Estimation of SNP-heritability (h²_{SNP}) using linear mixed models

Loic Yengo

University of Queensland

5th of March, 2019

HOME V PROGRAM SPEAKERS REGISTRATION & ABSTRACTS GENERAL INFORMATION V LOCATION & VENUE V CONTACT US

Outline

- Linear Mixed Models
- GREML (Genome-based Restricted Maximum Likelihood) estimation
- Computational challenges in GREML estimation
- Bias in SNP-heritability due to model misspecification
- Power to detect SNP heritability

Outline

- Linear Mixed Models
- GREML (Genome-based Restricted Maximum Likelihood) estimation
- Computational challenges in GREML estimation
- Bias in SNP-heritability due to model misspecification
- Power to detect SNP heritability

Linear Mixed Models?

• Linear?

A (quantitative) trait of interest (y) is model as a **linear** combination of multiple variables:

(1) $y = \beta_0 + \beta_1 x_1 + ... + \beta_K x_K + u_1 z_1 + ... + u_M z_M + e$

• Mixed?

We distinguish between "K fixed effects" and "M random effects".

Linear Mixed Models?

• Linear?

A (quantitative) trait of interest (y) is model as a **linear** combination of multiple variables:

(1)
$$y = \beta_0 + \beta_1 x_1 + ... + \beta_K x_K + u_1 z_1 + ... + u_M z_M + e$$

• Mixed?

We distinguish between "K fixed effects" and "M random effects".

- The difference between "fixed" and "random" is not strictly arbitrary.
- Fixed effects are parameters for which you actually want to know the value.
- Random effects are often considered as "nuisance" parameters.
- With genetic data, we often model SNPs effects as random because there are too many of them.

Assumptions

- In this model, random effects are
 - SNP effects: *u_j* (SNP *j*)
 - Environmental effects: *e_i* (individual *i*)

 z_{ij} = scaled genotype. $\frac{x_{ij} - 2p_i}{\sqrt{2p_i(1 - p_i)}}$

(1)
$$y = \beta_0 + \beta_1 x_1 + ... + \beta_K x_K + u_1 z_1 + ... + u_M z_M + e$$

Assumptions about random effects

- In this model, random effects are
 - SNP effects: u_i (SNP j)
 - Environmental effects: *e_i* (individual *i*)
- We often assume random effects to be **independent** and such as
 - (1) $E[u_j] = 0$ and $var[u_j] = \sigma_g^2 / M [\sigma_g^2]$; genetic variance / M: number of SNPs analyzed] (2) $var[e_j] = \sigma_e^2$ [environmental variance]

var[y] =
$$\sigma_g^2 + \sigma_e^2 =>$$
 SNP heritability: $h_{SNP}^2 = \sigma_g^2 / [\sigma_g^2 + \sigma_e^2]$.

Assumptions about random effects

- In this model, random effects are
 - SNP effects: *u_j* (SNP *j*)
 - Environmental effects: *e_i* (individual *i*)
- We often assume random effects to be **independent** and such as
 - (1) $E[u_j] = 0$ and $var[u_j] = \sigma_g^2 / M [\sigma_g^2]$; genetic variance / M: number of SNPs analyzed]
 - (2) $var[e_i] = \sigma_e^2$ [environmental variance]

var[y] = $\sigma_g^2 + \sigma_e^2$ => SNP heritability: $h_{SNP}^2 = \sigma_g^2 / [\sigma_g^2 + \sigma_e^2] = \sigma_g^2 / var[y]$.

Outline

- Linear Mixed Models
- GREML (Genome-based Restricted Maximum Likelihood) estimation
- Computational challenges in GREML estimation
- Bias in SNP-heritability due to model misspecification
- Power to detect SNP heritability

Maximum Likelihood Estimation (MLE)

Key idea 1: Observed data are generated by random process.

Key idea 2: Random process corresponds to probability distribution (Normal, Poisson, etc.)

Key idea 3: MLE looks for the probability distribution that is most likely to have generated the data.

Maximum Likelihood Estimation (MLE)

We classically assume **normal distribution** as $u_i \sim N(0, \sigma_g^2/M)$ and $e_i \sim N(0, \sigma_e^2)$ [M SNPs].

Notations

y X: distribution of y conditional on X

N(m,v): [multivariate] normal distribution with mean m and variance v.

I_N: NxN identity matrix (1's on the diagonal and 0's elsewhere).

