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Genome-wide association meta-analysis in 
269,867 individuals identifies new genetic and 
functional links to intelligence

Intelligence is highly heritable1 and a major determinant of 
human health and well-being2. Recent genome-wide meta-
analyses have identified 24 genomic loci linked to variation 
in intelligence3–7, but much about its genetic underpinnings 
remains to be discovered. Here, we present a large-scale 
genetic association study of intelligence (n =​ 269,867), 
identifying 205 associated genomic loci (190 new) and 
1,016 genes (939 new) via positional mapping, expression 
quantitative trait locus (eQTL) mapping, chromatin 
interaction mapping, and gene-based association analysis. 
We find enrichment of genetic effects in conserved and 
coding regions and associations with 146 nonsynonymous 
exonic variants. Associated genes are strongly expressed 
in the brain, specifically in striatal medium spiny neurons 
and hippocampal pyramidal neurons. Gene set analyses 
implicate pathways related to nervous system development 
and synaptic structure. We confirm previous strong genetic 
correlations with multiple health-related outcomes, and 
Mendelian randomization analysis results suggest protective 
effects of intelligence for Alzheimer’s disease and ADHD 
and bidirectional causation with pleiotropic effects for 
schizophrenia. These results are a major step forward in 
understanding the neurobiology of cognitive function as well 
as genetically related neurological and psychiatric disorders.

We performed a genome-wide association study (GWAS) meta-
analysis of 14 independent epidemiological cohorts of European 
ancestry and 9,295,118 genetic variants passing quality con-
trol (Table 1, Supplementary Fig. 1, and Supplementary Table 1).  
A flowchart of the study methodology is presented in Supplementary 
Fig. 2, and additional details of the methods and results are pre-
sented in the Supplementary Note.

Intelligence was assessed using various neurocognitive tests, pri-
marily gauging fluid domains of cognitive functioning (Supplementary 
Note). Despite variation in form and content, cognitive test scores 
display a positive manifold of correlations, a robust empirical phe-
nomenon that is observed in multiple populations8. Statistically, the 
variance common across cognitive tasks can be modeled as a latent 
factor denoted as g (the general factor of intelligence)9,10. In addition, 
twin and family studies show strong genetic correlations across diverse 
cognitive domains11, suggesting pleiotropy, and across levels of abil-
ity11, substantiating the view of general intelligence as an etiological 
continuum (with rare syndromic forms of severe intellectual disability 
being the exception12). Additionally, g factors extracted from differ-
ent sets of cognitive tests correlate very strongly (>​0.9813,14), support-
ing the universality of g15,16. In performing meta-analysis of cognitive 
scores obtained using a variety of tests, we aimed to boost the statistical 
power to detect genetic variants underlying g, which are likely to have 
pleiotropic effects across multiple domains of cognitive functioning.

Despite sample and methodological variations, genetic cor-
relations (rg) between cohorts were considerable (mean =​ 0.67), 
and there was no evidence of heterogeneity between cohorts in 
the SNP associations (Supplementary Table 2 and Supplementary 
Note). Age-stratified meta-analyses indicated high genetic correla-
tions (rg >​ 0.62) and comparable heritability across age groups, as 
captured by the SNPs included in the analysis (hSNP

2  =​ 0.19–0.22) 
(Supplementary Table 3 and Supplementary Note). The full-sam-
ple hSNP

2  was 0.19 (standard error (s.e.) =​ 0.01), in line with previ-
ous findings4,5, and a linkage disequilibrium (LD) score intercept17 
of 1.08 (s.e. =​ 0.02) indicated that most of the inflation (λGC =​ 1.92) 
could be explained by polygenic signal6 (Supplementary Fig. 3 and 
Supplementary Table 4).

In the meta-analysis, 12,110 variants indexed by 242 lead SNPs 
in approximate linkage equilibrium (r2 <​ 0.1) reached genome-wide 
significance (P <​ 5 ×​ 10−8) (Fig. 1a, Supplementary Figs. 4 and 5, 
and Supplementary Tables 5–7). These were located in 205 distinct 
genomic loci (Supplementary Note). We tested for replication using 
the proxy phenotype of educational attainment, which is correlated 
phenotypically (r ~0.40)18 and genetically (r ~0.70)19 with intelli-
gence. We confirmed this high genetic correlation (rg =​ 0.73) and 
observed sign concordance with educational attainment for 93% of 
genome-wide significant SNPs (P <​ 1 ×​ 10−300), with replication for 
48 loci (Supplementary Table 8 and Supplementary Note). Using 
polygenic score (PGS) prediction20,21, the current results explain up 
to 5.2% of the variance in intelligence in four independent samples 
(Supplementary Table 9 and Supplementary Note).

We observed enrichment for heritability of SNPs in conserved 
regions (P =​ 2.01 ×​ 10−12), coding regions (P =​ 1.67 ×​ 10−6), and 
acetylated Lys9 of histone H3 (H3K9ac) histone regions/peaks 
(P <​ 6.26 ×​ 10−5), and among common (minor allele frequency 
(MAF) >​0.3) variants (Fig. 1b, Supplementary Figs. 6 and 7,  
Supplementary Table 10, and Supplementary Note). Conserved and 
regulatory regions have previously been implicated in cognitive 
functioning22, but coding regions have not.

