1513 3.1034 3.8920 4.2978 
2.6375 2.4725 3.0783 3.4661 
2.5620 2.4316 2.9620 3.2450 

DZ between ( d f =50 )  

40.6088 
40.7031 42.5535 
42.5176 43.9560 49.1821 
42.4429 43.9419 48.0293 50.6948 
42.1552 42.8368 47.8998 49.1970 
40.3719 41.0477 45.7466 46.8776 

DZ within (d r=  51) 

8.3767 
8.9236 10.5936 

10.1928 12.1854 16.4312 
9.5913 11.8081 15.4734 16.3325 

10.2900 12.5787 16.1654 17.0316 
10.4993 12.7942 16.6940 18.0531 

110.4911 
105.8316 106.3144 

3.5020 
3.3356 4.0283 

51.9043 
49.0886 49.6775 

19.3133 
20.3446 23.7042 

illustrated in Fig. 1. The increasing genetic contributions equal 7.70, 
9.96, 12.69, 14.96, 17.34, and 19.35. 

As an aside, the ability of the model to accommodate arbitrary 
changes of measurement origin was tested by adding 100 to the pheno- 
typic means. The result was simply that the overall level v was estimated 
as 128.69 ( S E = . 8 7 0 ) ,  while all other parameter estimates and the X2 
goodness of fit remained the same. 

A more advanced method of analyzing this data set with structured 
means is by estimating all parameters simultaneously instead of using 
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Table III. Results of the Analysis of Weight Data a 

Parameter 

Cov with 
Cov, no Cov with means 
means means (NONLIS) 

Additional 
parameters 

from nonlinear 
equality 

constraints 
( * =  x / *  2) 

!3(g)i 1.053 (.02) 1.060 (.02) 1.058 (.02) 
[3(g)2 1.044 (.03) 1.031 (.03) 1.035 (.03) 
13(g)3 1.019 (.03) 1.024 (.02) 1.023 (.02) 
~(g)4 1.023 (.03) 1.011 (.02) t.01 (.02) 
[3(,g)5 .974 (.03) .986 (.02) .983 (.02) 
13(e)1 .915 (.05) .917 (.05) .914 (.05) 
[3(e)2 1.051 (.09) 1.064 (.08) 1.060 (.09) 
13(e)3 .828 (.08) .812 (.07) .820 (.07) 
13(e)4 .838 (.07) .846 (.07) .847 (.07) 
13(e)~ 1.005 (.09) .989 (.09) .992 (.09) 
, 2 ( 1 )  22.87 (3.36) Fixed b 22.83 (3.23) *g(1) 
*2(2)  1.25 (0.22) Fixed 1.29 (.21) %(2) 
*2(3)  2.26 (0.44) Fixed 2.15 (.43) *g(3) 
,2g(4) 1.48 (0.37) Fixed 1.49 (.37) *g(4) 
*~(5) 1.89 (0.38) Fixed 1.83 (.34) *g(5) 
*~(6) 1.96 (0.41) Fixed 2.06 (.42) %(6) 
,2,(1) 3.35 (0.81 Fixed 3.39 (.75) q2"e(1) 
.2.(2) .30 (0.08) Fixed .30 (.07) *e(2) 
.2e(3 ) .92 (0.22) Fixed .96 (.25) *e(3) 
.2e(4) .93 (0.22) Fixed .92 (.22) *~(4) 
,2~(5) .69 (0.17) Fixed .71 (.17) *,(5) 
xtr2e(6 ) .97 (0.22) Fixed .94 (.23) *,,(6) 
ZXg 1.611 (.25) 1.618 (.29) 
Ae .023 (.59) .01 (70) 
v 28.69 (.86) 28.69 (1.04) 

Goodness of fit • • • 
p .13 .31 .33 

4.77 (.34) 
1.13 (.10) 
1.47 (.15) 
1.22 (.15) 
1.35 (.13) 
1.44 (.15) 
1.84 (.20) 

.55 (.07) 

.98 (.13) 

.96 (.11) 

.84 (.10) 

.97 (.12) 

a Maximum-likelihood estimates obtained from LISREL and NONLIS (columns 4 and 
5). Standard errors are given in parentheses. 

b Fixed to values obtained from the analysis of covariance structure without structured 
means, i .e . ,  to the values under "Cov,  no mean." 

parameter estimates obtained from the analysis of covariance structure. 
The approach requires the specification of nonlinear equality constraints 
which relate the latent variances to the parameters that scale the contri- 
butions of the parameters A(g) and A(e) to the latent mean genetic and 
environmental trends [see Eqs. (2e) and (2f)]. The equality constraints, 
in which these weights are specified to equal the square root of the latent 
innovation variances, cannot be specified in LISREL. We therefore used 
our own program (NONLIS) for multigroup structural equation modeling 
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Fig.  1. The decomposi t ion  of  the mean trend in weight  (measured in kilograms) based 
on the LISREL analysis given in Table III. The phenotypic  mean trend shown here is 
the pooled MZ and DZ mean trends. 

to carry out the analysis under the constraints mentioned (again using 
maximum-likel ihood estimation). As can be seen the results (Table III) 
are almost identical to those obtained from the program LISREL.  So 
although using LISREL is perhaps less elegant from a statistical modeling 
point of  view,  it is convenient  and yields the same results as obtained 
from NONLIS.  

