Mean IL-6R concentration of each genotype: CC: 5.698 / CA: 4.418 / AA: 3.238 (10⁻⁸ g/mL) Total Variance of IL-6R concentration=1.35 Frequencies: C, frequency: p=0.39 / A, frequency: q =0.61

QUESTIONS (Falconer & MacKay; 1996: Introduction to quantitative genetics)

- 1. Calculate genotypic values (a and d) (page 109)
- 2. Calculate the genotype frequencies (page 7)
- 3. Calculate the mean IL6-R concentration in the population (page 110)
- 4. Calculate how much of the variance is explained by this SNP (*Variance= Sum of squared deviations from the mean*)

extra: Calculate the average effect of the alleles (page 113)

QUESTIONS

1. Calculate genotypic values (a and d) (Falconer, page 109)

- 1. Calculate the genotype frequencies
- 2. Calculate the mean IL6-R concentration in the population (page 110)
- 3. Calculate how much of the variance is explained by this SNP

Minor allele: C, frequency: p=0.39

Major Allele: A, frequency: q =0.61

	CC		CA	AA	
1.Genotype frequencie	$s = p^2$	+	2pq	+ q ²	
	$= 0.39^2$	+	2*0.39*0.61	+ 0.61 ²	
	= 0.15	+	0.48	+ 0.37	
mean IL6R	5.698		4.418	3.238	
2. Population mean	p ² * 5.698	+	2pq * 4.418	+ q ² *	3.238
(0.15 * 5.698	+	0.48 * 4.418	+ 0.37 *	3.238 = 4.17
	\downarrow		\downarrow		\downarrow
3. Deviation from mean = 5.698-4.17			4.418 - 4.1	L7 3.	238 - 4.17
	= 1.52		0.24		-0.94
4. Squared deviation	$= 1.52^2 = 2.32$		0.24 ² =0.06	5	-0.94 ² =0.88

1. Calculate the genotype frequencies

2. Calculate the mean IL6-R concentration in the population (page 110)

3. Calculate how much of the variance is explained by this SNP

Minor allele: C, frequency: p=0.39

Major Allele: A, frequency: q =0.61

	CC		CA	AA
3. Deviation from mea	n = 5.698-4.17 = 1.52		4.418 - 4.17 0.24	3.238 - 4.17 -0.94
4. Squared deviation	= 1.52 ² = 2.32		0.24 ² = 0.06	$-0.94^2 = 0.88$
5. Variance (SNP)	= p ² * 2.32 = 0.15* 2.32	+ +	2pq * 0.06 <mark>0.48</mark> * 0.06	+ q ² * 0.88 + 0.37*0.88 = 0.71 (SD = 0.84)

Total variance of IL-6R concentration= 1.35

% variance explained by SNP= 0.71/1.35 = 53%

Variation: $2pq[a+d(q-p)]^2 + (2pqd)^2$

$$a = 0.5 \times (\text{sIL-}6R_{\text{CC}} - \text{sIL-}6R_{\text{AA}}) = 0.5 \times (5.698 - 3.238) = 1.23$$

$$d = sIL-6R_{AC} - (sIL-6R_{AA} + a)$$

= 4.418 - (3.238 + 1.23) = -0.05

$$V_A = 2pq [a + d (q - p)]^2$$

= 2 × 0.39 × 0.61
× [1.23 - 0.05 × (0.61 - 0.39)]^2
= 0.71

$$V_{\rm D} = (2pqd)^2 = (2 \times 0.39 \times 0.61 \times -0.05)^2$$

= 5.66 × 10⁻⁴

Average effect

(associated with genes and not with genotypes)

The average effect of a gene (allele) is the mean deviation from the population mean of individuals which received that gene from one parent, the gene received from the other parent having come *at random* from the population.

Falconer (p112): The concept of average effect is not easy to grasp.

Average effect is related to genotypic values a and d

q [a + d (q - p)] = α_1

$$-p [a + d (q - p)] = \alpha_2$$

Average effect of gene substitution is $\alpha_1 - \alpha_2 = \alpha$. This is the difference between the average effect of the 2 alleles: $\alpha = a + d(q-p)$ 2. Calculate the average effect of the alleles (page 113)

Minor allele: C, frequency: p= 0.39 Major Allele: A, frequency: q=0.61

a=1.23, d= -0.05

Average effect C = q[a+d(q-p)] = 0.61[1.23-0.05(0.61-0.39)] = 0.74

Average effect A = -p[a+d(q-p)] = -0.39[1.23-0.05(0.61-0.39)] = -0.48