Functional annotation of all candidate SNPs in the associated loci 
(SNPs with r2 ≥​ 0.6 with one of the independent significant SNPs, 
a suggestive P value (P <​ 1 ×​ 10−5), and MAF >​0.0001; n =​ 21,368) 
showed that these were mostly intronic or intergenic (Fig. 1 and 
Supplementary Table 6), yet 146 (81 genome-wide significant) SNPs 
were exonic nonsynonymous (ExNS) (Supplementary Table 11 and 
Supplementary Note). Convergent evidence of strong association 
(z =​ 9.49) and the highest observed probability of a deleterious pro-
tein effect (CADD23 score =​ 34) were found for rs13107325. This 
missense mutation (MAF =​ 0.065, P =​ 2.23 ×​ 10−21) in SLC39A8 was 
the lead SNP in locus 71, and the ancestral C allele was associated 
with higher scores on intelligence measures. The effect sizes for ExNS 
SNPs were individually small, with each effect allele accounting for 
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a difference of 0.01 to 0.08 s.d. A detailed catalog of variants in  
the associated genomic loci is presented in Supplementary Tables 6 
and 11 and in the Supplementary Note.

To link the associated variants to genes, we applied three gene-
mapping strategies implemented in FUMA24. Positional gene map-
ping aligned SNPs to 522 genes by genomic location, eQTL gene 
mapping matched cis-eQTL SNPs to 684 genes whose expression 
levels they influence, and chromatin interaction mapping anno-
tated SNPs to 227 genes on the basis of 3D DNA–DNA interactions  
(Fig. 2, Supplementary Figs. 8 and 9, Supplementary Tables 12–14, 
and Supplementary Note). This resulted in 859 unique mapped 
genes, 435 of which were implicated by at least two mapping strate-
gies and 139 of which were implicated by all three (Fig. 3). Although 
not all of these genes are certain to have a role in intelligence, they 
point to potential functional links for the GWAS-associated vari-
ants and give higher credibility to genes with convergent evidence of 
association from multiple sources. The FUMA-mapped genes were 
enriched for brain tissue expression and several regulatory biologi-
cal gene sets (Supplementary Note). Fifteen genes are particularly 
notable as they are implicated via chromatin interactions between 
two independent genomic risk loci (Fig. 2 and Supplementary 
Note). Cross-locus interactions implicated ELAVL2, PTCH1, ATF4, 
FBXL17, and MAN2A1 in the left ventricle of the heart, SATB2 in 
liver tissue, and MEF2C in five tissues. Multiple interactions in mul-
tiple tissue types were seen for a cluster of eight genes on chromo-
some 6 encoding zinc-finger proteins and histones.

We performed genome-wide gene-based association study 
(GWGAS) analysis using MAGMA25 to estimate aggregate associa-
tions on the basis of all SNPs in a gene (whereas FUMA annotates 
individually significant SNPs to genes). GWGAS analysis identi-
fied 507 associated genes (Fig. 3a, Supplementary Table 15, and 
Supplementary Note), of which 350 were also mapped by FUMA 
(Fig. 3b). In total, 105 genes were implicated by all four strategies 
(Supplementary Table 16).

In gene set analysis, six Gene Ontology26 gene sets were significantly 
associated with intelligence: neurogenesis (P =​ 4.78 ×​ 10−7), neuron 
differentiation (P =​ 4.82 ×​ 10−6), central nervous system neuron  

differentiation (P =​ 3.31 ×​ 10−6), regulation of nervous system devel-
opment (P =​ 9.30 ×​ 10−7), positive regulation of nervous system 
development (P =​ 1.00 ×​ 10−6), and regulation of synapse struc-
ture or activity (P =​ 5.42 ×​ 10−6) (Supplementary Tables 17 and 18,  
and Supplementary Note). Conditional analysis indicated that there 
were three independent associations—regulation of nervous system 
development, central nervous system neuron differentiation, and 
regulation of synapse structure or activity—that together accounted 
for the associations of the other sets.

Linking gene-based P values to tissue-specific gene expression, 
we observed strong associations with gene expression across multi-
ple brain areas (Fig. 3c, Supplementary Table 19, and Supplementary 
Note), particularly the frontal cortex (P =​ 3.10 ×​ 10−9). In brain 
single-cell expression gene set analyses, we found significant 
associations of striatal medium spiny neurons (P =​ 2.02 ×​ 10−14), 
hippocampal CA1 pyramidal neurons (P =​ 5.67 ×​ 10−11), and cor-
tical somatosensory pyramidal neurons (P =​ 2.72 ×​ 10−9) (Fig. 3d, 
Supplementary Table 20, and Supplementary Note). Conditional 
analysis showed that the independent association signal in brain 
cells was driven by medium spiny neurons, neuroblasts, and pyra-
midal CA1 neurons.

Intelligence has been associated with a wide variety of human 
behaviors15 and brain anatomy27. Confirming previous reports5,6, 
we observed negative genetic correlations with attention defi-
cit/hyperactivity disorder (ADHD; rg =​ −​0.36, P =​ 4.58 ×​ 10−23), 
depressive symptoms (rg =​ −​0.27, P =​ 6.20 ×​ 10−10), Alzheimer’s 
disease (rg =​ −​0.27, P =​ 2.03 ×​ 10−5), and schizophrenia (rg =​ −​0.21, 
P =​ 3.82 ×​ 10−17) and positive correlations with longevity (rg =​ 0.43, 
P =​ 7.96 ×​ 10−8) and autism (rg =​ 0.25, P =​ 3.14 ×​ 10−7), among 
others (Supplementary Fig. 10 and Supplementary Table 21).  
Comparison with previous GWAS28 supported these correlations, 
showing numerous shared genetic variants across phenotypes 
(Supplementary Tables 22 and 23, and Supplementary Note).  
Low enrichment (87 of 1,518 genes, P =​ 0.05) was found for 
genes previously linked to intellectual disability or develop-
mental delay, indicating largely distinct biological processes. 
However, our results extend previous genetic research on normal 