In the analyses of  the weight data carried out so far we have imposed 
a constant level, v, throughout the time series. To test the tenability of  
this aspect we introduced one constant-level parameter (vl) or occasions 
1 to 3 and a second-level parameter (v2) for occasions 4 to 6. The esti- 
mates (obtained from NONLIS)  equaled vl = 28.72(SE = 1.07) and v2 
= 28.78(SE = 1.30), while the overall goodness of fit was X2(70) = 
75.59 (/7 -- .30). The goodness of  fit for the NONLIS analysis with a 
single constant level equaled X2(71) = 75.60, so we have no reason to 
reject the hypothesis of  a single constant level throughout the time series. 
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DISCUSSION 

A model related to the one presented here is given by McArdle 
(1986). McArdle's approach differs from the one presented here in a 
number of important respects. We have based our approach on the 
(quasi-) Markov simplex model (J6reskog, 1970; Boomsma and Mole- 
naar, 1987), whereas McArdle employs a level and shape model with 
second-order biometrical factors. More importantly, our objective is the 
biometric decomposition of the mean trend. That is, we want to estimate 
the contribution of genetic and environmental factors to the time-depen- 
dent changes in the phenotypic means. McArdle estimates the contri- 
bution of the first-order level and shape factors to the phenotypic means 
(in what seems to be a saturated model in the sense that four parameters 
are estimated to model four means). However, the biometric factor con- 
tributes only to the variance of the level and shape factors, not to their 
means, so that there is no biometric decompostion of the phenotypic 
mean trend. 

The present approach to the simultaneous biometric analysis of co- 
variance and mean structure is based on the testable assumption that the 
mean trend can be decomposed into a part that is ascribable to those 
genetic and environmental factors that contribute to the individual dif- 
ferences and a part that is not. The latter part, which we have referred 
to above as the constant level, is of an unknown constitution and may 
include genetic and environmental contributions combining in an un- 
specified manner. Also, an arbitrary, and therefore meaningless, origin 
of measurement (allowing measurements to be made on an interval level) 
is contained in the constant level. 

The main problem in the biometric decomposition of the mean trend 
given herein is the underidentification of the parameters in the autore- 
gressive models for the latent mean trends [see Eqs. (2c) and (2d)]. One 
is forced, in order to arrive at a testable model, to introduce theoretically 
motivated constraints. We have chosen to constrain the model by cou- 
pling the standard deviations of the innovation variances with the two 
independent (in the sense that they do not make any contribution to the 
covariance structure) parameters A(g) and A(e) [see Eqs. (2e) and (2f)]. 
This approach is based on the assumption that the coupling between 
means and standard deviations of innovations holds from conception 
onward. Although there is nothing sacred about this approach, it is simple 
and intuitively plausible. Also, it has proven to give a good fit to the 
weight data. 

Regarding the results of the analysis of the weight data, these are 
presented mainly are an illustration of the model. We hope to report a 
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more elaborate analyses of the Fischbein data both with and without 
structured mean at a latter date. It is, however, interesting to note the 
environmental time series as found in the analysis of weight data is 
consistent with a zero-mean process. This finding is in agreement with 
the (seemingly arbitrary) assumption given by Falconer (1960) that the 
contributions of environmental deviations to phenotypes are realizations 
of a zero-mean Gaussian random variable. 

APPENDIX: SPECIFICATION AS L I S R E L  M O D E L S  

The Genetic Simplex Model with Unconstrained Means 

Boomsma and Molenaar (1987) use the following submodel in the 
analysis of MZ and DZ within and between MSCP matrices using LISREL: 

~ m s = A ( I - a )  -1 q~ ( I - B ' ) - I A  ', (A1) 

where Eros represents a MSCP matrix. In LISREL four such matrices are 
specified which differ only in the elements in the matrix A. We partition 
the matrices as follows: 

A = Ag Ae (A2a) 

Bg 0 
B = (a2b) 

0 Be 

"I* = % 0 (a2c) 

0 xl* e 

The matrix Eros can then be shown to the sum of the latent genetic and 
environmental MSCP matrices: 

Em~ = a g ( I r -  Bg) -lXtrg(I T -  Bg')- IAg' 
-4-Ae(Ir-Be)- lxI~re(Ir-Be ' ) - lAe ' . (A3) 

Now, given T occasions, Ag(T • 7") is a diagonal matrix equaling ",v/W 
Ix. The scalar w represents the genetic weights equaling 2 (between MZ), 
0 (within MZ), 1.5 (between DZ), and .5 (within DZ) (Mather and Jinks, 
1977). The matrix I r is the (T • 7) identity matrix. The matrix Bg (T 
• 7) contains on its first lower subdiagonal, i.e., in the positions Be(i , i - 1), 

i = 2 .... ,T, the genetic autoregressive coefficients. The matrix XPg(T • 
T) is diagonal, containing the variances of the innovation terms ~g(t) [Eq. 
(2a)]. 

