Practical: Effect of the IL6R gene on IL-6R concentration

Family based association & follow up analyses

Behav Genet (2014) 44:368–382 DOI 10.1007/s10519-014-9656-8

ORIGINAL RESEARCH

The Contribution of the Functional *IL6R* Polymorphism rs2228145, eQTLs and Other Genome-Wide SNPs to the Heritability of Plasma sIL-6R Levels

Jenny van Dongen · Rick Jansen · Dirk Smit · Jouke-Jan Hottenga · Hamdi Mbarek · Gonneke Willemsen · Cornelis Kluft · AAGC Collaborators · Brenda W. J. Penninx · Manuel A. Ferreira · Dorret I. Boomsma · Eco J. C. de Geus

O IL-6 We measured soluble IL-6R concentration in blood in ~5000 individuals (from the gp130 Netherlands Twin Register) IL-6R ADAM17 600sIL-6R concentration in blood is a *Mean=4.17* quantitative trait Variance=1.35 500 400-Frequency 300-200-100 Estimated in Mx 100000 20000 40000 60000 80000 ò IL-6R concentration (pg/mL)

а

Genetics \rightarrow IL-6R concentration \rightarrow common disease

• IL-6R protein is encoded by the *IL6R* gene (chromosome 1)

- *IL6R* gene important for **several common diseases**
 - Asthma¹
 - Coronary heart disease²
 - Type 1 diabetes³

¹Ferreira M.A. *et al* Lancet 2011 ²*IL6R* consortium Lancet 2012 ³Ferreira R.C. *et al* PLoS Genetics 2013

Genetics → IL-6R concentration

- Functional studies: SNP affects sIL-6R production (non-synonymous missense)
 - Rs2228145: Large effect on sIL-6R level (allele C increases sIL-6R concentration)
 - How much of all variance does this SNP explain?
 - How much of the variance is explained by other variants?

Methods

- We measured IL-6R concentration in ~5000 twins & parents & siblings
- We estimated Heritability: Variance of sIL-6R level explained by total genetic effects (Mx)
- We measured genome-wide SNP genotypes of the same subjects:
 - How much variance is explained by all SNPs in the genome (Genomewide-complex trait analysis, GCTA)?
 - How much variance is explained by all genetic variation in the *IL6R* gene (linkage analysis)?
 - How much variance is explained by the SNP rs2228145?
 - GWAS & eQTL analysis to identify novel variants associated with IL6R protein and gene expression levels

Heritability of sIL-6R level (twin-family data)

Variance explained by chromosome-wide SNPs (GCTA)

SNPs in the *IL6R* gene on Chromosome 1 (+/- 10MB): 54.7 % (SE=2.5%)

Combined linkage and association analysis (qtdt)

Chi-squared from linkage test

Chi-squared from linkage test – while modeling association for individual SNPs

IL6R region:

- 1. Variance explained by linkage (V_A/V_{total}) : 69 %
- 2. Variance explained by linkage after correction for rs2228145: ..%

Practical

/faculty/jenny/2019/tuesday

mkdir practical_family cp -r /faculty/jenny/2019/tuesday/* practical_family cd practical_family

Plink –association analysis in unrelated individuals

• Data

plink_covar_unrel.txt rs2228145_plink_unrel.map rs2228145_plink_unrel.ped

- Covariates (plink_covar.txt)
 zage = z-score of age
 PC1_NL PC2_NL PC3_NL = Dutch ancestry PCs
 PC3_chip_effect PC5_chip_effect PC1_buccal = PCs to correct for chip and DNA source (buccal/blood)
 - Run association test (1 SNP) sIL6R, correcting for 7 covariates
 - We use plink version 1.9

plink --file rs2228145_plink_unrel --covar plink_covar_unrel.txt --linear --assoc --qtmeans --freq

Output plink

• plink.qassoc.means (--qt-means)

1 KADANA INI 530 430 3.04

1 KATANG 19 1.06 ANDI ANDI

plink.freq (--freq)

GR SIPALAZ INFIGROBS 1 rszedins (A Alstin 2050

• plink.assoc.linear (--linear --assoc)

				_					
(R	SIP	BP	A1	TET	WESS	BETA	STAT	P
	1 n	\$2228145	154426970	(ADD	1810	1,216	43.36	7.653e-202
	1 n	\$2228145	154426970	((0/1	1810	0.1599	8,073	1.24e-15
	1 n	\$2228145	154426970	((0/2	1810	-2,259	-1.001	0,3169
	1 n	\$2228145	154426970	((0/3	1810	·2.66	-0.9678	0.3333
	1 n	\$2228145	154426970	((0)4	1810	-0,4144	-0,1404	0,8884
	1 n	\$2228145	154426970	((0/5	1810	-4,2%	-2,591	0.009635
	1 n	\$2228145	154426970	((0)5	1810	-0.83435	-0.01824	0,9854
	1 n	\$2228145	154426970	((0)7	1810	10.85	0.8485	0,3963
Т									

Gee – association analysis in family data (related individuals)

- We will use the R-package gee to test the association between our SNP and sIL-6R, in data from family members
- Open the R-script association_rs2228145_gee.r (click on it, it will open in R-studio)
- Run the script line by line