Genetic Relationship Matrix (GRM)

$$y | X \sim N(X\beta, \sigma_{g}^{2} [GRM] + \sigma_{e}^{2}|_{N})$$

$$\stackrel{.99 -0.01 \ .01}{-.01 \ 1.07 \ .03}}_{-.03 \ .001 \ 1.01}$$

$$\hat{\pi}_{jk} = \frac{1}{m} \sum_{i} \frac{(x_{ij} - 2p_{i})(x_{ik} - 2p_{i})}{2p_{i}(1 - p_{i})}$$
Example of GRM between *N*=3 individuals (over m=1000 SNPs)
$$\hat{\pi}_{jk} = \frac{1}{m} \sum_{i} \frac{(x_{ij} - 2p_{i})(x_{ik} - 2p_{i})}{2p_{i}(1 - p_{i})}$$

(1) Tells us something about relatedness in the sample (**GRM** \approx **2x Kinship**).

(2) Computationally costly...but can be re-used multiple times.

(3) Eigen decomposition of that matrix yields principal components.

REStricted? REML = MLE on residualised data!

- When our focus in on estimating variance components (σ_g^2 and σ_e^2), we prefer to use a REstricted Maximum Likelihood estimation (REML).
- The principle is simply to remove (residualise) the fixed effects from the inference.

$$y^*|X \sim N(0, \sigma_g^2 [ZZ'/M] + \sigma_e^2 I_N)$$

• When sample size is large, MLE and REML are equivalent. [distinguish REML from GREML]

Outline

- Linear Mixed Models
- GREML (Genome-based Restricted Maximum Likelihood) estimation
- Computational challenges in GREML estimation
- Bias in SNP-heritability due to model misspecification
- Power to detect SNP heritability

Computational challenge in GREML

- A number of algorithms have been developed to estimate variance components under GREML (at least 3 implemented in GCTA, Yang *et al.* 2011 --rem1-alg option).
- Computational complexity is however cubic with respect to sample size ~O(N³), i.e. if you increase your sample size by a factor k, computational time is increased by a factor ~k³.
- Alternatives are approximate inference as implemented in BOLT-LMM software (Loh *et al.* 2015) or *"divide and conquer"* approaches.

Computational challenge in GREML

- A number of algorithms have been developed to estimate variance components under GREML (at least 3 implemented in GCTA, Yang et al. 2011 --rem1-alg option).
- Computational complexity is however cubic with respect to sample size ~O(N³), i.e. if you increase your sample size by a factor k, computational time is increased by a factor ~k³.
- Alternatives are approximate inference as implemented in BOLT-LMM software (Loh *et al.* 2015) or *"divide and conquer"* approaches.

Computational challenge in GREML

- A number of algorithms have been developed to estimate variance components under GREML (at least 3 implemented in GCTA, Yang *et al.* 2011 --rem1-alg option).
- Computational complexity is however cubic with respect to sample size ~O(N³), i.e. if you increase your sample size by a factor k, computational time is increased by a factor ~k³.
- Alternatives are approximate inference as implemented in BOLT-LMM software (Loh *et al.* 2015) or *"divide and conquer"* approaches.

Outline

- Linear Mixed Models
- GREML (Genome-based Restricted Maximum Likelihood) estimation
- Computational challenges in GREML estimation
- Bias in SNP-heritability due to model misspecification
- Power to detect SNP heritability

- $h_{SNP}^2 < h^2$ in general when SNPs poorly tag causal variants.
- However, even if causal variants are "captured", biases may still arise because of specific features of the genetic architecture of traits (e.g. LD pruning). [Can be fixed with MAF or LD stratification]
- Also, under assortative mating interpretation of estimates of SNP heritability can be challenging.
- It is important to use unrelated individuals to estimate SNP heritability, otherwise estimates can be biased by shared environment (as for family-based estimates). Classical GRM thresholds are >0.05 or >0.025.

- $h_{SNP}^2 < h^2$ in general when SNPs poorly tag causal variants.
- However, even if causal variants are "captured", biases may still arise because of specific features of the genetic architecture of traits (e.g. LD pruning). [Can be fixed with MAF or LD stratification]
- Also, under assortative mating interpretation of estimates of SNP heritability can be challenging.
- It is important to use unrelated individuals to estimate SNP heritability, otherwise estimates can be biased by shared environment (as for family-based estimates). Classical GRM thresholds are >0.05 or >0.025.

