options(width=120, scipen=2, digits=2)
suppressPackageStartupMessages(library(OpenMx))
suppressPackageStartupMessages(library(rpf))
suppressPackageStartupMessages(library(ifaTools))
library(xtable)
options(xtable.type='html')

# Adjust the path in the next statement to load your data
data <- read.csv(na.strings=c(), file='fake.csv',stringsAsFactors=FALSE,check.names=FALSE)
colnames(data) <- mxMakeNames(colnames(data), unique=TRUE)
data[['case']] <- NULL  # excluded
data[['twin']] <- NULL  # excluded
data[['vetsaid']] <- NULL  # excluded
data[['age']] <- NULL  # excluded
data[['afqtrt']] <- NULL  # excluded
data[['afqtms']] <- NULL  # excluded
data[['afqtpct']] <- NULL  # excluded
data[['afqtpcttran']] <- NULL  # excluded
data[['zyg10']] <- NULL  # excluded
data[['afqtwg']] <- NULL  # excluded

factors <- "afqt"
numFactors <- length(factors)
spec <- list()
spec[1:100] <- list(rpf.grm(factors=numFactors,outcomes=2))
names(spec) <- c("afqt1n", "afqt2n", "afqt3n", "afqt4n", "afqt5n", "afqt6n", 
  "afqt7n", "afqt8n", "afqt9n", "afqt10n", "afqt11n", "afqt12n", 
  "afqt13n", "afqt14n", "afqt15n", "afqt16n", "afqt17n", "afqt18n", 
  "afqt19n", "afqt20n", "afqt21n", "afqt22n", "afqt23n", "afqt24n", 
  "afqt25n", "afqt26n", "afqt27n", "afqt28n", "afqt29n", "afqt30n", 
  "afqt31n", "afqt32n", "afqt33n", "afqt34n", "afqt35n", "afqt36n", 
  "afqt37n", "afqt38n", "afqt39n", "afqt40n", "afqt41n", "afqt42n", 
  "afqt43n", "afqt44n", "afqt45n", "afqt46n", "afqt47n", "afqt48n", 
  "afqt49n", "afqt50n", "afqt51n", "afqt52n", "afqt53n", "afqt54n", 
  "afqt55n", "afqt56n", "afqt57n", "afqt58n", "afqt59n", "afqt60n", 
  "afqt61n", "afqt62n", "afqt63n", "afqt64n", "afqt65n", "afqt66n", 
  "afqt67n", "afqt68n", "afqt69n", "afqt70n", "afqt71n", "afqt72n", 
  "afqt73n", "afqt74n", "afqt75n", "afqt76n", "afqt77n", "afqt78n", 
  "afqt79n", "afqt80n", "afqt81n", "afqt82n", "afqt83n", "afqt84n", 
  "afqt85n", "afqt86n", "afqt87n", "afqt88n", "afqt89n", "afqt90n", 
  "afqt91n", "afqt92n", "afqt93n", "afqt94n", "afqt95n", "afqt96n", 
  "afqt97n", "afqt98n", "afqt99n", "afqt100n")

missingColumns <- which(is.na(match(names(spec), colnames(data))))
if (length(missingColumns)) {
  stop(paste('Columns missing in the data:', omxQuotes(names(spec)[missingColumns])))
}

