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Aims of genetic studies

 To identify genetic variants that influence traits

 To estimate the effect sizes of genetic variants on traits

 To use these genetic variants for trait prediction

 To characterize remaining sources of variation which lead 

to correlation between individuals

 To combine genetic and phenotypic (individual or family) 

information for prediction

 These aims feed into broader objectives such as new 

biological insights and improved human health



Empirical data

 Empirical data is needed to achieve these aims

 Candidate gene association studies

 Genome-wide association studies

 Whole-genome sequencing studies

 How much data is needed? 

 No single answer, depends on

 Specific aim: detection, estimation or prediction

 Complexity of trait (heterogeneity / polygenicity)

 Study design: family unit, genotyping, phenotyping, 

sampling



Detecting an effect

 Classical hypothesis testing

 Decides whether to reject the null hypothesis

 Decision based on value of test statistic in relation 

to its sampling distribution under the null

 The p-value is the probability of test statistic more 

extreme than its observed value

 Null hypothesis is rejected when the p-value is 

smaller than a desired cut-off (e.g. 0.05) 

 This cut-off p-value is the type 1 error rate of the 

test (probability of rejecting the null when it is true)

Fisher



Non-replicable findings

 Hypothesis testing was introduced to exert stringent control on 

type 1 errors (i.e. false positive findings).

 Despite this, non-replicable findings have been a major 

problem in many fields, including genetics

 Possible reasons:

 Non-random errors (especially errors correlated with trait)

 Uncontrolled confounding (e.g. population stratification)

 Model misspecification (e.g. allele frequencies in linkage)

 Ignoring dependencies in data (e.g. related individuals)

 Testing many hypotheses

 Selective reporting of positive results



Genome-wide studies

 Genome-wide studies allow 

check for inflated type 1 

errors by QQ plots

 Multiple testing is explicit so 

that appropriate p-value 

threshold can be set

 p-value threshold of 5x10-8

was designed to control type 

1 error rate to 1 per 20 

genome scans in European 

populations

https://www.biostars.org/p/178536/



Statistical power

 Classical hypothesis testing requires only the 

null hypothesis to be clearly defined.

 A clearly defined alternative hypothesis was 

introduced later, to calculate the probability of 

a type 2 error (not rejecting the null hypothesis 

when the alternative hypothesis is true).

 Statistical power is the probability of rejecting 

the null under an assumed alternative 

hypothesis ( 1 – type 2 error probability)

Neyman

Pearson



Simple power calculation

 Genetic Power Calculator (GPC)

http://zzz.bwh.harvard.edu/gpc/

 Calculates statistical power for association 

analysis of discrete traits (case-control and 

case-parents) and continuous traits 

(singleton and sibships)

 Interactive input of sample size and 

assumed parameter values under 

alternative hypothesis (e.g. effect size, 

allele frequencies, linkage disequilibrium)  

Shaun Purcell

http://zzz.bwh.harvard.edu/gpc/








Exercise

 Use GPC to calculate the statistical power of overall association test 

under the same assumptions, but on a sample of 10,000 unrelated 

singletons. 

 Why does the power change, when the number of subjects is the 

same?

 Returning to 5000 sib pairs, investigate the power (or non-centrality 

parameter) for overall association test when the sib correlation is 

0.005, 0.25, 0.50, 0.75

 How do you explain the impact of increasing sib correlation on power?

Non-centrality parameter is the difference in mean between the null 

and alternative distributions of the test statistic. It determines power for 

any p-value significance level, and is linearly related to sample size.





Results

 Having family data does not necessarily decrease statistical power

 The sibship association test is partitioned into between-sibships 

and within-sibships components (Fulker et al, 1999, 64, 259-267)

 High sib correlation decreases within-sibship variation, and this 

increases the power of the within-sibships component (Sham et al, 

1999, AJHG, 66, 1616-1630)

Sibling correlation Non-centrality parameter

0.005 35.99

0.25 33.05

0.50 36.06

0.75 51.58



How to increase power

 Increase sample size

 Improve accuracy of trait measurement

 Repeated measures (average out fluctuations)

 Reduce residual variation (e.g. age, sex)

 Joint analysis of multiple correlated phenotypes

 Select subjects at either extremes of trait values

 Increase SNP density (greater LD, improved imputation)

 Consider each p-value in relation to overall distribution of 

p-values - False Discovery Rate (FDR) 

 Stratify SNPs into functional classes and perform 

separate FDR on each class



FDR - intuition

 Suppose that a study has performed 100 tests, and 20 of 

these are significant at p<0.05. How many of these 20 

significant results would you guess constitute true 

discoveries?

 By chance, one would expect 5 out of 100 tests to be 

significant at p<0.05. Therefore one might guess that 

15/20 of the significant results to be true discoveries (or 

in other words, 5/20 to be false discoveries).



Benjamini-Hochberg

Benjamini & Hochberg (1995) FDR Procedure:

1. Set FDR (e.g. to 0.05)

2. Rank the tests in ascending order of p-value, giving 
p1  p2  …  pr  …  pm

3. Then find the test with the highest rank, r, for which 
the p-value, pr, is less than or equal to (r/m)  FDR

4. Declare the tests of rank 1, 2, …, r as significant

5. Define qm = pm, then calculate qr = Min (prm/r, qr+1) 
for r = m-1 to 1.



B & H FDR procedure

Rank P-value (Rank/m)×FDR Reject H0 ? Q-value

1 .001 .005 1 .01

2 .010 .010 1 .05

3 .165 .015 0 0.51

4 .205 .020 0 0.51

5 .396 .025 0 0.75

6 .450 .030 0 0.75

7 .641 .035 0 0.916

8 .781 .040 0 0.953

9 .901 .045 0 0.953

10 .953 .050 0 0.953

FDR=0.05



Power under polygenicity

 Many SNPs contribute to complex traits

 A GWAS has multiple chances of detecting true associations

 Suppose a trait has 1,000 independent causal SNPs, and a study has 

only 1% power to detect each of these SNPs.

 The number of significant causal SNPs follows a binomial distribution 

with n=1,000 and p=0.01

• Study likely to detect 3 to 23 

causal SNPs.

• These SNPs are no different from 

the other causal SNPs.  

• Power of independent replication 

of each SNP is only 1%, with same 

sample size and p-value threshold



Estimation accuracy



Prediction accuracy



Dudbridge (2013) PLOS Genetics



Introducing null SNPs

 More realistically only a proportion of SNPs are causal and have 

a normal distribution of effect sizes

Distribution of estimates: 

mixture of normals with 

sampling, null SNPs 

having variance only, 

causal SNPs having both 

sampling variance plus 

effect size variance

Distribution of true 

effect sizes: mixture of  

0 (null SNPs), and 

normal (causal SNPs)



P-value thresholding

Euesden, Lewis and O’Reilly (2014) PRSice: polygenic risk score software 

Called “subset selection” by 

Tibshirani (1996)



Local true discovery rate 

(TDR)

Vilhjalmsson et al. (2015) Modeling linkage disequilibrium increases accuracy of polygenic risk scores

Mak et al. (2016) Local true discovery rate weighted polygenic scores using GWAS summary statistics

QQ Plot

L-TDR



Comparison of methods

 In the presence of null SNPs, both p-value 

thresholding and local TDR weighting have better 

prediction accuracy than simple OLS weighting

 p-value thresholding and local TDR weighting 

have similar predictive accuracy

 Local TDR has slight advantage in not needing to 

optimize p-value threshold, which requires fine-

tuning in a sample independent from the original 

GWAS

Tian Wu