Gee – association analysis in family data (related individuals)

```
    Data
    plink_covar.txt
    rs2228145_plink.map
    rs2228145_plink.ped
```

• Covariates (plink_covar.txt)

zage

PC1_NL PC2_NL PC3_NL

PC3_chip_effect PC5_chip_effect PC1_buccal source (buccal/blood)

- = z-score of age
- = Dutch ancestry PCs
- = PCs to correct for chip and DNA

• R gee command

gee(sIL6R~genonum + zage + PC1_NL + PC2_NL + PC3_NL + PC3_chip_effect + PC5_chip_effect + PC1_buccal,data=data, id=FAMID, family=gaussian, corstr="exchangeable", maxiter=100, na.action=na.omit)

R output

> results				
	Estimate	RobustS.E.	Robustz	Pral
(Intercept)	3.20039476	0.03101160	103,19993373	0,000000e+00
genonun	1,22709542	0.02568134	47,78159138	0.00000e+00
zage	0.17856674	0.01682857	10,61092906	2,650998e-26
PC1_NL	-2.22687489	1,91838437	-1,16080746	2.457202e-01
PC2 NL	-3,45332650	2.57648882	-1,34032272	1,80140 4e -01
PC3 NL	0.03283707	2.74004517	0,01198414	9.904383e-01
PC3 chip effect	-3,62243989	1,49974450	-2,41537134	1.571917e-02
PCS chip effect	-1,04564505	1,69688607	-0,61621406	5.377533e-01
PC1 buccal	11,61605341	9,75924743	1,19026119	2.339438e-01

Number of C alleles (0=AA, 1=AC, 2=CC)

Note

- Allele-frequency estimation based on data from related individuals
- Sib-pair (David Duffy)
- https://genepi.qimr.edu.au/staff/davidD/#sib-pair

Biometrical model

Rs2228145: Large effect on sIL-6R level (allele C increases sIL-6R concentration)

sIL-6R concentration

SNP rs2228145 genotype

Exercise: *Effect of the IL6R gene on IL-6R concentration*

INFORMATION

- The SNP (single nucleotide polymorphism) has 2 alleles:
 - Minor allele: C, frequency: p=0.39
 - Major Allele: A, frequency: q =0.61
- Mean IL-6R concentration of each genotype:
 - CC: 5.698 (10⁻⁸ g/mL)
 - CA: 4.418 (10⁻⁸ g/mL)
 - AA: 3.238 (10⁻⁸ g/mL)
- Total Variance of IL-6R concentration=1.35

QUESTIONS (Falconer & MacKay; 1996: Introduction to quantitative genetics)

- 1. Calculate genotypic values (a and d) (page 109)
- 2.Calculate the genotype frequencies (page 7)
- 3.Calculate the mean IL6-R concentration in the population (page 110)
- 4. Calculate how much of the variance is explained by this SNP

(Variance= Sum of squared deviations from the mean)

Extra: Calculate the average effect of the alleles (page 113)

Model: gene with 2 alleles A and a and 3 genotypes AA, Aa and aa

The difference on a quantitative scale between AA and aa is 2*a*. The middle (m) is zero and the value of Aa is 0 (no dominance).

Model: gene with 2 alleles A and a and 3 genotypes AA, Aa and aa

The deviation from m (middle) of the heterozygote Aa is d: partial dominance.

Genotype (i)	AA	Aa	aa
Frequency (f)	p ²	2pq	q ²
Genotypic effect (x)	a	d	-a

Mean?

Genotype (i)	AA	Aa	aa
Frequency (f)	p ²	2pq	q ²
Genotypic effect (x)	a	d	-a
f * x	$p^2 a$	2pqd	- q ² a

$$(recall p+q = 1)$$

$$a(p^2 - q^2) + 2pqd =$$

 $a(p-q)(p+q) + 2pqd =$

moon: $n^2 \rightarrow \pm 2nad$ $a^2 \rightarrow \pm 2nad$

Mean = a(p-q) + 2pqd

a(p-q) : attributable to homozygotes

2pqd : attributable to heterozygotes

Genotype (i)	AA	Aa	aa
Frequency (f)	p ²	2pq	q ²
Genotypic effect (x)	а	d	-a
f * x	$p^2 a$	2pqd	- q ² a

mean: $p^2 a + 2pqd - q^2 a = a(p-q) + 2pqd$ Variation: $2pq[a+d(q-p)]^2 + (2pqd)^2$

Population variation depends on 'a' (difference between homozygote individuals), 'd' (deviation of heterozygote persons from zero) and on allele frequency (p & q). Mean IL-6R concentration of each genotype: CC: 5.698 / CA: 4.418 / AA: 3.238 (10⁻⁸ g/mL) Total Variance of IL-6R concentration=1.35 Frequencies: C, frequency: p=0.39 / A, frequency: q =0.61

QUESTIONS (Falconer & MacKay; 1996: Introduction to quantitative genetics)

1.Calculate genotypic values (a and d) (page 109)
2.Calculate the genotype frequencies (page 7)
3.Calculate the mean IL6-R concentration in the population (page 110)
4.Calculate how much of the variance is explained by this SNP
(Variance= Sum of squared deviations from the mean)

extra: Calculate the average effect of the alleles (page 113)