for (col in      c("afqt1n", "afqt2n", "afqt6n", "afqt8n", "afqt25n", "afqt49n"
     )) {
  data[[col]] <- mxFactor(data[[col]], levels=0:1)
}
for (col in      c("afqt3n", "afqt4n", "afqt5n", "afqt7n", "afqt9n", "afqt10n", 
     "afqt11n", "afqt12n", "afqt13n", "afqt14n", "afqt15n", "afqt16n", 
     "afqt17n", "afqt18n", "afqt19n", "afqt20n", "afqt21n", "afqt22n", 
     "afqt23n", "afqt24n", "afqt26n", "afqt27n", "afqt28n", "afqt29n", 
     "afqt30n", "afqt31n", "afqt32n", "afqt33n", "afqt34n", "afqt35n", 
     "afqt36n", "afqt37n", "afqt38n", "afqt39n", "afqt40n", "afqt41n", 
     "afqt42n", "afqt43n", "afqt44n", "afqt45n", "afqt46n", "afqt47n", 
     "afqt48n", "afqt50n", "afqt51n", "afqt52n", "afqt53n", "afqt54n", 
     "afqt55n", "afqt56n", "afqt57n", "afqt58n", "afqt59n", "afqt60n", 
     "afqt61n", "afqt62n", "afqt63n", "afqt64n", "afqt65n", "afqt66n", 
     "afqt67n", "afqt68n", "afqt69n", "afqt70n", "afqt71n", "afqt72n", 
     "afqt73n", "afqt74n", "afqt75n", "afqt76n", "afqt77n", "afqt78n", 
     "afqt79n", "afqt80n", "afqt81n", "afqt82n", "afqt83n", "afqt84n", 
     "afqt85n", "afqt86n", "afqt87n", "afqt88n", "afqt89n", "afqt90n", 
     "afqt91n", "afqt92n", "afqt93n", "afqt94n", "afqt95n", "afqt96n", 
     "afqt97n", "afqt98n", "afqt99n", "afqt100n")) {
  data[[col]] <- mxFactor(data[[col]], levels=c("0", "1"), exclude="NA")
}

#set.seed(1)   # uncomment to get the same starting values every time
startingValues <- mxSimplify2Array(lapply(spec, rpf.rparam))
rownames(startingValues) <- paste0('p', 1:nrow(startingValues))
rownames(startingValues)[1:numFactors] <- factors

imat <- mxMatrix(name='item', values=startingValues, free=!is.na(startingValues))

# Remove non-factor columns (if any)
data <- data[,sapply(data, is.factor)]
# Remove all-missing rows
data <- data[rowSums(!is.na(data[,names(spec)])) != 0,]

itemModel <- mxModel(model='itemModel', imat,
           mxData(observed=data, type='raw'),
           mxExpectationBA81(ItemSpec=spec),
           mxFitFunctionML())


emStep <- mxComputeEM('itemModel.expectation', 'scores',
  mxComputeNewtonRaphson(), verbose=2L,
  information='oakes1999', infoArgs=list(fitfunction='fitfunction'))
computePlan <- mxComputeSequence(list(EM=emStep,
         HQ=mxComputeHessianQuality(),
         SE=mxComputeStandardError()))
itemModel <- mxModel(itemModel, computePlan)

m1Fit <- mxRun(itemModel)
## Running itemModel with 200 parameters
m1Grp <- as.IFAgroup(m1Fit, minItemsPerScore=1L)

if(0) {
  fake <- rpf.sample(1300, grp=m1Grp)
  write.csv(file="fake.csv", fake, row.names = FALSE)
}

An item factor model was fit with 1 factors (afqt), -2LL=\(99981.66\). The condition number of the information matrix was 138.

got <- sumScoreEAPTest(m1Grp)
df <- data.frame(score=as.numeric(names(got[['observed']])),
            expected=got[['expected']], observed=got[['observed']])
df <- melt(df, id='score', variable.name='source', value.name='n')
ggplot(df, aes(x=score, y=n, color=source)) + geom_line()

basis <- rep(0, length(factors))
basis[1] <- 1
plotInformation(m1Grp, width=5, basis=basis)