Table 1 | Overview of cohorts included in a GWAS meta-analysis of general intelligence

Cohort Cohort name n Age (years) Phenotype

1 UKB 195,653 39–72 Verbal and mathematical reasoning

2 COGENT 35,289 8–96 One or more neuropsychological tests from three or more domains of cognitive 
performance

3 RS 6,182 45–98 Letter–digit substitution, Stroop, verbal fluency, delayed recall

4 GENR 1,929 5–9 SON-R (spatial visualization and abstract reasoning subsets)

5 STR 3,215 18 Logical, verbal, spatial, and technical ability subtests

6 S4S 2,818 17–18 SAT test scores

7 HiQ/HRS 9,410 NAa High-IQ cases/unselected population controls

8 TEDS 3,414 12 WISC-III verbal and nonverbal reasoning; Raven’s progressive matrices

9a DTR-MADT 737 55–80 Verbal fluency, digit span, immediate and delayed recall tests

9b DTR-LSADT 253 73–94 Verbal fluency, digit span, immediate and delayed recall tests

10 IMAGEN 1,343 14 WISC-IV, CANTAB factor score

11a BLTS-Children 530 12–13 VSRT-C factor score

11b BLTS-Adolescents 2,598 15–30 MAB-II IQ score

12 NESCOG 252 18–79 WAIS IQ score

13 GfG 5,084 15–91 ICAR verbal reasoning test

14a STSA-SATSA +​ GENDER 703 50–94 Verbal, spatial, episodic memory, and processing speed tests

14b STSA-HARMONY 448 65–96 Verbal, spatial, episodic memory, and processing speed tests
aThe HiQ/HRS sample used a case–control design rather than a cognitive test score ascertained at a specific age; see the Methods and Supplementary Note.
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Fig. 1 | SNP-based associations with intelligence in the GWAS meta-analysis of n = 269,867 independent individuals. a, Manhattan plot showing the 
–log10-transformed two-tailed P value of each SNP from the GWAS meta-analysis (of linear and logistic regression statistics) on the y axis and base-pair 
positions along the chromosomes on the x axis. The dotted red line indicates Bonferroni-corrected genome-wide significance (P <​ 5 ×​ 10−8); the dotted 
blue line indicates the threshold for suggestive association (P <​ 1 ×​ 10−5). Independent lead SNPs are indicated by a diamond. b, Heritability enrichment 
of 28 functional annotation categories for SNPs in the meta-analysis, calculated with stratified LD Score regression. Error bars show 95% confidence 
intervals around the enrichment estimates. The dashed horizontal line indicates no enrichment of the annotation category. Red dots represent significant 
Bonferroni-corrected two-tailed P values, and beige dots represent suggestive (P <​ 0.05) values. TSS, transcription start site; CTCF, CCCTC-binding 
factor; DHS, DNase I–hypersensitive site; TFBS, transcription factor binding site; DGF, DNase I digital genomic footprint. c, Distribution of the functional 
consequences of SNPs in genomic risk loci in the meta-analysis. d, Distribution of RegulomeDB scores for SNPs in genomic risk loci, with a low score 
indicating a higher likelihood of the SNP having a regulatory function (Methods). e, The minimum chromatin state across 127 tissue and cell types for SNPs 
in genomic risk loci, with lower states indicating higher accessibility and states 1–7 referring to open chromatin states (Methods).
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variation in general intelligence, as catalogued in Supplementary  
Tables 24 and 25.

We used Generalized Summary-data-based Mendelian random-
ization29 to test for potential credible causal associations between 
intelligence and genetically correlated traits (Supplementary Figs. 11  
and 12, Supplementary Table 26, and Supplementary Note). We 
observed a strong bidirectional effect of cognitive ability on educational 
attainment (bxy =​ 0.549, P <​ 1 ×​ 10−320) and of educational attainment 
on intelligence (byx =​ 0.480, P =​ 6.85 ×​ 10−82). Such findings are consis-
tent with previous studies implicating bidirectional causal effects30,31. 
There was also a bidirectional association showing a strong protec-
tive effect of intelligence on schizophrenia (odds ratio (OR) =​ 0.50, 
bxy =​ −​0.685, P =​ 2.02 ×​ 10−57) and a relatively smaller reverse effect 
(byx =​ −​0.214, P =​ 4.19 ×​ 10−52), with additional evidence for pleiotropy 
(Supplementary Note). A number of previous reports support both 
a causal link and genetic overlap between these phenotypes32,33. Our 
results also suggested that higher intelligence had a protective effect 
on ADHD (OR =​ 0.48, bxy =​ −​0.734, P =​ 2.57 ×​ 10−46) and Alzheimer’s 
disease (OR =​ 0.65, bxy =​ −​0.435, P =​ 3.59 ×​ 10−14), but was associated 
with higher risk of autism (OR =​ 1.38, bxy =​ 0.321, P =​ 1.12 ×​ 10−3).

In the present study, we have affirmed and expanded exist-
ing knowledge of the genetics of general intelligence, identify-
ing 190 new loci and 939 new associated genes and replicating 
previous associations with 15 loci and 77 genes. The combined 
strategies of functional annotation and gene mapping using bio-
logical data resources provide extensive information on the likely 
consequences of relevant genetic variants and put forward a rich 
set of plausible gene targets and biological mechanisms for func-
tional follow-up. Gene set analyses contribute novel insight into 
underlying neurobiological pathways, confirming the importance 
of brain-expressed genes and neurodevelopmental processes in 
fluid domains of intelligence and pointing toward the involvement 
of specific cell types. Our results indicate overlap in the genetic 
processes involved in both cognitive functioning and neurological 
and psychiatric traits and provide suggestive evidence of causal 
associations that may drive these correlations. These results are 
important for understanding the biological underpinnings of 
cognitive functioning and contribute to understanding of related 
neurological and psychiatric disorders.

