

Michael Neale & Joshua Pritikin Virginia Institute for Psychiatric & Behavioral Genetics Virginia Commonwealth University

> Boulder Workshop 8 March 2019

Outline

- Measuring Complex Traits
- Drug factors vs. Symptom factors
- Genomewide Structural Equation Modeling
- Testing Hypotheses about Gene Action: FTND
- Obligate Missingness
- Developmental Issues
- Future Directions including GREML

Measurement Invariance: Factor Model

Usually want to know about F, the latent factor!

Indirect measurement

Correlations across Substances: Add Health

	Stimulants	Tranquilizers	Marijuana
Stimulants			
Tranquilizers	0.74		
Marijuana	0.63	0.66	
Factor Loadings	0.84	0.87	0.75

Medland & Neale (2010) An integrated phenomic approach to multivariate allelic association. European Journal of Human Genetics 18:233–239

DRD2 Association Results (Add Health)

- Univariate associations
 - Stimulants: χ^2 =3.88, β = -.18, p < .05
 - Tranquilizers: $\chi^2 = 1.65$, $\beta = .13$, NS
 - Marijuana: $\chi^2 = 2.60, \beta = .11, NS$
- Factor level association
 - χ²=0.65, kF= .06, NS
- Item level association • χ^2 =13.91 (3df; p < 0.005) $\beta_{\text{Stimulants}}$ = -0.19 $\beta_{\text{Tranquilizers}}$ = 0.14 $\beta_{\text{Marijuana}}$ = 0.11

MNI Causes Errors of Inference

- Sum Scores & Factor Scores Depend on Model
- Item-level Differences May:
 - Invalidate Group Mean Tests (Association even)
 - Invalidate Group Variance Tests
- MI Still Rarely Tested

Invariance: Five Potential Types of Difference

- Factor Variances
- Factor Means
- Factor Loadings
- Item Variances
- Item Means

Invariance Models of Factor-Level Effects

1. No Covariates

2. Age/Sex on Factor Mean 3. Age/Sex on Factor Variance

F

V3

4. Age/Sex on Factor Mean and Variance

MI Application: National Survey of Drug Use in Households (NSDUH)

- Substance Abuse and Mental Health Services Administration (SAMSA) regular data collection
- ~50,000 persons per assessment
- Face-to-face Interviews(!)
- Audio-Computer-Assisted Testing

Map Items to DSM-IV Substance Abuse and Dependence Criteria

- A1 During the past 12 months, did using marijuana or hashish cause you to have serious problems like this either at home, work, or school?
- A2 During the past 12 months, did you regularly use marijuana or hashish and then do something where using marijuana or hashish might have put you in physical danger?
- A3 During the past 12 months, did using marijuana or hashish cause you to do things that repeatedly got you in trouble with the law?
- A4 Did you continue to use marijuana or hashish even though you thought it caused problems with family or friends?

DSM-IV Dependence Criteria

- D1 During the past 12 months, did you need to use more marijuana or hashish than you used to in order to get the effect you wanted?
- D3 Were you able to keep to the limits you set, or did you often use marijuana or hashish more than you intended to?
- D4 During the past 12 months, did you want to or try to cut down or stop using marijuana or hashish?
- D5 During the past 12 months, was there a month or more when you spent a lot of your time getting or using marijuana or hashish?
- D6 This question is about important activities such as working, going to school, taking care of children, doing fun things such as hobbies and sports, and spending time with friends and family.
 - During the past 12 months, did using marijuana or hashish cause you to give up or spend less time doing these types of important activities?
- D7 Did you continue to use marijuana or hashish even though you thought it was causing you to have physical problems?

Test of Item Mean Invariance: Marijuana in NSDUH

- Strong evidence of MNI with respect to age and sex
- Examine individual items
- Four column heatmap for significance of effects
 - Item Means & Factor Variances
 - Sex and Age
- Compare across self-reported race

-2InL Likelihood Ratio Test Statistics: Marijuana Item Means & Factor Loadings

Ane

Sex

Entire Sample

+/- sign denotes direction

			5.5	
10.3	4.68	-14.28	-5.33	MRJA1
0.04	-0.05	-1.82	1.81	MRJA2
-20.7	0	-5.94	-2.28	MRJA3
1	0	-0.41	-2.13	MRJA4
0.12	-1.32	-11.24	-11.96	MRJD1
-0.72	-1.53	14.87	-2.74	MRJD3
0.69	-0.37	28.87	12.54	MRJD4
-11.52	6.18	0	-0.09	MRJD5
1.8	-0.09	14.79	-14.2	MRJD6
0.81	-1.94	16.17	-9.31	MRJD7
sex	sex	ige	ige	
Σ	Ľ,	s l		
	LL L		LL.	

