Mean IL-6R concentration of each genotype:

$$
\text { CC: } 5.698 \text { / CA: } 4.418 \text { / AA: } 3.238 \quad\left(10^{-8} \mathrm{~g} / \mathrm{mL}\right)
$$

Total Variance of IL-6R concentration=1.35
Frequencies: C, frequency: $p=0.39$ / A, frequency: $q=0.61$

QUESTIONS (Falconer \& MacKay; 1996: Introduction to quantitative genetics)

1. Calculate genotypic values (a and d) (page 109)
2. Calculate the genotype frequencies (page 7)
3. Calculate the mean IL6-R concentration in the population (page 110)
4. Calculate how much of the variance is explained by this SNP (Variance= Sum of squared deviations from the mean)
extra: Calculate the average effect of the alleles (page 113)

QUESTIONS

1. Calculate genotypic values (a and d) (Falconer, page 109)

2. Calculate the genotype frequencies
3. Calculate the mean IL6-R concentration in the population (page 110)
4. Calculate how much of the variance is explained by this SNP

Minor allele: C, frequency: $p=0.39$
Major Allele: A, frequency: $q=0.61$

	CC		CA	AA	
1.Genotype frequencies	s $=p^{2}$	+	2 pq	$+\mathrm{q}^{2}$	
	$=0.39^{2}$	+	2*0.39*0.61 +	$+0.61{ }^{2}$	
	$=0.15$	+	0.48	+ 0.37	
mean IL6R	5.698		4.418	3.238	
2. Population mean	p^{2} * 5.698	+	$2 \mathrm{pq} * 4.418$	$+q^{2}$	* 3.238
	0.15 * 5.698	+	0.48 * 4.418	+ 0.37	7 * $3.238=4.17$
	\downarrow		\downarrow		\downarrow
3. Deviation from mean	$\mathrm{n}=5.698-4.17$		4.418-4.17		3.238-4.17
	$=1.52$		0.24		-0.94
4. Squared deviation	$=1.52^{2}=2.32$		$0.24{ }^{2}=0.06$		$-0.94^{2}=0.88$

1. Calculate the genotype frequencies
2. Calculate the mean IL6-R concentration in the population (page 110)
3. Calculate how much of the variance is explained by this SNP

Minor allele: C, frequency: $p=0.39$
Major Allele: A, frequency: $q=0.61$

CC CA AA
3. Deviation from mean $=5.698-4.17$

$$
=1.52
$$

4.418-4.17
0.24
$0.24^{2}=0.06$
$-0.94^{2}=0.88$
5. Variance (SNP) $=\mathrm{p}^{2} * 2.32+2 \mathrm{pq} * 0.06+\mathrm{q}^{2} * 0.88$ $=0.15 * 2.32+0.48 * 0.06+0.37 * 0.88=\mathbf{0 . 7 1}(\mathrm{SD}=0.84)$

Total variance of IL-6R concentration= 1.35
\% variance explained by SNP= 0.71/1.35 = 53\%

Variation: $2 p q[a+d(q-p)]^{2}+(2 p q d)^{2}$

$$
\begin{aligned}
\mathrm{a} & =0.5 \times\left(\mathrm{sIL}-6 \mathrm{R}_{\mathrm{CC}}-\mathrm{sLL}-6 \mathrm{R}_{\mathrm{AA}}\right) \\
& =0.5 \times(5.698-3.238)=1.23
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{d} & =\mathrm{s} L \mathrm{~L}-6 \mathrm{R}_{\mathrm{AC}}-\left(\mathrm{sLL}-6 \mathrm{R}_{\mathrm{AA}}+\mathrm{a}\right) \\
& =4.418-(3.238+1.23)=-0.05
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{V}_{\mathrm{A}}= & 2 \mathrm{pq}[\mathrm{a}+\mathrm{d}(\mathrm{q}-\mathrm{p})]^{2} \\
= & 2 \times 0.39 \times 0.61 \\
& \times[1.23-0.05 \times(0.61-0.39)]^{2} \\
= & 0.71
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{V}_{\mathrm{D}} & =(2 \mathrm{pqd})^{2}=(2 \times 0.39 \times 0.61 \times-0.05)^{2} \\
& =5.66 \times 10^{-4}
\end{aligned}
$$

Average effect
 (associated with genes and not with genotypes)

The average effect of a gene (allele) is the mean deviation from the population mean of individuals which received that gene from one parent, the gene received from the other parent having come at random from the population.

Falconer (p112):The concept of average effect is not easy to grasp.

Average effect is related to genotypic values a and d

$$
\begin{aligned}
& q[a+d(q-p)]=\alpha_{1} \\
& -p[a+d(q-p)]=\alpha_{2}
\end{aligned}
$$

Average effect of gene substitution is $\alpha_{1}-\alpha_{2}=\alpha$. This is the difference between the average effect of the 2 alleles: $\alpha=a+d(q-p)$
2. Calculate the average effect of the alleles (page 113)

Minor allele: C, frequency: $p=0.39$
Major Allele: A, frequency: $q=0.61$
$a=1.23, d=-0.05$

Average effect $C=q[a+d(q-p)]=0.61[1.23-0.05(0.61-0.39)]=0.74$

Average effect $A=-p[a+d(q-p)]=-0.39[1.23-0.05(0.61-0.39)]=\mathbf{- 0 . 4 8}$