URLs. UK Biobank website, http://www.ukbiobank.ac.uk/; Health 
and Retirement Study, http://hrsonline.isr.umich.edu/; Genes 
for Good, http://genesforgood.org/; International Cognitive 
Ability Resource measure (Genes for Good), https://icar-proj-
ect.com/; Functional Mapping and Annotation (FUMA) soft-
ware, http://fuma.ctglab.nl/; Multi-marker Analysis of Genomic 
Annotation (MAGMA) software, http://ctg.cncr.nl/software/
magma; METAL software, http://genome.sph.umich.edu/wiki/
METAL_Program; LD Score regression software, https://github.
com/bulik/ldsc; LD Hub (GWAS summary statistics), http://ldsc.
broadinstitute.org/; LD scores, https://data.broadinstitute.org/
alkesgroup/LDSCORE/; GeneCards, http://www.genecards.org/; 
Psychiatric Genomics Consortium (GWAS summary statistics), 
http://www.med.unc.edu/pgc/results-and-downloads; MSigDB 
curated gene set database, http://software.broadinstitute.org/gsea/
msigdb/collections.jsp; NHGRI GWAS catalog, https://www.ebi.
ac.uk/gwas/; RegionAnnotator, https://github.com/ivankosmos/

RegionAnnotator; GSMR software, http://cnsgenomics.com/soft-
ware/gsmr/.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41588-018-0152-6.
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Fig. 2 | Cross-locus interactions for genomic regions associated with intelligence in 269,867 independent individuals. a–e, Circos plots showing genes 
on chromosomes 2 (a), 5 (b), 6 (c), 9 (d), and 22 (e) that were linked to genomic risk loci in the GWAS meta-analysis (blue regions) by eQTL mapping 
(green lines connecting an eQTL SNP to its associated gene) and/or chromatin interactions (orange lines connecting two interacting regions) and showed 
evidence of interaction across two independent genomic risk loci. Genes implicated by eQTLs are in green, by chromatin interactions are in orange, and 
by both eQTLs and chromatin interactions are in red. The outer layer shows a Manhattan plot containing the –log10-transformed two-tailed P value of each 
SNP from the GWAS meta-analysis (of linear and logistic regression statistics), with genome-wide significant SNPs colored according to LD patterns with 
the lead SNP. Higher-resolution Circos plots for all chromosomes are provided in Supplementary Fig. 8.
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Fig. 3 | Implicated genes, pathways, and tissue and cell expression profiles for intelligence in 269,867 independent individuals. a, Manhattan plot of 
the GWGAS analysis. The y axis shows the –log10-transformed two-tailed P value of each gene from a linear model, and chromosomal position is shown 
on the x axis. The red dotted line indicates the Bonferroni-corrected threshold for genome-wide significance of the gene-based test (P <​ 2.76 ×​ 10−6; 
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Methods
Study cohorts. The meta-analysis included new and previously reported GWAS 
summary statistics from 14 cohorts: UK Biobank (UKB), the Cognitive Genomics 
Consortium (COGENT), the Rotterdam Study (RS), the Generation R Study 
(GENR), the Swedish Twin Registry (STR), Spit for Science (S4S), the High-IQ/
Health and Retirement Study (HiQ/HRS), the Twins Early Development Study 
(TEDS), the Danish Twin Registry (DTR), IMAGEN, the Brisbane Longitudinal 
Twin Study (BLTS), the Netherlands Study of Cognition, Environment, and Genes 
(NESCOG), Genes for Good (GfG), and the Swedish Twin Studies of Aging 
(STSA). All samples were obtained from epidemiological cohorts ascertained for 
research on a variety of physical and psychological outcomes. Participants ranged 
from children to older adults, with older samples being screened for cognitive 
decline to exclude the possibility of dementia affecting performance on  
cognitive tests.

Different measures of intelligence were assessed in each cohort but were all 
operationalized to index a common latent g factor underlying multiple dimensions 
of cognitive functioning. With the exception of HiQ/HRS, all cohorts extracted 
a single sum score, mean score, or factor score from a multidimensional set 
of cognitive performance tests and used this normally distributed score as the 
phenotype in a covariate-adjusted (for example, age, sex, ancestry principal 
components) GWAS using linear regression methods. For HiQ/HRS, a logistic 
regression GWAS was run with ‘case’ status reflecting whether participants were 
drawn from an extreme-sampled population of very high intelligence (i.e., at the 
upper ~0.03% of the tail of the normal distribution) versus an epidemiological 
sample of unselected population ‘controls’. Detailed descriptions of the samples, 
measures, genotyping, quality control, and analysis procedures for each cohort are 
provided in the Supplementary Note, Supplementary Table 1, and in the Nature 
Research Reporting Summary.

Meta-analysis. Stringent quality control measures were applied to the summary 
statistics for each GWAS cohort before combining. All files were checked for 
data integrity and accuracy. SNPs were filtered from further analysis if they met 
any of the following criteria: imputation quality (INFO/R2) score <​0.6, Hardy–
Weinberg equilibrium P <​ 5 ×​ 10−6, study-specific minor allele frequency (MAF) 
corresponding to a minor allele count (MAC) <​100, and mismatch of alleles 
or allele frequency difference greater than 20% from the Haplotype Reference 
Consortium (HRC) genome reference panel16. Some cohorts used more stringent 
criteria (Supplementary Note). Indels and SNPs that were duplicated, multiallelic, 
monomorphic, or ambiguous (A/T or C/G with MAF >​0.4) were also excluded. 
Visual inspection of the distribution of the summary statistics was performed, and 
Manhattan plots and quantile–quantile plots were created for the cleaned summary 
statistics from each cohort (Supplementary Fig. 1).