Work Danger Law Friends Tol >Intend TryCut TimeGet TimeOther< PhysProb

Estimating Factor Scores

ML Estimation of Factor Scores

Factor Score

Factor Score * Likelihood of items conditional on factor score

Items independent conditional on factor score: Means and variances change according to size of factor loadings

Drug vs Symptom Factors

- DSM III-R/IV drug abuse and dependence symptoms for cannabis, sedatives, stimulants, cocaine, opioids and hallucinogens
- 13 misuse symptoms measured across six illicit substance categories (78 items)
- 4179 males born 1940–1970 from the population-based Virginia Adult Twin Study of Psychiatric and Substance Use Disorders
- Confirmatory factor analyses tested specific hypotheses regarding the latent structure of substance misuse

Drug vs Symptom Factors

Clark, S. L., Gillespie, N. A., Adkins, D. E., Kendler, K. S., and Neale, M. C. (2016). Psychometric modeling of abuse and dependence symptoms across six illicit substances indicates novel dimensions of misuse. *Addict Behav*, 53:132–40. PMCID: PMC4679450.

Drug vs Symptom Factors

Model	χ ²	DF	p-Value	CFI	RMSEA
M1: Drug factors only	4175	2910	< 0.001	0.78	0.017
M2: Misuse characteristic factors only	3647	2847	< 0.001	0.86	0.013
M3: Drug and misuse characteristic factors	2966	2754	< 0.001	0.96	0.007
M4: General liability factor	4598	2925	< 0.001	0.71	0.019
M1 vs. M3	1209	156	< 0.001		
M2 vs. M3	681	93	< 0.001		

Adding symptom factors dramatically improves fit

 Majority of variance in many Sx due to symptom not drug factor

Factor Score Notes

- Factor scores do not all have same error variance
- Factor scores of A, C & E components may correlate highly
- Latent trait may be non-normal (Schmitt et al 2006 Multiv Behav Res)
- Factor loadings (precision) may vary across the distribution and give spurious GxE results
- Variation may be discrete not continuous
- For PRS, consider trait as measured at GWAS

Mild Cognitive Impairment VETSA Data: CHD & AD

Ischemic heart disease: summary measure history of myocardial infarction, cardiac procedure or angina.

Group	Cognitively Normal	Amnestic MCI		
Ν	1119	89		
Age, mean (SD)	56.7 (3.3)	57.2 (3.5)		
ΑΡΟΕ-ε4+	29.4%	26.2%		
Ischemic Heart Disease*	13.3%	3.5%		
Depressive symptoms, <i>mean (SD</i>)	7.8 (7.6)	9.0 (8.4)		
Diabetes	10.7%	11.5%		

Plots of the interaction of an Alzheimer's disease polygenic risk score with A) a prevalent coronary artery disease polygenic risk score (CAD-PRS) and B) an incident CAD-PRS on amnestic mild cognitive impairment (MCI) status. The regression coefficient of the AD-PRS on amnestic MCI status is on the y-axis and is plotted across varying levels of CAD-PRSs on the x-axis. The dashed red line indicates the threshold of statistical significance for the AD-PRS as a predictor of aMCI status. In A the AD-PRS is more predictive of risk for aMCI to the right of the dashed line (i.e., people with higher AD-PRSs are more likely to have aMCI if they also have *higher incident* CAD--RSs). In B the AD-PRS is a significant predictor of increased risk for aMCI to the left of the dashed line but is not significant to the right of the dashed line.

Example item response probability shown in white Possible population distribution in green $\phi(\xi)$ Response νορμαλ Probability πδφ Cumulative N 0.4 0.3 .75 0.2 .5 0.1 .25 \mathbf{O} -2 3 -1 2 -3 $\mathbf{0}$ 1 4 -4 z-score

Item Response Probability

AFQT

100 Items

Subscales 1 Arithmetic Reasoning 2 Mathematics Knowledge 3 Word Knowledge 4 Paragraph

Comprehension

Script & Fake Data are in workshop/faculty/mcn/2019

AFQT: Overall Test Information Curve

More information at left

By design

Consequences for GxE?

Genome-wide SEM

Avoid problems with factor scores

- Fit factor or growth curve models to ordinal data
- Include effect of SNP on factor or items
- Repeat for the other 8m-1 SNPs
- Manhattan plot results

http://goo.gl/f44UmD

Verhulst, B, Maes, H, & Neale, M (2017) GW-SEM: A Statistical Package to Conduct Genome-Wide Structural Equation Modeling. *Behav Genet* 47(3):345-359

Testing Hypotheses about Gene Action: FTND

Table 1: Percentage of Variance Accounted for by the SNP rs16969968 in Latent FTND and Measured CPD

Sample	Ν	FTND	Total CPD	Indirect Effect
Sage	2,461	0.46	1.70	0.08
Smoking Cessation (SC)	574	0.48	1.76	0.08
CIDR	296	0.50	1.85	0.08
COPD	2,042	0.45	1.67	0.08

Note: The Direct Effects of FTND and the Total and Indirect Effects on CPD are taken from the best fitting model (H_{1c}) .

rs16969968 Neuronal acetylcholine receptor subunit α-5 CHRNA5 associated with both ND and CPD

- What is the mechanism of action?
- CPD mere symptom of FTND
- Increases CPD increases addiction?
- Feedback loop between CPD and addiction?

H1a SNP Causes Factor Only

(b) H_{1a} : Path diagram for regression of the latent FTND factor on the SNP.

rs16969968 CHRNA5

H1b SNP Causes CPD Only

(c) H_{1b} : Path diagram for regression of CPD on the SNP

H1c SNP Causes Factor & CPD

(d) H_{1c} : Path diagram for regression of the latent FTND factor and CPD on the SNP

Factor

(d) H_{1c} : