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What is biometrical genetics?

• How do genes contribute to the biometrical (statistical) 
properties of continuous (quantitative) traits in the populations

• For single trait, biometrical properties include

• Means and Variances in individuals

• Covariances between relatives

• For multiple traits, biometrical properties also include

• Covariances between different traits in the same individual

• Covariances between different traits in different (related) 
individuals



History of biometrical genetics
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Statistical modelling in biometrical genetics



Genes are discrete entities

• Mendelian disorders are caused by 
mutations in a single gene 

• Mendelian disorders are also discrete 
entities 

• How can discrete entities produce 
continuous variation?

https://gameofthrones.fandom.com/wiki/Dwarfism



Origin of continuous variation
• Continuous (quantitative) variation can be explained by polygenic inheritance

• The sum of independent and approximately equal influences will approach a 
continuous, normal distribution, as the number of influences increases (central 
limit theorem)
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https://www.youtube.com/watch?v=kDkmSI39sWQ


Major loci and polygenes

• Quantitative traits can be influenced by genetic 
mutations with very large effects (major loci) in 
addition to multiple genetic variants with small 
effects (polygenes)

• Adult males with achondroplasia have mean height 
of 52 inches, compared to the population adult 
male mean of 69 inches. This difference of 17 
inches is almost 6 standard deviations of adult 
male height in the general population. 

• Thus even the tallest adults with achondroplasia
are seldom taller than the shortest adults without 
achondroplasia. 

Height for females with achondroplasia (mean/standard 
deviation [SD]) compared to normal standard curves. The 
graph is based on information from 214 females. Adapted 
from Horton WA, Rotter JI, Rimoin DL, et al. Standard growth 
curves for achondroplasia. J Pediatr. 1978 Sep; 93(3): 435-8.



Genetic polymorphisms, alleles, genotypes

• A genetic polymorphism is a variable site in the genome (e.g. single 
nucleotide polymorphism, SNP)

• The alternative sequences at a locus are called alleles, often 
denoted as capital and small letters (e.g. A, a)

• The alleles present at the polymorphic site (locus) of an individual is 
called his or her genotype (e.g. AA, aa, Aa)



Analysis of variance

• Fisher developed Analysis of Variance (ANOVA) for “factorial designs”, 
where the factors have discrete levels (e.g. binary).

• The overall variance of a trait is decomposed into components due to 
the main effects of the factors, two-way interactions, 3-way 
interactions, etc.,  in a hierarchical fashion
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Biometrical model for single locus

• Consider the effects of a single locus on a quantitative trait

• All other influences are considered as “error” or “residual”, which are assumed to be uncorrelated 
and have no interaction with the locus being considered

• In Fisher’s convention, effects are measured from the “midpoint” of two homozygous genotypes

Genotype 
means

AA

Aa

aa

c + a 

c + d

c – a 

Model: Y = c + X + R

X:

0

d +a-a

aa Aa AA

R:            Residual influences

Note: we do not distinguish paternal from maternal transmitted 
alleles, implicitly assuming that their effects are the same 



Population genotype frequencies

• We also need to specify the frequencies of the 3 genotypes in the population

• In a large population under random mating, the frequencies of genotypes AA, Aa and aa follow 
the binomial proportions s p2:2pq:q2, where p and q (=1-p) are the frequencies of alleles A and a

• Genotypes in such proportions are said to be in Hardy-Weinberg equilibrium; deviation from such 
proportions is called Hardy-Weinberg Disequilibrium (HWD)



Derivation of Hardy-Weinberg proportions

Genotype Frequency

AA P

Aa Q

aa R

Allele Frequency

A P+Q/2

a R+Q/2

Parental frequencies – not necessarily in Hardy-Weinberg proportions



Random mating

AA Aa aa

AA P2 PQ PR

Aa PQ Q2 QR

aa PR QR R2

Under random mating, the mating type frequencies are



Mendelian segregation

• Mendel’s law of segregation: when a parent has 
heterozygous genotype Aa, there is equal 
probability for the two alleles (A and a) to be 
transmitted to an offspring)

Aa

A a

1/2 1/2



Segregation ratios

AA Aa aa

AA AA AA:Aa

0.5:0.5

Aa

Aa AA:Aa

0.5:0.5

AA:Aa:aa

0.25:0.5:0.25

Aa:aa

0.5:0.5

aa Aa Aa:aa

0.5:0.5

aa

According to Mendel’s law of segregation, the offspring 
genotype frequencies for the mating types are:



Offspring genotype frequencies

Genotype Frequency

AA P2+PQ+Q2/4 = (P+Q/2)2

Aa 2PR+PQ+QR+Q2/2 = 2(P+Q/2)(R+Q/2)

aa R2+QR+Q2/4 = (R+Q/2)2

Averaging over the mating types, the offspring genotype frequencies are



Offspring allele frequencies

Allele Frequency

A (P+Q/2)2 + (P+Q/2)(R+Q/2) = P+Q/2

a (R+Q/2)2 + (P+Q/2)(R+Q/2) = R+Q/2

Averaging over the genotypes, the offspring allele frequencies are



Hardy-Weinberg equilibrium

A a

A p2 pq p

a pq q2 q

p q

The genotype can be thought of as consisting of 2 independent 
factors, one from each parent (as in a 2-way factorial design)



Biometrical model: mean

Genotype AA Aa aa

Frequency p2 2pq q2

Effect a d -a

Mean m = p2(a) + 2pq(d) + q2(-a)

= (p-q)a + 2pqd

The mean effect of genotype under Hardy-Weinberg Equilibrium is thus

 
i

ii xfxXE )(



Biometrical model: variance

Genotype AA Aa aa

Frequency p2 2pq q2

(X-m)2 (a-m)2 (d-m)2 (-a-m)2

Variance = (a-m)2p2 + (d-m)22pq + (-a-m)2q2 

=  2pq[a+(q-p)d]2 + (2pqd)2

The variance of the genotypic effect is therefore

(intermediate steps not shown)
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Average allele effect, additive variance

• The first variance component is due the additive effects of the two alleles of the genotype:

• The presence of dominance (i.e. when d≠0) means that the effect of an allele depends on the 
other allele in the genotype:

• When the other allele is A, the effect of allele A is a-d (i.e. effect of AA – effect of Aa)

• When the other allele is a, the effect of allele A is a+d (i.e. effect of Aa – effect of aa) 

• Therefore the average effect of allele A = p(a-d)+q(a+d) = a+(q-p)d

• If genotype is coded additively as G= number allele A in the genotype (i.e. G = 0, 1 or 2), then the 
regression coefficient is the trait on G is a + (q-p)d

• Thus the additive genetic variance is (a+(q-p)d)2 Var(G) = 2pq(a+(q-p)d)2

• The second component of the variance, (2pqd)2, is therefore attributed to the dominance 
deviation (2nd order interaction between the 2 alleles at the genotype at the same locus) 



Variance components and heterozygosity

• 2pq is the expected heterozygosity of a biallelic locus 
under Hardy-Weinberg equilibrium

• When p=q=1/2, the expected heterozygosity takes its 
highest value of 1/2. As allele frequency approaches 0 
or 1, heterozygosity approaches 0

• Additive genetic variance is proportional to the 
expected heterozygosity

• Dominance genetic variance is proportional to the 
square of the expected heterozygosity

• Dominance genetic variance declines much more rapidly 
than additive genetic variance, as allele frequency 
approaches 0 or 1. (Why is this intuitively obvious?)



Covariance between pairs of relatives

AA Aa aa

AA (a-m)2

Aa (a-m)(d-m) (d-m)2

aa (a-m)(-a-m) (-a-m)(d-m) (-a-m)2

The covariance between relatives of a certain class is the 

weighted average of these cross-products, where each 

cross-product is weighted by its frequency in that class.
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The matrix is symmetrical, therefore upper 
triangular elements are not shown,



Genetic identity-by-descent (IBD)

AB CD

AC AD

• DNA segments (e.g. genes) are identical-by-descent if 
they are descended from, and therefore replicates of, a 
single ancestral DNA segment.

• The IBD genetic segments should have identical genetic 
sequence (unless new mutation has occurred)

• At any autosomal location, two individuals can share 0, 1 

or 2 alleles

• There are 3 genetic relationships where the IBD sharing 
is the same throughput the genome (What are these?)