The SNP association P values from the GWAS cohorts were subjected to 
meta-analysis with METAL34 (see URLs) in two phases. First, we performed meta-
analysis on all cohorts with quantitative phenotypes (all except HiQ/HRS) using a 
sample-size-weighted scheme. In the second phase, we added the HiQ/HRS study 
results to the results from the first phase, weighting each set of summary statistics 
by their respective non-centrality parameter (NCP). This method improves power 
when using an extreme case sampling design such as that in HiQ35 and provides 
a comparable metric with which to combine information from different analytic 
designs while accounting for their differences in power/effective sample size.  
NCPs were estimated using the Genetic Power Calculator36, as described by 
Coleman et al.37. After combining all data, meta-analysis results were further 
filtered to exclude any variants with n <​ 50,000. We additionally included a 
random-effects meta-analysis for each phase, as implemented in METAL, to 
evaluate potential heterogeneity in the SNP association statistics between cohorts.

The X chromosome was treated separately in the meta-analysis because 
imputed genotypes were not available for the X chromosome in the largest 
cohort (UKB), and there was little overlap between the UKB called genotypes 
and imputed data from other cohorts (nSNPs <​ 500). We therefore included only 
the called X-chromosome variants in UKB for these analyses after performing 
X-chromosome-specific quality-control steps38.

We conducted a series of meta-analyses on subsets of the full sample using the 
same methods as above. Age-group-specific meta-analyses were run in the cohorts 
of children (age <​17 years; GENR, TEDS, IMAGEN, BLTS; n =​ 9,814), young 
adults (age ~17–18 years; S4S, STR; n =​ 6,033), adults (age >​18 years, primarily 
middle-aged or older: UKB, RS, DTR, NESCOG, STSA; n =​ 204,228), and older 
adults (mean age >​60 years, RS, DTR, STSA; n =​ 8,323), excluding studies whose 
samples overlapped children/young adult and adult groups (COGENT, HiQ/HRS, 
GfG; n =​ 49,792). To create independent discovery samples for use in polygenic 
score validation, we also conducted meta-analyses with a ‘leave-one-out’ strategy 
in which summary statistics from four validation datasets were each excluded from 
the meta-analysis (see “Polygenic scoring”).

Cohort heritability and genetic correlation. LD Score regression17 was used to 
estimate genomic inflation and heritability of the intelligence phenotypes in each of 
the 14 cohorts using their post-quality-control summary statistics and to estimate 
the cross-cohort genetic correlations39. Precalculated LD scores from the 1000 
Genomes European reference population were obtained online (see URLs). Genetic 

correlations were calculated on HapMap 3 SNPs only. LD Score regression was also 
used on the age-subgroup meta-analyses to estimate heritability and cross-age-
group genetic correlations.

Genomic risk locus definition. Independently associated loci from the meta-
analysis were defined using FUMA24 (see URLs), an online platform for functional 
mapping of genetic variants. We first identified ‘independent significant SNPs’, 
which had a Bonferroni-corrected genome-wide significant two-tailed P value 
(P <​ 5 ×​ 10−8) and represented signals that were independent from each other at 
r2 <​ 0.6. These SNPs were further represented by ‘lead SNPs’, which are a subset 
of the independent significant SNPs that are in approximate linkage equilibrium 
with each other at r2 <​ 0.1. We then defined associated ‘genomic loci’ by merging 
any physically overlapping lead SNPs (LD blocks <​250 kb apart). Borders of the 
associated genomic loci were defined by identifying all SNPs in LD (r2 ≥​ 0.6) with 
one of the independent significant SNPs in the locus, and the region containing all 
of these ‘candidate SNPs’ was considered to be a single independent genomic locus. 
All LD information was calculated from UKB genotype data.

Proxy replication with educational attainment. We conducted GWAS of 
educational attainment, an outcome with a high genetic correlation with 
intelligence5, in a non-overlapping European subset of the UKB sample 
(n =​ 188,435) who did not complete the intelligence measure. Educational 
attainment was coded as maximum years of education completed, using the same 
methods as earlier analyses40, and GWAS was conducted using the same quality-
control and analytic procedures as described for the UKB intelligence phenotype 
(Supplementary Note). To test replication of the SNPs with this proxy phenotype, 
we performed a sign concordance test for all genome-wide significant SNPs from 
the meta-analysis using the two-tailed exact binomial test. For each independent 
genomic locus, we considered it to be evidence for replication if the lead SNP or 
another correlated SNP in the region was sign concordant with the corresponding 
SNP in the intelligence meta-analysis and had a two-tailed P value of association 
with educational attainment smaller than 0.05/242 independent tests =​ 0.0002.