- $h_{SNP}^2 < h^2$ in general when SNPs poorly tag causal variants.
- However, even if causal variants are "captured", biases may still arise because of specific features of the genetic architecture of traits (e.g. LD pruning). [Can be fixed with MAF or LD stratification]
- Also, under assortative mating interpretation of estimates of SNP heritability can be challenging.
- It is important to use unrelated individuals to estimate SNP heritability, otherwise estimates can be biased by shared environment (as for family-based estimates). Classical GRM thresholds are >0.05 or >0.025.

- $h^2_{SNP} < h^2$ in general when SNPs poorly tag causal variants.
- However, even if causal variants are "captured", biases may still arise because of specific features of the genetic architecture of traits (e.g. LD pruning). [Can be fixed with MAF or LD stratification]
- Also, under assortative mating interpretation of estimates of SNP heritability can be challenging.
- It is important to use unrelated individuals to estimate SNP heritability, otherwise estimates can be biased by shared environment (as for family-based estimates). Classical GRM thresholds are >0.05 or >0.025.

- $h_{SNP}^2 < h^2$ in general when SNPs poorly tag causal variants.
- However, even if causal variants are "captured", biases may still arise because of specific features of the genetic architecture of traits (e.g. LD pruning). [Can be fixed with MAF or LD stratification]
- Also, under assortative mating interpretation of estimates of SNP heritability can be challenging.
- It is important to use unrelated individuals to estimate SNP heritability, otherwise estimates can be biased by shared environment (as for family-based estimates). Classical GRM thresholds are >0.05 or >0.025.

Outline

- Linear Mixed Models
- GREML (Genome-based Restricted Maximum Likelihood) estimation
- Computational challenges in GREML estimation
- Bias in SNP-heritability due to model misspecification
- Power to detect SNP heritability

How can I know if my sample is large enough?

 Visscher et al. (2014) derived the expectation of the standard error (SE) of estimates of SNP heritability as

 $SE(h_{SNP}^2) \approx 1/[N SD[GRM]]$

In Europeans SD(GRM) $\approx 10^{-5}$. Therefore SE(h^2_{SNP}) $\approx 316/N$.

- If N=10⁵, then expected SE is ~0.003 [10 divide and conquer => SE~0.01].
- Consequence: e.g. need N> 3,500 to detect an heritability of ~0.2 (Expected SE \approx 0.09). Power calculator: <u>https://cnsgenomics.shinyapps.io/gctaPower/</u>

Summary (1)

- LMM are special cases of linear regression models that involves fixed and random effects.
- If we assuming all SNPs to have random effects on a trait, then the variance of these effects measures the SNP heritability.
- REML = Maximum likelihood estimation on "residualised" data wrt to fixed effects.
- GREML estimation is computationally costly when sample size (N) is large!

Summary (2)

- $h_{SNP}^2 < h^2$ in general when SNPs poorly tag causal variants.
- However, even if causal variants are "captured", biases may still arise because of specific features of the genetic architecture of traits (e.g. LD pruning). [Can be fixed with MAF or LD stratification]
- Also, under assortative mating interpretation of estimates of SNP heritability can be challenging.
- It is important to use unrelated individuals to estimate SNP heritability, otherwise estimates can be biased by shared environment (as for family-based estimates). Classical GRM thresholds are >0.05 or >0.025.

References

- GCTA
 - Yang et al. (2010). Nat. Genet. 42(7):565-9
 - Yang et al. (2011). AJHG. **88**(1):76-82
- BOLT-LMM
 - Loh et al. (2015). Nat. Genet. 47:284–290
 - Loh et al. (2018). Nat. Genet. 50(7):906-908
- Power to detect heritability
 - Visscher et al. (2014). Plos Genet. **10**(4):e1004269
- REML

Estimation of SNP-heritability (h^2_{SNP}) using linear mixed models – practical using GCTA

Loic Yengo

University of Queensland

5th of March, 2019

- A command line software (similar to PLINK)
- Version 1.92 available for Linux, Mac and Windows
- Initially developed for estimation of SNP heritability
- Has now multiple functionalities
 - Mixed-Model GWAS
 - LD score calculations
 - Principal Components Analysis
 - Gene-based test.
 - Etc.
- Many examples available on the website: <u>http://cnsgenomics.com/software/gcta/#GREMLanalysis</u>

Locate the data and software

Create a folder for the practical...please type

(replace "yourFolder" with the name of your own folder, e.g. mine is "yengo")

```
datPath=/scratch/201903/yengo
gctaPath=/opt/gcta_1.92.0beta3
plinkPath=/usr/bin
pracPath=/scratch/201903/yourFolder/practical_gremI
mkdir --p $pracPath
```

Ideas of the practical

- Run GCTA to calculate GRM, identify related individuals
- Run --reml on two traits
 - A trait where causal variants are rare with some effect from shared environment
 - A trait where causal variants are poorly tagged.
- Run MAF stratified analysis

Calculate GRM...