For two-locus genotype frequencies of two relatives, the concept of 
genetic identity by descent is helpful



IBD for MZ twins

AB CD

AC

MZ twins share 2 alleles IBD for all loci

AC



IBD for parent-offspring (PO)

AB CD

AC

When the parents are unrelated to each other, PO pairs share 1 allele IBD at all loci



IBD for unrelated individuals

• Two unrelated individuals share 0 alleles IBD at all loci



Covariance of MZ twins

AA Aa aa

AA p2

Aa 0 2pq

aa 0 0 q2

Covariance = (a-m)2p2 + (d-m)22pq + (-a-m)2q2

= 2pq[a+(q-p)d]2 + (2pqd)2

= VA + VD
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Covariance for parent-offspring (P-O)

AA Aa aa

AA p3

Aa p2q pq

aa 0 pq2 q3

Covariance = (a-m)2p3 + (d-m)2pq + (-a-m)2q3

+ (a-m)(d-m)2p2q + (-a-m)(d-m)2pq2

= pq[a+(q-p)d]2

= VA / 2



Covariance for unrelated pairs (U)

AA Aa aa

AA p4

Aa 2p3q 4p2q2

aa p2q2 2pq3 q4

Covariance = (a-m)2p4 + (d-m)24p2q2 + (-a-m)2q4

+ (a-m)(d-m)4p3q + (-a-m)(d-m)4pq3

+ (a-m)(-a-m)2p2q2          

= 0



IBD: half sibs

AB CD

AC

EE

CE/DE

IBD Sharing Probability

0 ½

1 ½

Average IBD sharing = 0(1/2) + 1(1/2) = 1/2

In terms of IBD sharing, half siblings are similar to 

Parent-offspring for ½ of the genome

Unrelated individuals for ½ of the genome



Covariance: half sibs

Genotype frequencies are weighted averages:

½ Parent-offspring (when IBD=1)

½ Unrelated (when IBD=0)

Covariance  = ½(VA/2)  + ½(0)

=  ½VA 



IBD: full sibs

IBD Sharing Probability

0 1/4

1 1/2

2 1/4

Average IBD sharing = 0(1/4) + 1(1/2) + 2(1/4) = 1

In terms of IBD sharing, full siblings are similar to 

MZ twins for ¼ of the genome

Parent-offspring for ½ of the genome

Unrelated individuals for ¼ of the genome

IBD paternal alleles

IBD maternal alleles

0 1

0 0 1

1 1 2



Covariance: full sibs

Genotype frequencies are weighted averages:

¼ MZ twins (when IBD=2)

½ Parent-offspring (when IBD=1)

¼ Unrelated (when IBD=0)

Covariance  = ¼(VA+VD) + ½(VA/2)  + ¼ (0)

=  ½VA + ¼VD



Generalization: proportion of alleles IBD ()

Relationship E() Var() Prob(=1)

MZ 1 0 1

Parent-Offspring 0.5 0 0

Unrelated 0 0 0

Half sibs 0.25 0.0625 0

Full sibs 0.5 0.125 0.25

• IBD can be expressed as a proportion 𝜋 (= number IBD / 2), thus 𝜋 = 0, 1/2 or 1

• The probability distribution 𝜋 is Prob(𝜋=0), Prob(𝜋=1/2), Prob(𝜋=1)

• E(𝜋) = Prob(𝜋=1) +(1/2) Prob(𝜋=1/2)

• Var(𝜋) = Prob(𝜋=1) +(1/4) Prob(𝜋=1/2) – (E(𝜋))2



Covariance: general relative pair

The covariance is a weighted average of the covariances for MZ twins, parent-
offspring and unrelated individuals

Covariance = Prob(𝜋=1)(VA+VD) + Prob(𝜋=1/2)(VA/2) + Prob(𝜋=0)(0)

=  (Prob(𝜋=1)+Prob(𝜋=1/2)/2)VA + Prob(𝜋=1)VD

= E()VA + Prob(𝜋=1)VD



Kinship coefficient
• The kinship coefficient (K) between two individuals is defined as the 

probability that two alleles, one from each individual, drawn at random at an 
autosomal locus, will be identical-by-descent (IBD)

• Let the paternal and maternal alleles of individuals 1 and 2 be denoted G1P, 
G1M, G2P, G2M. The genotypes of the 2 individuals, additively coded (0,1,2), 
would be G1=G1P,+G1M and G2=G2P,+G2M

• The covariance between the two genotypes is 

Cov(G1, G2) = Cov(G1P,G2P)+Cov(G1P,G2M)+Cov(G1M, G2P)+Cov(G1M,G2M)

• In the absence of inbreeding, Var(G1) = Var(G2) = 2pq, and each covariance 
term is either pq when the alleles are IBD or 0 when they are not. Also, each 
allele of one person can be IBD with at most 1 allele of the other person. In 
this scenario E(𝜋) is equivalent to 2K and represents the correlation between 
G1 and G2

• K is of wider applicability than E(𝜋) when there is inbreeding



“Attenuation” of kinship

• If two individuals (A and B) have kinship coefficient K, what is the kinship coefficient between A 
and the offspring of B, assuming that the other parent of this offspring is unrelated to A?