Polygenic scoring. We calculated polygenic scores (PGSs) based on the SNP effect 
sizes of the leave-one-out meta-analyses, from which four cohorts were (separately) 
excluded and reserved for score validation. These included child (GENR), young 
adult (S4S), and adult (RS) samples. We also included the UKB-wb sample to 
test for validation in a very large (n =​ 53,576) cohort with the greatest phenotypic 
similarity to the largest contributor to the meta-analysis statistics (UKB-ts), to 
maximize potential predictive power. PGSs were calculated on the genotype data 
using LDpred21, a Bayesian PGS method that uses a prior on effect size distribution 
to remodel the SNP effect size and account for LD, and PRSice20, a PLINK41-based 
program that automates optimization of the set of SNPs included in the PGS based 
on high-resolution filtering of the GWAS P-value threshold. LDpred PGSs were 
applied to the called, cleaned, genotyped variants in each of the validation cohorts 
with UKB as the LD reference panel. PRSice PGSs were calculated on hard-called 
imputed genotypes using P-value thresholds from 0.0 to 0.5 in steps of 0.001. The 
explained variance (Δ​R2) was derived from a linear model in which the GWAS 
intelligence phenotype was regressed on each PGS while controlling for the same 
covariates as in each cohort-specific GWAS, compared to a linear model with 
GWAS covariates only.

Stratified heritability. We partitioned SNP heritability using stratified LD 
Score regression42 in three ways: (i) by functional annotation category, (ii) by 
MAF in six percentile bins, and (iii) by chromosome. Annotations for 28 binary 
categories of putative functional genomic characteristics (for example, coding or 
regulatory regions) were obtained from the LD score website (see URLs). With this 
method, enrichment/depletion of heritability in each category is calculated as the 
proportion of heritability attributable to SNPs in the specified category divided by 
the proportion of total SNPs annotated to that category. The Bonferroni-corrected 
significance threshold was 0.05/56 annotations =​ 0.0009.

Functional annotation of SNPs. Functional annotation of SNPs implicated in the 
meta-analysis was performed using FUMA24 (see URLs). We selected all candidate 
SNPs in associated genomic loci having r2 ≥ 0.6 with one of the independent significant 
SNPs, a suggestive P value (P <​ 1 ×​ 10−5), and MAF >​0.0001 for annotations.  
Predicted functional consequences for these SNPs were obtained by matching 
SNPs’ chromosome, base-pair position, and reference and alternate alleles to 
databases containing known functional annotations, including ANNOVAR43 
categories, combined annotation-dependent depletion (CADD) scores23, 
RegulomeDB44 (RDB) scores, and chromatin states45,46. ANNOVAR categories 
identify the SNP’s genic position (for example, intron, exon, intergenic) and 
associated function. CADD scores predict how deleterious the effect of a SNP 
is likely to be for protein structure/function, with higher scores referring to 
higher deleteriousness. A CADD score above 12.37 is the threshold to be 
potentially pathogenic23. The RegulomeDB score is a categorical score based 
on information from eQTLs and chromatin marks, ranging from 1a to 7, with 
lower scores indicating an increased likelihood of having a regulatory function. 
Scores are as follows: 1a, eQTL +​ transcription factor (TF) binding +​ matched TF 
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motif +​ matched DNase footprint +​ DNase peak; 1b, eQTL +​ TF binding +​ any 
motif +​ DNase footprint +​ DNase peak; 1c, eQTL +​ TF binding +​ matched TF 
motif +​ DNase peak; 1d, eQTL +​ TF binding +​ any motif +​ DNase peak; 1e, 
eQTL +​ TF binding +​ matched TF motif; 1f, eQTL +​ TF binding/DNase peak; 2a, 
TF binding +​ matched TF motif +​ matched DNase footprint +​ DNase peak; 2b, TF 
binding +​ any motif +​ DNase footprint +​ DNase peak; 2c, TF binding +​ matched 
TF motif +​ DNase peak; 3a, TF binding +​ any motif +​ DNase peak; 3b, TF 
binding +​ matched TF motif; 4, TF binding +​ DNase peak; 5, TF binding or DNase 
peak; 6, other; 7, not available. The chromatin state represents the accessibility 
of genomic regions (every 200 bp) with 15 categorical states predicted by a 
hidden Markov model based on 5 chromatin marks for 127 epigenomes in the 
Roadmap Epigenomics Project46. A lower state indicates higher accessibility, 
with states 1–7 referring to open chromatin states. We annotated the minimum 
chromatin state across tissues to SNPs. The 15 core chromatin states as suggested 
by Roadmap are as follows: 1, active transcription start site (TSS); 2, flanking 
active TSS; 3, transcription at gene 5′​ and 3′​ ends; 4, strong transcription; 5, weak 
transcription; 6, genic enhancer; 7, enhancers; 8, zinc-finger gene and repeats; 
9, heterochromatic; 10, bivalent/poised TSS; 11, flanking bivalent/poised TSS/
enhancer; 12, bivalent enhancer; 13, repressed Polycomb; 14, weak repressed 
Polycomb; 15, quiescent/low. Standardized SNP effect sizes were calculated for the 
SNPs with the greatest impact by transforming the sample-size-weighted meta-
analysis z score, as described by Zhu et al.47.

Gene mapping. Genome-wide significant loci obtained by the GWAS meta-
analysis were mapped to genes in FUMA24 using three strategies:

	1.	 Positional mapping maps SNPs to genes based on physical distance (within 
a 10-kb window) from known protein-coding genes in the human reference 
assembly (GRCh37/hg19);

	2.	 eQTL mapping maps SNPs to genes with which they show a significant eQTL 
association (i.e., allelic variation at the SNP is associated with the expression 
level of that gene). eQTL mapping uses information from 45 tissue types in 3 
data repositories (GTEx48, Blood eQTL browser49, BIOS QTL browser50) and 
is based on cis-eQTLs that can map SNPs to genes up to 1 Mb away. We used 
a false discovery rate (FDR) of 0.05 to define significant eQTL associations;