\$gctaPath/gcta64 --bfile \$datPath/mydata --make-grm-bin --out \$pracPath/mydata_allSNPs

...and identify unrelated individuals

\$gctaPath/gcta64 --grm \$pracPath/mydata_allSNPs --grm-singleton 0.05 --out \$pracPath/unrelated

Options:

```
--grm /scratch/201903/yengo/testPractical/mydata_allSNPs
--grm-singleton 0.05
--out /scratch/201903/yengo/testPractical/unrelated
```

```
The program will be running on 8 threads at most.

Pruning the GRM with a cutoff of 0.050000...

Total number of parts to proceed: 1

Processing part 1

Related family pairs have been saved to /scratch/201903/yengo/testPractical/unrelated.family.txt

After pruning the GRM, there are 4808 individuals (1192 individuals removed).

Pruned singleton IDs has been saved to /scratch/201903/yengo/testPractical/unrelated.singleton.txt

Analysis finished at 15:40:20 UTC on Man Mar 04 2010
```

```
Analysis finished at 15:49:20 UTC on Mon Mar 04 2019
Computational time: 0.081524 second(s).
```

• Estimate SNP heritability of trait 1 with and without relatives.

\$gctaPath/gcta64 --grm \$pracPath/mydata_allSNPs --pheno \$datPath/mydata.phen --mpheno I --reml \
 --out \$pracPath/traitI_with_relatives

\$gctaPath/gcta64 --grm \$pracPath/mydata_allSNPs --pheno \$datPath/mydata.phen --mpheno I --reml \
 --out \$pracPath/traitI_without_relatives --grm-cutoff 0.05

• What can you conclude?

• Estimate SNP heritability of trait 1 with and without relatives.

\$gctaPath/gcta64 --grm \$pracPath/mydata_allSNPs --pheno \$datPath/mydata.phen --mpheno I --reml \
 --out \$pracPath/traitI_with_relatives

\$gctaPath/gcta64 --grm \$pracPath/mydata_allSNPs --pheno \$datPath/mydata.phen --mpheno I --reml \
 --out \$pracPath/traitI_without_relatives --grm-cutoff 0.05

• What can you conclude?

	Summary result of REML analysis:		Summary result of REML analysis:			
	Source	Variance	SE	Source	Variance	SE
	V(G)	0.398550	0.023990	V(G)	0.253065	0.027906
	V(e)	0.578277	0.019175	V(e)	0.731259	0.027626
	Vp	0.976827	0.019107	Vp	0.984324	0.020507
	V(G)/Vp	0.408004	0.020539 (V(G)/Vp	0.257096	0.026772
heritability						

Calculate MAF stratified GRMs...

\$gctaPath/gcta64 --grm \$pracPath/mydata_allSNPs --pheno \$datPath/mydata.phen --mpheno 2 --reml \
 --keep \$pracPath/unrelated.singleton.txt --out \$pracPath/trait2_allSNPs

\$gctaPath/gcta64 --mgrm \$pracPath/mgrm.txt --pheno \$datPath/mydata.phen --mpheno 2 --reml \
 --keep \$pracPath/unrelated.singleton.txt --out \$pracPath/trait2_maf_stratified

Summary result of REML analysis:SourceVarianceV(G)0.4793300.031773V(e)0.5316960.024740Vp1.011026V(G)/Vp0.4741020.026153	Summary res Source V(G1) V(G2) V(e) Vp V(G1)/Vp V(G2)/Vp	ult of REML anal Variance 0.618051 0.007838 0.385462 1.011350 0.611114 0.007750	SE 0.035290 0.011030 0.013896 0.035904 0.014835 0.010906
---	---	--	--

Sum of V(G)/Vp 0.618864 0.018175

Extensions

- Estimate heritability of diseases
- Add covariates explain structure of phen file.

- Haseman-Elston (HE) regression is implemented in GCTA. e.g.: gcta64 --HEreg --grm test --pheno test.phen --out test
- Estimation of genetic correlation between traits