• At any genomic location, the offspring of B will have inherited 1 of the 2 DNA segments of B.

• When a DNA segment is drawn at random from the offspring of B, there is a probability ½ that this 
is inherited from B, and probability ½ that this is inherited from the other parent. 

• If the segment is inherited from B, then there is probability K that it is IBD with a segment drawn 
from the corresponding genomic location from A. 

• If the segment is inherited from the other parent, then the probability is 0 because the other 
parent is unrelated to A.

• Therefore the kinship coefficient between A and the offspring of B is ½K.

• Applying this result recursively, we can show that the Kinship coefficient between two individuals 
sharing one common ancestor is equal to (½)g+1, where g is the number of meioses separating the 
2 individuals



Inbreeding coefficient

• The inbreeding coefficient of an individual , I, is the probability that the 2 alleles at any locus are 
IBD. It is equal to the kinship coefficient of his or her parents, since in meiosis an allele is 
randomly drawn from the genotype of a parent.

• Inbreeding inflates the variance of a additively coded genotype:

Var(G) = Var(GP)+Var(GM)+2Cov(GP,GM)

• Inbreeding also inflates the covariance between the additively coded genotypes of 2 individuals, 
since now it is possible for an allele in one person to be IBD with both alleles of the other person.  



Two-locus biometrical genetic model

• Generalize biometrical model to 2 loci

• This is necessary only when there is either correlation or interaction between the 2 loci; 
otherwise the loci can be considered separately

• Two-locus Interactions include

• second-order inter-loci interactions involving 1 allele each locus, additive-additive (AA)

• third-order interactions involving both alleles from one locus and 1 allele from the other, 
additive-dominance (AD)

• fourth-order interactions involving both alleles from both loci, dominance-dominance (DD)

• For 2 loci, there are 3x3=9 genotypic groups (assuming no parent-of-origin effect). In principle, if 
we can write down the trait means and population frequencies of these 9 genotypic groups, then 
we can proceed with variance partitioning using a hierarchical ANOVA, when the two loci are not 
correlated. This is straightforward by computer program but tedious by hand - see Sham (1997) 
Statistics in Human Genetics, Chapter 5.



Covariance of epistatic components

• The AA interaction between 2 alleles are shared by 2 individuals when the 2 alleles are both IBD, 
and not shared when at least one of them is not IBD. When the 2 loci are independent, the 
probability of sharing is the product of proportion of IBD sharing of the 2 loci, 𝜋1𝜋2. For a 
particular class of relative pairs, the expected covariance is E(𝜋1𝜋2)=[E(𝜋)]2

• Similarly, the expected covariance of the AD interactions for a class of relative pairs is 
E(𝜋)Prob(𝜋=1)

• Finally, the expected covariance of the DD interactions for a class of relative pairs is [Prob(𝜋=1)]2



Covariance: general relative pair

Including 2 loci interactions, the covariance for 2 relatives of a given class is:

Covariance = E()VA + P(𝜋=1)VD + [E()]2VAA + E()P(𝜋=1)VAD + [P(𝜋=1)]2VDD

This can be further extended to epistasis involving more than 2 loci



Genetic linkage - two-locus transmission
• The correlation between 2 loci depends on “linkage”

• Given a heterozygous genotype Aa, the 2 possible haplotypes (A 
and a) are equally likely to be transmitted to an offspring 
(Mendel’s first law)

• How about an individual heterozygous for two loci, AaBb, what 
are the probabilities of transmitted each of the 4 haplotypes AB, 
Ab, aB, ab?

• If segregation at the 2 loci are independent, then transmission 
probability of each haplotype is ½ x ½ = ¼.

• This is true when the loci are on different chromosomes 
(Mendel’s second law), but not when they are on the same 
chromosome.

• Which two types will be more likely to be transmitted?