summary(m1Fit, refModels=mxRefModels(itemModel, run = TRUE))
## Running Independence itemModel with 100 parameters
## Summary of itemModel 
##  
## free parameters:
##                      name matrix  row      col  Estimate Std.Error
## 1     itemModel.item[1,1]   item afqt   afqt1n  0.519306     0.165
## 2     itemModel.item[2,1]   item   p2   afqt1n  3.500406     0.175
## 3     itemModel.item[1,2]   item afqt   afqt2n  0.851001     0.190
## 4     itemModel.item[2,2]   item   p2   afqt2n  3.954312     0.230
## 5     itemModel.item[1,3]   item afqt   afqt3n  1.301895     0.316
## 6     itemModel.item[2,3]   item   p2   afqt3n  5.405965     0.473
## 7     itemModel.item[1,4]   item afqt   afqt4n  0.423217     0.115
## 8     itemModel.item[2,4]   item   p2   afqt4n  2.627637     0.116
## 9     itemModel.item[1,5]   item afqt   afqt5n  1.533642     0.199
## 10    itemModel.item[2,5]   item   p2   afqt5n  4.277461     0.282
## 11    itemModel.item[1,6]   item afqt   afqt6n  1.454759     0.252
## 12    itemModel.item[2,6]   item   p2   afqt6n  4.941308     0.379
## 13    itemModel.item[1,7]   item afqt   afqt7n  0.961298     0.138
## 14    itemModel.item[2,7]   item   p2   afqt7n  3.152675     0.162
## 15    itemModel.item[1,8]   item afqt   afqt8n  1.527558     0.157
## 16    itemModel.item[2,8]   item   p2   afqt8n  3.430762     0.197
## 17    itemModel.item[1,9]   item afqt   afqt9n  0.801311     0.160
## 18    itemModel.item[2,9]   item   p2   afqt9n  3.530204     0.187
## 19   itemModel.item[1,10]   item afqt  afqt10n  0.782948     0.143
## 20   itemModel.item[2,10]   item   p2  afqt10n  3.246794     0.164
## 21   itemModel.item[1,11]   item afqt  afqt11n  1.529634     0.239
## 22   itemModel.item[2,11]   item   p2  afqt11n  4.826001     0.359
## 23   itemModel.item[1,12]   item afqt  afqt12n  0.745030     0.095
## 24   itemModel.item[2,12]   item   p2  afqt12n  2.045126     0.098
## 25   itemModel.item[1,13]   item afqt  afqt13n  1.210869     0.117
## 26   itemModel.item[2,13]   item   p2  afqt13n  2.464664     0.127
## 27   itemModel.item[1,14]   item afqt  afqt14n  1.523256     0.154
## 28   itemModel.item[2,14]   item   p2  afqt14n  3.371762     0.192
## 29   itemModel.item[1,15]   item afqt  afqt15n  0.749700     0.100
## 30   itemModel.item[2,15]   item   p2  afqt15n  2.210445     0.104
## 31   itemModel.item[1,16]   item afqt  afqt16n  0.539293     0.102
## 32   itemModel.item[2,16]   item   p2  afqt16n  2.328559     0.104
## 33   itemModel.item[1,17]   item afqt  afqt17n  1.050151     0.167
## 34   itemModel.item[2,17]   item   p2  afqt17n  3.706741     0.210
## 35   itemModel.item[1,18]   item afqt  afqt18n  1.895393     0.336
## 36   itemModel.item[2,18]   item   p2  afqt18n  5.939548     0.575
## 37   itemModel.item[1,19]   item afqt  afqt19n  0.275385     0.172
## 38   itemModel.item[2,19]   item   p2  afqt19n  3.511748     0.169
## 39   itemModel.item[1,20]   item afqt  afqt20n  0.996381     0.209
## 40   itemModel.item[2,20]   item   p2  afqt20n  4.243695     0.269
## 41   itemModel.item[1,21]   item afqt  afqt21n  1.203860     0.129
## 42   itemModel.item[2,21]   item   p2  afqt21n  2.869236     0.149
## 43   itemModel.item[1,22]   item afqt  afqt22n  1.295165     0.127
## 44   itemModel.item[2,22]   item   p2  afqt22n  2.746438     0.145
## 45   itemModel.item[1,23]   item afqt  afqt23n  1.337227     0.124
## 46   itemModel.item[2,23]   item   p2  afqt23n  2.592688     0.137
## 47   itemModel.item[1,24]   item afqt  afqt24n  1.289744     0.118
## 48   itemModel.item[2,24]   item   p2  afqt24n  2.421514     0.127
## 49   itemModel.item[1,25]   item afqt  afqt25n  0.432004     0.256
## 50   itemModel.item[2,25]   item   p2  afqt25n  4.414619     0.267
## 51   itemModel.item[1,26]   item afqt  afqt26n  0.698465     0.121
## 52   itemModel.item[2,26]   item   p2  afqt26n  2.790414     0.131
## 53   itemModel.item[1,27]   item afqt  afqt27n  0.569492     0.110
## 54   itemModel.item[2,27]   item   p2  afqt27n  2.523196     0.114
## 55   itemModel.item[1,28]   item afqt  afqt28n  0.966989     0.108
## 56   itemModel.item[2,28]   item   p2  afqt28n  2.375701     0.117
## 57   itemModel.item[1,29]   item afqt  afqt29n  0.893294     0.097
## 58   itemModel.item[2,29]   item   p2  afqt29n  1.977114     0.099
## 59   itemModel.item[1,30]   item afqt  afqt30n  1.067445     0.103
## 60   itemModel.item[2,30]   item   p2  afqt30n  2.060613     0.106
## 61   itemModel.item[1,31]   item afqt  afqt31n  1.198214     0.111
## 62   itemModel.item[2,31]   item   p2  afqt31n  2.241908     0.117
## 63   itemModel.item[1,32]   item afqt  afqt32n  1.158323     0.100
## 64   itemModel.item[2,32]   item   p2  afqt32n  1.739936     0.097
## 65   itemModel.item[1,33]   item afqt  afqt33n  0.677663     0.158
## 66   itemModel.item[2,33]   item   p2  afqt33n  3.449058     0.176
## 67   itemModel.item[1,34]   item afqt  afqt34n  0.906744     0.239
## 68   itemModel.item[2,34]   item   p2  afqt34n  4.501976     0.302
## 69   itemModel.item[1,35]   item afqt  afqt35n  1.889090     0.208
## 70   itemModel.item[2,35]   item   p2  afqt35n  4.342541     0.294
## 71   itemModel.item[1,36]   item afqt  afqt36n  1.139331     0.135
## 72   itemModel.item[2,36]   item   p2  afqt36n  3.075710     0.161
## 73   itemModel.item[1,37]   item afqt  afqt37n  1.777994     0.148
## 74   itemModel.item[2,37]   item   p2  afqt37n  2.849057     0.164
## 75   itemModel.item[1,38]   item afqt  afqt38n  1.271101     0.125
## 76   itemModel.item[2,38]   item   p2  afqt38n  2.688827     0.141
## 77   itemModel.item[1,39]   item afqt  afqt39n  0.957845     0.100
## 78   itemModel.item[2,39]   item   p2  afqt39n  2.059473     0.103
## 79   itemModel.item[1,40]   item afqt  afqt40n  1.738177     0.148
## 80   itemModel.item[2,40]   item   p2  afqt40n  2.921541     0.167
## 81   itemModel.item[1,41]   item afqt  afqt41n  0.686691     0.108
## 82   itemModel.item[2,41]   item   p2  afqt41n  2.480811     0.115
## 83   itemModel.item[1,42]   item afqt  afqt42n  0.726805     0.104
## 84   itemModel.item[2,42]   item   p2  afqt42n  2.355289     0.110
## 85   itemModel.item[1,43]   item afqt  afqt43n  1.011687     0.146
## 86   itemModel.item[2,43]   item   p2  afqt43n  3.332577     0.177
## 87   itemModel.item[1,44]   item afqt  afqt44n  0.570820     0.083
## 88   itemModel.item[2,44]   item   p2  afqt44n  1.660510     0.082
## 89   itemModel.item[1,45]   item afqt  afqt45n  0.841734     0.080
## 90   itemModel.item[2,45]   item   p2  afqt45n  1.002243     0.072
## 91   itemModel.item[1,46]   item afqt  afqt46n  0.810964     0.082
## 92   itemModel.item[2,46]   item   p2  afqt46n  1.284009     0.077
## 93   itemModel.item[1,47]   item afqt  afqt47n  1.304706     0.110
## 94   itemModel.item[2,47]   item   p2  afqt47n  1.988341     0.109
## 95   itemModel.item[1,48]   item afqt  afqt48n  1.448641     0.110
## 96   itemModel.item[2,48]   item   p2  afqt48n  1.566871     0.099
## 97   itemModel.item[1,49]   item afqt  afqt49n  0.629934     0.083
## 98   itemModel.item[2,49]   item   p2  afqt49n  1.604057     0.081
## 99   itemModel.item[1,50]   item afqt  afqt50n  1.148311     0.160
## 100  itemModel.item[2,50]   item   p2  afqt50n  3.592203     0.202
## 101  itemModel.item[1,51]   item afqt  afqt51n  1.156230     0.119
## 102  itemModel.item[2,51]   item   p2  afqt51n  2.611242     0.133
## 103  itemModel.item[1,52]   item afqt  afqt52n  0.599104     0.159
## 104  itemModel.item[2,52]   item   p2  afqt52n  3.447913     0.173
## 105  itemModel.item[1,53]   item afqt  afqt53n  1.232661     0.107
## 106  itemModel.item[2,53]   item   p2  afqt53n  1.978129     0.107
## 107  itemModel.item[1,54]   item afqt  afqt54n  1.923377     0.165
## 108  itemModel.item[2,54]   item   p2  afqt54n  3.237226     0.193
## 109  itemModel.item[1,55]   item afqt  afqt55n  1.266148     0.105
## 110  itemModel.item[2,55]   item   p2  afqt55n  1.761338     0.100
## 111  itemModel.item[1,56]   item afqt  afqt56n  0.976175     0.092
## 112  itemModel.item[2,56]   item   p2  afqt56n  1.622542     0.089
## 113  itemModel.item[1,57]   item afqt  afqt57n  0.616686     0.100
## 114  itemModel.item[2,57]   item   p2  afqt57n  2.267213     0.103
## 115  itemModel.item[1,58]   item afqt  afqt58n  0.650786     0.074
## 116  itemModel.item[2,58]   item   p2  afqt58n  0.989997     0.069
## 117  itemModel.item[1,59]   item afqt  afqt59n  0.485276     0.070
## 118  itemModel.item[2,59]   item   p2  afqt59n  0.919333     0.065
## 119  itemModel.item[1,60]   item afqt  afqt60n  0.390223     0.075
## 120  itemModel.item[2,60]   item   p2  afqt60n  1.377630     0.072
## 121  itemModel.item[1,61]   item afqt  afqt61n  1.068838     0.088
## 122  itemModel.item[2,61]   item   p2  afqt61n  1.016791     0.077
## 123  itemModel.item[1,62]   item afqt  afqt62n  1.346830     0.102
## 124  itemModel.item[2,62]   item   p2  afqt62n  1.179320     0.087
## 125  itemModel.item[1,63]   item afqt  afqt63n  0.539325     0.067
## 126  itemModel.item[2,63]   item   p2  afqt63n  0.466997     0.061
## 127  itemModel.item[1,64]   item afqt  afqt64n  1.227447     0.107
## 128  itemModel.item[2,64]   item   p2  afqt64n  1.988108     0.107
## 129  itemModel.item[1,65]   item afqt  afqt65n  0.715183     0.095
## 130  itemModel.item[2,65]   item   p2  afqt65n  2.030909     0.096
## 131  itemModel.item[1,66]   item afqt  afqt66n  1.465276     0.177
## 132  itemModel.item[2,66]   item   p2  afqt66n  3.890972     0.238
## 133  itemModel.item[1,67]   item afqt  afqt67n  1.367252     0.118
## 134  itemModel.item[2,67]   item   p2  afqt67n  2.280497     0.123
## 135  itemModel.item[1,68]   item afqt  afqt68n  0.315321     0.113
## 136  itemModel.item[2,68]   item   p2  afqt68n  2.571237     0.111
## 137  itemModel.item[1,69]   item afqt  afqt69n  0.871627     0.081
## 138  itemModel.item[2,69]   item   p2  afqt69n  0.997913     0.073
## 139  itemModel.item[1,70]   item afqt  afqt70n  0.934470     0.081
## 140  itemModel.item[2,70]   item   p2  afqt70n  0.723456     0.070
## 141  itemModel.item[1,71]   item afqt  afqt71n  1.351254     0.104
## 142  itemModel.item[2,71]   item   p2  afqt71n  1.403380     0.092
## 143  itemModel.item[1,72]   item afqt  afqt72n  0.852137     0.077
## 144  itemModel.item[2,72]   item   p2  afqt72n  0.539187     0.067
## 145  itemModel.item[1,73]   item afqt  afqt73n  0.607448     0.084
## 146  itemModel.item[2,73]   item   p2  afqt73n  1.656535     0.082
## 147  itemModel.item[1,74]   item afqt  afqt74n  0.598837     0.078
## 148  itemModel.item[2,74]   item   p2  afqt74n  1.337091     0.074
## 149  itemModel.item[1,75]   item afqt  afqt75n  0.658518     0.075
## 150  itemModel.item[2,75]   item   p2  afqt75n  1.037030     0.069
## 151  itemModel.item[1,76]   item afqt  afqt76n  0.843053     0.101
## 152  itemModel.item[2,76]   item   p2  afqt76n  2.198408     0.106
## 153  itemModel.item[1,77]   item afqt  afqt77n  0.819065     0.075
## 154  itemModel.item[2,77]   item   p2  afqt77n  0.059446     0.064
## 155  itemModel.item[1,78]   item afqt  afqt78n  1.010964     0.087
## 156  itemModel.item[2,78]   item   p2  afqt78n  1.096308     0.077
## 157  itemModel.item[1,79]   item afqt  afqt79n  0.920054     0.080
## 158  itemModel.item[2,79]   item   p2  afqt79n  0.580324     0.068
## 159  itemModel.item[1,80]   item afqt  afqt80n  1.856432     0.129
## 160  itemModel.item[2,80]   item   p2  afqt80n  