	3.	 Chromatin interaction mapping was performed to map SNPs to genes when 
there was a 3D DNA–DNA interaction between the SNP region and a gene 
region. Chromatin interaction mapping can involve long-range interactions, 
as it does not have a distance boundary. FUMA currently contains Hi-C data 
for 14 tissue types from the study of Schmitt et al.51. Because chromatin inter-
actions are often defined in a certain resolution, such as 40 kb, an interacting 
region can span multiple genes. If a SNP is located in a region that interacts 
with a region containing multiple genes, it will be mapped to each of those 
genes. To further prioritize candidate genes, we selected only interaction-
mapped genes in which one region involved in the interaction overlapped 
with a predicted enhancer region in any of the 111 tissue/cell types from the 
Roadmap Epigenomics project46 and the other region was located in a gene 
promoter region (from 250 bp upstream to 500 bp downstream of the TSS 
and also predicted by Roadmap to be a promoter region). This reduced the 
number of genes mapped but increased the likelihood that those identified 
would have a plausible biological function. We used an FDR of 1 ×​ 10−5 to de-
fine significant interactions, based on previous recommendations51 modified 
to account for the differences in cell lines used here.

Functional annotation of mapped genes. Genes implicated by mapping of 
significant GWAS SNPs were further investigated using the GENE2FUNC 
procedure in FUMA24, which provides hypergeometric tests of enrichment of 
the list of mapped genes in 53 GTEx48 tissue-specific gene expression sets, 7,246 
MSigDB gene sets52, and 2,195 GWAS catalog gene sets28. The Bonferroni-corrected 
significance threshold was 0.05/9,494 gene sets =​ 5.27 ×​ 10−6.

Gene-based analysis. SNP-based P values from the meta-analysis were used as 
input for GWGAS. 18,128 protein-coding genes (each containing at least 1 GWAS 
SNP) from the NCBI 37.3 gene definitions were used as the basis for GWGAS 
in MAGMA25 (see URLs). The Bonferroni-corrected genome-wide significance 
threshold was 0.05/18,128 genes =​ 2.76 ×​ 10−6.

Gene set analysis. Results from the GWGAS analyses were used to test for 
association in three types of predefined gene sets:

	1.	 7,246 curated gene sets representing known biological and metabolic path-
ways were derived from 9 data resources, catalogued by and obtained from 
MSigDB version 5.229 (see URLs);

	2.	 Gene expression values from 53 tissues obtained from GTEx48, log2 trans-
formed with pseudocount 1 after Winsorization at 50 and averaged per tissue;

	3.	 Cell-type-specific gene expression in 24 types of brain cells, which were 
calculated following the method described in Skene et al.53 and Coleman 
et al.37. Briefly, brain-cell-type expression data were drawn from single-cell 
RNA-seq data from mouse brains. For each gene, the value for each cell type 
was calculated by dividing the mean unique molecular identifier (UMI) 

counts for the given cell type by the summed mean UMI counts across all cell 
types. Single-cell gene sets were derived by grouping genes into 40 equal bins 
by specificity of expression.

These gene sets were tested for association with the GWGAS gene-based test 
statistics using MAGMA. We computed competitive P values, which represent 
the test of association for a specific gene set in comparison to other gene sets. 
This method is more robust to type I error than self-contained tests that only test 
for association of a gene set against the null hypothesis of no association25. The 
Bonferroni-corrected significance threshold was 0.05/7,323 gene sets =​ 6.83 ×​ 10−6. 
Conditional analyses were performed as a follow-up using MAGMA to test 
whether each significant association observed was independent of all others. The 
association between each gene set was tested conditional on the most strongly 
associated set, and then—if any substantial (P <​ 0.05/number of gene sets) 
associations remained—by conditioning on the first and second most strongly 
associated set, and so on until no associations remained. Gene sets that retained 
their association after correcting for other sets were considered to be independent 
signals. We note that this is not a test of association per se, but rather a strategy to 
identify, among gene sets with known significant associations whose defining genes 
may overlap, which set(s) are responsible for driving the observed association.

Cross-trait genetic correlation. Genetic correlations (rg) between intelligence and 
38 phenotypes were computed using LD Score regression39, as described above, 
based on GWAS summary statistics obtained from publicly available databases (see 
URLs; Supplementary Table 18). The Bonferroni-corrected significance threshold 
was 0.05/38 traits =​ 1.32 ×​ 10−3.

GWAS catalog lookup. We used FUMA to identify SNPs with previously reported 
(P <​ 5 ×​ 10−5) phenotypic associations in published GWAS listed in the NHGRI-EBI 
catalog28 that overlapped with the genomic risk loci identified in the meta-analysis. 
As an additional relevant phenotype of interest, we examined whether the genes 
associated with intelligence in this study (by FUMA mapping or GWGAS) were 
over-represented in a set of 1,518 genes linked to intellectual disability and/or 
developmental delay, as compiled by RegionAnnotater (see URLs). Many of these 
have been identified by non-GWAS sources and are not represented in the NHGRI 
catalog. We tested for enrichment using a hypergeometric test with a background 
set of 19,283 genomic protein-coding genes, as in FUMA. Manual lookups were 
also performed to identify overlapping loci/genes with known previous GWAS of 
intelligence.