AaBb

AB abAb aB

Parent

Gametes



Haplotypes and recombination

A1

A2

Q1

Q2

A1

A2

Q1

Q2

A1

A2 Q1

Q2

Likely gametes

(Non-recombinants)

Unlikely gametes

(Recombinants)
Parental haplotypes

• Haplotype = set of alleles inherited from the same parent
• Alleles that were inherited together from the previous generation are more likely to be 

transmitted together to the next generation, if the loci are on the same chromosome
• Alleles which have different parental origins but are transmitted together in the same gamete 

are called “recombinant”
• The proportion of gametes of 2 loci that are recombinant is called the recombination fraction
• Two loci are “linked” if their recombination fraction is less than 1/2



Crossovers during meiosis

• A chromosome inherited 
from a parent is usually not 
transmitted intact to a 
offspring

• Instead, crossovers between 
chromatids occur during 
meiosis, resulting in each 
transmitted chromosome 
being a hybrid of alternating 
segments of the paternal 
and maternal chromosomes



Fully Informative Gametes

AaBb aabb

AABB aabb

AaBb aabb Aabb aaBb

Non-recombinant Recombinant

• Recombinants and non-recombinants can 
be inferred in double backcross data.

• The offspring of the double backcross 
constitute fully informative gametes



Population haplotype frequencies

B b

A pr ps p

a qr qs q

r s

• If there is no association between alleles 
of the two loci, then the frequency of 
each haplotype is equal to the product of 
the frequencies of its constituent alleles 

• Two loci with such haplotype frequencies 
are said to be in linkage equilibrium 



Linkage Disequilibrium (LD)

B b

A pr+D ps-D p

a qr-D qs+D q

r s

• Deviation of haplotype frequencies from the 
product of constituent allele frequencies is 
called linkage disequilibrium

• The deviation D is a measure of linkage 
disequilibrium

• The normalized D’ measure = D/Dmax. When 
D>0, it cannot exceed the smallest value which 
causes either ps-D<0 or qr-D<0.  Similar 
consideration applies when D<0.D’=1 implies 
that 1 of the 4 haplotypes is absent.

• The r2 measure is D2/pqrs and represents the 
squared correlation between the two 
haplotypes coded numerically. An r2 of 1 implies 
that 2 of the 4 haplotypes are absent, and that 
the 2 loci have equal allele frequencies. 



Decay of LD through recombination

Gametes

1- 

Non-recombinant Recombinant

Pr+D 1-(pr+D) pr 1-pr

AB Others AB Others

Frequency of AB gametes = (1-)(pr+d)+pr = pr+(1-)D

• Thus, the LD measure D decays by a factor of (1-) per 
generation.

• For unlinked loci, any LD will quickly decay to near 0, 
whereas for tightly linked loci, any LD will be 
maintained for many degenerations.

• In any case, once the haplotype frequency decays to pr, 
it will tend to stay at that frequency (other than 
random fluctuations), hence “linkage equilibrium”)



Impact of LD on biometrical model

• Denote the additive genetic effects of loci 1 and 2 by G1 and G2, with additive variances V1A and 
V2A respectively.

• In the absence of LD, the variance of the total additive genetic effects G=G1+G2 is simply V1A+V2A

• However, in the presence of LD, G1 and G2 are correlated, and the variance of G becomes 
V1A+V2A+2Cov(G1,G2) =V1A+V2A+2r√(V1AV2A), where r is the correlation between the trait 
increasing alleles of the 2 loci.

• Denote the the total additive effects of person 1 and person 2 as (G11+G12) and (G21+G22), 
respectively, the covariance between these total genetic effects is 

Cov(G11,G21)+Cov(G12,G22)+Cov(G11,G22)+Cov(G12,G21) = E(𝜋)[(V1A+V2A+2r√(V1AV2A)

• Thus the correlation between the additive effects remains unchanged at E(𝜋)

• We do not attempt to address the impact of LD on dominance or epistasis.



LD allows indirect association analysis

https://www.nature.com/articles/nrg1521

• If the correlation between a trait and the un-
genotyped causal locus is 𝛽 and the 
correlation between the causal locus and a 
genotyped marker locus is r, then the overall 
correlation the trait and the genotyped 
marker locus is r𝛽

• When r is close to 1, testing the marker locus 
is almost equivalent to testing the causal locus 
– this makes indirect association feasible

• However, when r is modest this results in 
substantial reduction in the association signal, 
such that the sample size needs to be 
increased by a factor of 1/r2 to achieve the 
same statistical power as an direct association 
analysis of the causal SNP.