1.063101     0.098
## 161  itemModel.item[1,81]   item afqt  afqt81n  0.646501     0.075
## 162  itemModel.item[2,81]   item   p2  afqt81n  1.109496     0.070
## 163  itemModel.item[1,82]   item afqt  afqt82n  1.086728     0.114
## 164  itemModel.item[2,82]   item   p2  afqt82n  2.489232     0.125
## 165  itemModel.item[1,83]   item afqt  afqt83n  0.595484     0.069
## 166  itemModel.item[2,83]   item   p2  afqt83n  0.632312     0.063
## 167  itemModel.item[1,84]   item afqt  afqt84n  0.912612     0.094
## 168  itemModel.item[2,84]   item   p2  afqt84n  1.822357     0.094
## 169  itemModel.item[1,85]   item afqt  afqt85n  1.169904     0.090
## 170  itemModel.item[2,85]   item   p2  afqt85n  0.534801     0.073
## 171  itemModel.item[1,86]   item afqt  afqt86n  1.004961     0.082
## 172  itemModel.item[2,86]   item   p2  afqt86n  0.405005     0.069
## 173  itemModel.item[1,87]   item afqt  afqt87n  0.547156     0.067
## 174  itemModel.item[2,87]   item   p2  afqt87n -0.135326     0.059
## 175  itemModel.item[1,88]   item afqt  afqt88n  0.930041     0.081
## 176  itemModel.item[2,88]   item   p2  afqt88n -0.621989     0.069
## 177  itemModel.item[1,89]   item afqt  afqt89n  0.494449     0.066
## 178  itemModel.item[2,89]   item   p2  afqt89n  0.398215     0.060
## 179  itemModel.item[1,90]   item afqt  afqt90n  0.443010     0.065
## 180  itemModel.item[2,90]   item   p2  afqt90n  0.377516     0.059
## 181  itemModel.item[1,91]   item afqt  afqt91n  0.463393     0.064
## 182  itemModel.item[2,91]   item   p2  afqt91n -0.000077     0.058
## 183  itemModel.item[1,92]   item afqt  afqt92n  0.449527     0.065
## 184  itemModel.item[2,92]   item   p2  afqt92n -0.311895     0.059
## 185  itemModel.item[1,93]   item afqt  afqt93n  0.766742     0.073
## 186  itemModel.item[2,93]   item   p2  afqt93n -0.185288     0.063
## 187  itemModel.item[1,94]   item afqt  afqt94n  1.014241     0.082
## 188  itemModel.item[2,94]   item   p2  afqt94n  0.367859     0.068
## 189  itemModel.item[1,95]   item afqt  afqt95n  1.055006     0.084
## 190  itemModel.item[2,95]   item   p2  afqt95n -0.183177     0.068
## 191  itemModel.item[1,96]   item afqt  afqt96n  0.289724     0.070
## 192  itemModel.item[2,96]   item   p2  afqt96n -1.077998     0.065
## 193  itemModel.item[1,97]   item afqt  afqt97n  0.196293     0.076
## 194  itemModel.item[2,97]   item   p2  afqt97n -1.446843     0.071
## 195  itemModel.item[1,98]   item afqt  afqt98n  0.805098     0.075
## 196  itemModel.item[2,98]   item   p2  afqt98n -0.261834     0.064
## 197  itemModel.item[1,99]   item afqt  afqt99n  0.492514     0.068
## 198  itemModel.item[2,99]   item   p2  afqt99n -0.597199     0.061
## 199 itemModel.item[1,100]   item afqt afqt100n  0.575464     0.069
## 200 itemModel.item[2,100]   item   p2 afqt100n -0.519842     0.062
## 
## Model Statistics: 
##                |  Parameters  |  Degrees of Freedom  |  Fit (-2lnL units)
##        Model:            200                     NA                 99982
##    Saturated:             NA                      0                 18642
## Independence:             NA                     NA                109349
## Number of observations/statistics: 1300/NA
## 
## chi-square:  χ² ( df=NA ) = 81339,  p = NA
## Information Criteria: 
##       |  df Penalty  |  Parameters Penalty  |  Sample-Size Adjusted
## AIC:             NA                 100382                   100455
## BIC:             NA                 101416                   100780
## CFI: NA 
## TLI: 1   (also known as NNFI) 
## RMSEA:  0  [95% CI (NA, NA)]
## Prob(RMSEA <= 0.05): NA
## To get additional fit indices, see help(mxRefModels)
## timestamp: 2019-03-08 11:05:03 
## Wall clock time: 2.6 secs 
## OpenMx version number: 2.12.1 
## Need help?  See help(mxSummary)
citation('OpenMx')