Mendelian randomization. To infer credible causal associations between 
intelligence and traits that are genetically correlated with intelligence, we 
performed generalized summary-data-based Mendelian randomization29 (GSMR; 
see URLs). This method uses summary-level data to test for causal associations 
between a putative risk factor (exposure) and an outcome by using independent 
genome-wide significant SNPs as instrumental variables. HEIDI outlier detection 
was used to filter genetic instruments that showed clear pleiotropic effects on 
both the exposure phenotype and the outcome phenotype. We used a threshold 
P value of 0.01 for the outlier detection analysis in HEIDI, which removes 1% 
of SNPs by chance if there is no pleiotropic effect. To test for a potential causal 
effect of intelligence on various outcomes, we selected traits in non-overlapping 
samples that showed significant genetic correlations (rg) with intelligence. We 
tested for bidirectional causation by repeating the analyses while switching the 
role of each correlated phenotype as an exposure and intelligence as the outcome. 
For each trait, we selected independent (r2 ≤​ 0.1), genome-wide significant lead 
SNPs as instrumental variables in the analyses. For traits with fewer than ten 
genome-wide significant lead SNPs (i.e., the minimum number of SNPs on  
which GSMR can perform a reliable analysis), the genome-wide significance 
threshold was lowered to 1 ×​ 10−5, allowing a sufficient number of SNPs to 
conduct the reverse GSMR analysis for former smoker status, autism,  
intracranial volume, and ADHD.

The method estimates a putative causal effect of the exposure on the outcome 
(bxy) as a function of the relationship between the SNPs’ effects on the exposure 
(bzx) and the SNPs’ effects on the outcome (bzy), given the assumption that the effect 
of non-pleiotropic SNPs on an exposure (x) should be related to their effect on the 
outcome (y) in an independent sample only via mediation through the phenotypic 
causal pathway (bxy). The estimated causal effect coefficients (bxy) are approximately 
equal to the natural log odds ratio (OR) for a case–control trait29. An OR of 2 can 
be interpreted as a doubled risk in comparison to the population prevalence of a 
binary trait for every s.d. increase in the exposure trait. For quantitative traits, bxy 
can be interpreted as a 1 s.d. increase explained in the outcome trait for every s.d. 
increase in the exposure trait. This method can help differentiate the likely causal 
direction of association between two traits but cannot make any statement about 
the intermediate mechanisms involved in any potential causal process.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability. Summary statistics are available for download from  
https://ctg.cncr.nl/.
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    Experimental design
1.   Sample size

Describe how sample size was determined. Data used in this study was collected by external sources and used for secondary 
analysis. Sample size was not pre-determined and was chosen based on all known 
available cohorts with relevant data collected to date, after quality control steps 
were performed in each cohort (described in detail in Online Methods section 
"Study Cohorts" and Supplementary Information section 1.1). Power calculations 
using the Genetic Power Calculator indicated that we had virtually 100% power to 
detect SNPs accounting for >0.05% of trait variance in our sample size of 
N=269867.

2.   Data exclusions

Describe any data exclusions. Each cohort in the meta-analysis applied their own quality control criteria 
(described in Supplementary Information section 1.1), with samples being excluded 
for study design purposes (i.e. based on age), criteria that would affect normal 
intelligence scores such as the presence of dementia, poor quality DNA sample, or 
if consent was withdrawn after enrollment. Genetic variants were excluded using 
standard quality control metrics. At the meta-analysis level, we applied a set of 
pre-determined quality control filters for the removal of SNPs based on minor 
allele frequency, imputation quality, mismatch from a known reference panel, etc. 
as described fully in the Online Methods (section "Meta-analysis"). 

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

The meta-analysis strategy includes replication by default, as it weights the 
reported test statistics by the evidence of association across multiple samples. 
Further, SNP-based replication was carried out using a proxy phenotype of 
educational attainment in an independent sample. Aggregate genomic associations 
were replicated using polygenic score validation in four holdout samples.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

Not relevant; no experimental procedures were performed as this was a study of 
genetic association between genotypes and non-manipulated phenotypes.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Not relevant; there were no experimental groups.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

We used standard, publicly available statistical genetics software packages, which 
are described and linked to in the Online Methods. The packages we used included: 
 
R - Data management and statistical analyses (R Core Team, 2016) 
SHAPEIT2/IMPUTE2 - Genotype imputation (Howie et al., 2009) 
PLINK - Genetic association testing (Purcell et al., 2007; Chang et al., 2015) 
SNPTEST - Genetic association testing (Marchini et al., 2007) 
RAREMETALWORKER - Genetic association testing in related individuals (Liu et al., 
2014) 
METAL - GWAS meta-analysis (Willer et al., 2010) 
FUMA - Online platform for functional annotation of GWAS results (Watanabe et 
al., 2017) 
MAGMA - Gene-based association testing (de Leeuw et al., 2015) 
LD score regression - SNP-based heritability and genetic correlations from GWAS 
summary statistics (Bulik-Sullivan et al., 2015) 
PRSice - Polygenic score analysis (Eusden et al., 2015)  
LDpred - Polygenic score analysis (Vilhjalmsson et al., 2015)

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

Summary statistics from the GWAS meta-analysis will be made freely available for 
download at https://ctg.cncr.nl/.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used in this study.
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10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used in this study.

b.  Describe the method of cell line authentication used. No eukaryotic cell lines were used in this study.

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

No eukaryotic cell lines were used in this study.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No eukaryotic cell lines were used in this study.

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

No animals were used in this study.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

Human research participants of all ages (approximately 6 too 100 years old) were 
included, with approximately equal proportions of males and females. Participants 
came from 14 independent cohorts previously collected by external sources, which 
were defined by different criteria based on the original study goals but were 
generally population-based cohorts of healthy individuals. Participants were not 
included/excluded for specific criteria except the presence of Alzheimer's disease, 
dementia, or other cognitive impairments. Population characteristics of the sample 
are described extensively in the Supplementary Information section 1.1 and 
summarized in Supplementary Table 1.
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