Introduction to Multivariate Genetic Analysis

Meike Bartels & Lucia Colodro Conde

With thanks to

Hermine Maes, Elizabeth Prom-Wormley, and many others

NATURE AND NURTURE: TWIN RESEARCH AND HUMAN GENETICS

③ SESSION 2: 18 JUL-1 AUG 2020 🕿 3 ECTS | ADVANCED BACHELOR/MASTER €1150 🚊 VU AMSTERDAM

VRIJE UNIVERSITEIT AMSTERDAM SUMMER SCHOOL

GENES IN BEHAVIOUR AND HEALTH (RESEARCH MASTER)

EXPLORING GENE-ENVIRONMENT INTERPLAY ACROSS OUR LIFESPAN

WWW.VU.NL/GENES

LOOKING FURTHER

Looking for a PhD or Postdoc?

PhD project:

Social Media Language and Wellbeing; Understanding the Exposome-Genome interplay

4-years, paid position

Postdoc project

A Comprehensive Framework for Well-being. In this project we will use genomic, epigenomic, exposome, and well-being data and network approaches to understand the multi-layers interplay 3-years, paid position, 20-40% teaching

Introduction to Multivariate Genetic Analysis

Meike Bartels & Lucia Colodro Conde

With thanks to

Hermine Maes, Elizabeth Prom-Wormley, and many others

Research Questions

Univariate Analysis:

What are the contributions of additive genetic, dominance/shared environmental, and unique environmental factors to the variance?

Bivariate Analysis:

What are the contributions of genetic, dominance/shared environmental, and environmental factors to the covariance between two traits?

Example 1

Why do traits correlate/covary? How can we explain the association?

Shared Genes (r_G) Shared shared environment (r_C) Shared Non-shared environment (r_E)

Example 2

How do traits develop over time? Does one trait in childhood lead to another trait in adolesence?

Shared/ Stable Genes (r_G)
Shared/ Stable shared environment (r_C)
Shared/ Stable Non-shared
environment (r_E)

Sources of Information

- Two traits measured in twin pairs
- Interested in:
 - Cross-trait covariance within individuals
 - Cross-trait covariance between twins
 - MZ:DZ ratio of cross-trait covariance between twins

Paper and Pencil Exercise

Observed Covariance Matrix- Univariate

	Twin 1	Twin 2
Twin 1	Variance T1	
Twin 2	Covariance T1-T2	Variance T2

ī.

Observed Covariance Matrix- Bivariate

		Twin 1		Тм	vin 2
		Phenotype 1	Phenotype 2	Phenotype 1	Phenotype 2
/in 1	Phenotype 1	Variance P1			
μ	Phenotype 2	Covariance P1-P2	Variance P2		
Twin 2	Phenotype 1				
-	Phenotype 2				

Observed Covariance Matrix

		Twin 1		Tw	vin 2
		Phenotype 1	Phenotype 2	Phenotype 1	Phenotype 2
/in 1	Phenotype 1	Variance P1			
Ľ	Phenotype 2	Covariance P1-P2	Variance P2		
Twin 2	Phenotype 1	Within-trait P1	Cross-trait	Variance P1	
	Phenotype 2	Cross-trait	Within-trait P2	Covariance P1-P2	Variance P2

Observed Covariance Matrix

		Twin 1		Тм	vin 2
		Phenotype 1	Phenotype 2	Phenotype 1	Phenotype 2
		Within-twin	covariance		
'in 1	Phenotype 1	Variance P1			
Ч Ч	Phenotype 2	Covariance P1-P2	Variance P2		
				Within-twin	covariance
win 2	Phenotype 1	Within-trait P1	Cross-trait	Variance P1	
F	Phenotype 2	Cross-trait	Within-trait P2	Covariance P1-P2	Variance P2

Observed Covariance Matrix

Within-Twin Covariance

Cross-Twin Covariance

A Cross-Twin Covariance

C Cross-Twin Covariance

E Cross-Twin Covariance

TWIN 1

		P1 _{T1}	P2 _{T1}
1	P1 _{T1}	VA11 + VE11	VA21 + VE21
	P2 _{T1}	VA21 + VE21	VA22 + VE22

TWIN

TWIN 1

		P1 _{T1}	P2 _{T1}
<u>TWIN 2</u>	P1 _{T2}	Within-Trait P1 _{T1} P1 _{T2}	Cross-Trait P1 _{T1} P2 _{T2}
	P2 _{T2}	Cross-Trait P2 _{T1} P1 _{T2}	Within-Trait $P2_{T1}P2_{T2}$

		P1 _{T1}	P2 _{T1}
<u>WIN 2</u>	P1 _{T2}	1/0.5 * VA11	Cross-Trait P1 _{T1} P2 _{T2}
	P2 _{T2}	Cross-Trait P2 _{T1} P1 _{T2}	Within-Trait $P2_{T1}P2_{T2}$

		P1 _{T1}	P2 _{T1}
<u>TWIN 2</u>	P1 _{T2}	1/0.5 * VA11	Cross-Trait P1 _{T1} P2 _{T2}
	P2 _{T2}	1/0.5 * VA21	Within-Trait P2 _{T1} P2 _{T2}