The matrices of the environmental covariance structure are defined 
analogously. Here, of course, the matrix Ae(T • 7) equals It. 
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T h e  G e n e t i c  S i m p l e x  M o d e l  w i t h  S t r u c t u r e d  M e a n s  

The introduction of the means into the analysis of MSCP matrices 
requires the calcuation of the so-called augmented moment matrices, 
which can be defined, in the present case, as follows: 

[ ~ms'4-~Ll-L' i ~L 
~am : "~'~ t , (A4) 

I 1 

where the T-dimensional vector Ix is the vector of phenotypic means: 

~=~g+~+v. (AS) 

That is, the phenotypic means are the sum of the genetic and environ- 
mental mean vectors of which the elements are defined in Eqs. (2a) and 
(2b) and the vector v, which contains the constant-level parameter. As 
we have assumed that the constant level is equal throughout the time 
series, the T-dimensional vector contains identical elements equal to v 
[see Eq. (3)]. The matrix ~am now has the dimensions ( r +  1 x T +  1). 

The following LISREL model is now used to model the augmented 
MSCP matrices: 

A(I-B)-~(F*F '+ ,~) ( I -w)- IA ' [ A(I-B)-Tq~&' 
Earn = [ (A6) 

& o r ' ( i  - B')-IA' I &q~&' 

So the T-dimensional phenotypic mean ~z vector is modeled as 

tx = A(I - B) -  zrcI)Ax' (A7) 

The matrices in Eq. (7) can be partitioned as follows: 

A= [ A g  I A~ ] A* [ , (a8a)  

where Ag(T • 7) and Ae(T X 7) have been defined above and the matrix 
A* (T x 4) is defined as 

A* = [0r0rv0r]. (A8b) 

Here Or represents a T-dimensional zero vector and v has been defined 
above as the vector of constant-level parameters. 

Next the matrix B is specified as follows: 

Bg 0 Bwg 
B -- 0 B~ Bw~ , (A8c) 

0 0 B* 
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where the matrices Bg(T • 7) and Be(T • 7) have been defined above. 
The matrix B,~g (T x 4) equals 

B~. = [OrW~O,Or]. (A8D) 

The T-dimensional vector W e contains the standard deviations of the 
genetic innovation terms, "trg(t) [see Eq. (2a)]. The (T x 4) matrix Bw~ 
is defined analogously: 

Bwe = [0TOTOTWe]. (A8e) 

The matrix B ,  (4 x 4) is given as 

0 0 0 
B * =  A(g) 0 0 

0 0 0 
0 0 A(e) 

(ASf) 

where the terms A(g) and A(e) have been defined above as time-invariant 
coefficients of proportionality. 

The vector F equals 

F ' =  [Or' Or' F*'], (A8g) 

with the four-dimensional vector F*' = [1/V'w 0 1 0]. 
The matrix W ( T + 4  • T+4)  is defined as I 0,,o 

't~= 0 I'tre ! 0 , (a8h) 
I I 

O I  0 I 0  

where ~g(T • 7) and ~e(T x 7) have been defined above. 
Finally, the matrices Ax (1 x 1) and q~ (1 x 1) both equal the 

scalar 1.0. Working through the matrix algebra of Eq. (A7) yields the 
expression for the phenotypic means given in Eq. (3) with latent means 
defined in Eqs. (2a) and (2b). 

In the specification of this LISREL model the phenotypic means 
were introduced only into the between-groups matrices; in the within- 
groups matrices the vector ~x was specified as a zero vector. 

]~ms + I~"L ~ 'J"v .[ 0T / 
X~m 1 (A9) 

0] ! 1 

The within-group matrices cannot be used to introduce the means because 
there are no genetic within-twin pair effects in the MZ groups so that 
the matrix Ag is zero. Because the within-groups matrices are augmented 
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as shown in Eq. (A9), the LISREL program evaluates the • goodness- 
of-fit index on the basis of a spuriously large number of degrees of 
freedom (dr). 

Given T occasions, we have [T*(T+ 1)]/2 df for each within MSCP 
matrix and [ r +  1"(T+2)] /2  df for a between MSCP matrix. From the 
latter we subtract 1 df for the fixed element in the lower right submatrix 
in Eq. (A4). So given T =  6 occasions, the augmented MSCP MZ and 
DZ matrices yield a total of 2"[21 + ( 2 8 -  1)] = 96 df. 
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