Quasi-continuous phenotypes

Douglas Falconer 1965: 
Inheritance of liability to 
certain diseases 
estimated from incidence 
among relatives

• Some disease traits are apparently discrete (e.g. myocardial infarction) but reflect an underlying 
continuous process, e.g. coronary artery narrowing).

• When the underlying continuous process cannot be measured, a latent variable called liability is 
introduced. When liability exceeds a certain threshold, the diseases occurs

• Liability is assumed to be normally distributed, so that biometrical models developed for continuous 
traits apply  



Neglected topics

• Environmental influences

• Gene-environment correlation and interaction

• Multivariate (i.e. multi-trait) models

• Assortative mating

• Selection

• Mutation

• Random genetic drift



Data analysis under biometrical models

• Biometrical genetic models provide a coherent understanding of the genetic contributions to the 
statistical properties of traits in the population.

• Biometrical genetic models also provide a useful framework for the statistical analysis of data



Regression analysis for association

• Regression analysis is appropriate for testing and estimating the fixed effects of one of more 
genetic loci on a trait

• Linear or logistic regression are commonly used for continuous and binary traits, respectively. 
Ordinal logistic regression and Cox regression may be appropriate for ordinal or time-to-event 
data, respectively. 

• With appropriate coding of genetic effects, main effects and interactions can be directly tested 
and estimated

• For example, coding the genotypes additively as aa, Aa and AA as 0, 1 and 2, the regression 
coefficient of trait on genotype can be directly interpreted as the allelic effect of A. 

• Similarly, coding the dominance of aa, Aa and AA as p2, -p(1-p), and (1-p)2 will directly test and 
estimate twice the dominance deviation   



Variance components model for linkage

• The contribution of the additive genetic variance of a particular locus to the covariance of a trait 
between relative pairs depends on the proportion of alleles IBD at that locus (𝜋); higher 𝜋 leads to 
higher trait covariance

• Other than MZ twins, parent-offspring pairs and unrelated individuals (but see later), there is variation 
of 𝜋 across the genome

• The allows the covariance of the an unmeasured additive effect between relative pairs to be specified 
as a function of 𝜋 at a specific locus. When 𝜋 can be estimated from genotyped SNPs at the near the 
locus, then its effect on trait covariance can be specified as a random effect in a linear mixed model. 

• Model fitting (e.g. by restricted maximum likelihood) then provide an estimate the additive genetic 
variance at the specific locus.

• This analysis is called variance components quantitative trait locus (QTL) linkage analysis, because the 
estimate would capture of effects of loci that are linked to the specific locus, as well as those of the 
specific locus itself.

• The use of sib pairs for variance components QTL linkage analysis was a popular approach in the late 
1990s. This is seldom used now because of low statistical power when effect size is small.



Variance components model for heritability 

• Instead of using the variation of 𝜋 across the genome for a given class of genetic relationship, we 
can exploit the differences of E(𝜋) for different relationships to estimate the total additive genetic 
variance of a trait (which when expressed as a proportion of the total trait variance is the narrow-
sense heritability).

• The classic twin design can be analyzed by a variance components model, where the additive 
genetic effects are specified to have an correlation of 1 for MZ twins and 0.5 for DZ twins (since 
E(𝜋)=1 for MZ twins, 0.5 for DZ twins). 

• A dominance component can be specified by specifying correlation of 1 for MZ twins and 0.25 for 
DZ twins (since Prob(𝜋=1)=1 for MZ twins and 0.25 for DZ twins). 

• Shared environmental influences for both MZ and DZ twins are specified to have correlation 1, 
whereas non-shared environment influences for both MZ and DZ twins are specified to have 
correlation 0.



Variance components models for heritability

• Random effects models can be applied to individuals not known to be related, to estimate 
heritability, since all pairs of individuals share common ancestors if their genealogies are traced 
back far enough. 

• Such remote genetic relationships between pairs of individuals, effectively E(𝜋), can be estimated 
from numerous SNPs across the genome.

• The estimated remote genetic relationships are then used to specify the covariance in additive 
genetic effects between pairs of individuals in a random effects model (first proposed in the GCTA 
method)

• This allows the heritability due to common variation in the genome to be estimated. 



More complex structural equation models 

• In principle, association, linkage and heritability analyses can all be combined in a single statistical 
model involving both fixed and random effects and their correlations and interactions, as well as 
complications such as assortative mating. 

• Such an analysis can be formulated in a structural equations model framework, allowing joint 
estimation of the multiple effects, and hypothesis testing of different components of the model.