ΤV	VII	N 1
----	-----	-----

		P1 _{T1}	P2 _{T1}
<u>TWIN 2</u>	P1 _{T2}	1/0.5 * VA11	1/0.5 * VA21
	P2 _{T2}	1/0.5 * VA21	Within-Trait $P2_{T1}P2_{T2}$

TWIN 1

		P1 _{T1}	P2 _{T1}
VIN 2	P1 _{T2}	1/0.5 * VA11	1/0.5 * VA21
	P2 _{T2}	1/0.5 * VA21	1/0.5 * VA22

Predicted Twin Covariance Matrix

			twin 1	ť	win 2
		P1 _{T1}	P2 _{T1}	P1 _{T2}	P2 _{T2}
twin 1	P1 _{T1}	VA11 +VC11 +VE11	VA21 +VC21 +VE21	1/0.5 * VA11 +VC11	1/0.5 * VA21 +VC21
	P2 _{T1}	VA21 +VC21 +VE21	VA22 +VC22 +VE22	1/0.5 * VA21 +VC21	1/0.5 *VA22 +VC22
twin 2	P1 _{T2}	1/0.5 * VA11 +VC11	1/0.5 * VA21 +VC21	VA11 +VC11 +VE11	VA21 +VC21 +VE21
	P2 _{T2}	1/0.5 * VA21 +VC21	1/0.5 *VA22 +VC22	VA21 +VC21 +VE21	VA22 +VC22 +VE22

Predicted MZ Twin Covariance Matrix

		twin 1		twin 2	
		P1 _{T1}	P2 _{T1}	P1 _{T2}	P2 _{T2}
twin 1	P1 _{T1}	VA11 +VC11 +VE11	VA21 +VC21 +VE21	VA11 +VC11	VA21 +VC21
	P2 _{T1}	VA21 +VC21 +VE21	VA22 +VC22 +VE22	VA21 +VC21	VA22 +VC22
twin 2	P1 _{T2}	VA11 +VC11	VA21 +VC21	VA11 +VC11 +VE11	VA21 +VC21 +VE21
	P2 _{T2}	VA21 +VC21	VA22 +VC22	VA21 +VC21 +VE21	VA22 +VC22 +VE22

Predicted DZ Twin Covariance Matrix

		twin 1		twin 2	
		P1 _{T1}	P2 _{T1}	P1 _{T2}	P2 _{T2}
twin 1	P1 _{T1}	VA11 +VC11 +VE11	VA21 +VC21 +VE21	0.5 * VA11 +VC11	0.5 * VA21 +VC21
	P2 _{T1}	VA21 +VC21 +VE21	VA22 +VC22 +VE22	0.5 * VA21 +VC21	0.5 *VA22 +VC22
twin 2	P1 _{T2}	0.5 * VA11 +VC11	0.5 * VA21 +VC21	VA11 +VC11 +VE11	VA21 +VC21 +VE21
	P2 _{T2}	0.5 * VA21 +VC21	0.5 *VA22 +VC22	VA21 +VC21 +VE21	VA22 +VC22 +VE22

		twin 1		twin 2	
		P1 _{T1}	P2 _{T1}	P1 _{T2}	P2 _{T2}
twin 1	P1 _{T1}	VP1 _{T1}		Covariances of P1& F	
	P2 _{T1}		VP2 _{T1}	zygosit	y groups
twin 2	P1 _{T2}	CP1 _{T1} P1 _{T2}	CP2 _{T1} P1 _{T2}	VP1 _{T2}	
	P2 _{T2}	CP1 _{T1} P2 _{T2}	CP2 _{T1} P2 _{T2}		VP2 _{T2}

		twin 1		tw	in 2
		P1 _{T1}	P2 _{T1}	P1 _{T2}	P2 _{T2}
twin 1	P1 _{T1}	VP1 _{T1}	CP1 _{T1} P2 _{T1}	Cross-Twin Within- Trait Covariances differ by zygosity	
	P2 _{T1}	СР1т1Р2т1	VP2 _{T1}		
twin 2	P1 _{T2}		CP2 _{T1} P1 _{T2}	VP1 _{T2}	CP1 _{T2} P2 _{T2}
	P2 _{T2}	CP1 _{T1} P2 _{T2}		CP1 _{T2} P2 _{T2}	VP2 _{T2}

		twin 1		twi	n 2
		P1 _{T1}	P2 _{T1}	P1 _{T2}	P2 _{T2}
twin 1	P1 _{T1}	VP1 _{T1}	CP1 _{T1} P2 _{T1}	Cross-Twin Cross- Trait Covariances differ by zygosity	
	P2 _{T1}	СР1т1Р2т1	VP2 _{T1}		
twin 2	P1 _{T2}	CP1 _{T1} P1 _{T2}		VP1 _{T2}	CP1 _{T2} P2 _{T2}
	P2 _{T2}		CP2 _{T1} P2 _{T2}	CP1 _{T2} P2 _{T2}	VP2 _{T2}

ΜZ

DZ

Summary

- Within-individual cross-trait covariance implies common aetiological influences
- Cross-twin cross-trait covariance implies common aetiological influences are familial
- Whether familial influences are genetic or environmental shown by MZ:DZ ratio of crosstwin cross-trait covariances