To cite package ‘OpenMx’ in publications use:

Michael C. Neale, Michael D. Hunter, Joshua N. Pritikin, Mahsa Zahery, Timothy R. Brick Robert M. Kirkpatrick, Ryne Estabrook, Timothy C. Bates, Hermine H. Maes, Steven M. Boker. (2016). OpenMx 2.0: Extended structural equation and statistical modeling. Psychometrika, 81(2), 535-549. doi:10.1007/s11336-014-9435-8

Pritikin, J. N., Hunter, M. D., & Boker, S. M. (2015). Modular open-source software for Item Factor Analysis. Educational and Psychological Measurement, 75(3), 458-474

Hunter, M. D. (in press). State space modeling in an open source, modular, structural equation modeling environment. Structural Equation Modeling, 1-18. doi: 10.1080/10705511.2017.1369354

Steven M. Boker [aut], Michael C. Neale [aut], Hermine H. Maes [aut], Michael J. Wilde [ctb], Michael Spiegel [aut], Timothy R. Brick [aut], Ryne Estabrook [aut], Timothy C. Bates [aut], Paras Mehta [ctb], Timo von Oertzen [ctb], Ross J. Gore [aut], Michael D. Hunter [aut], Daniel C. Hackett [ctb], Julian Karch [ctb], Andreas M. Brandmaier [ctb], Joshua N. Pritikin jpritikin@pobox.com [aut, cre], Mahsa Zahery [aut], Robert M. Kirkpatrick [aut], Yang Wang [ctb], Charles Driver driver@mpib-berlin.mpg.de [ctb], Massachusetts Institute of Technology [cph], S. G. Johnson [cph], Association for Computing Machinery [cph], Dieter Kraft [cph], Stefan Wilhelm [cph], Sarah Medland [cph], Carl F. Falk [cph], Matt Keller [cph], Manjunath B G [cph], The Regents of the University of California [cph], Lester Ingber [cph] and Wong Shao Voon [cph]. (2019) OpenMx 2.12.1 User Guide.

BibTeX entries for LaTeX users are obtained by:

toBibtex(citation(‘OpenMx’))

OpenMx was developed with support from NIH/NIDA grants:

R37-DA018673, R25-DA026119, R21-DA024304 To see these entries in BibTeX format, use ‘print(, bibtex=TRUE)’, ‘toBibtex(.)’, or set ‘options(citation.bibtex.max=999)’.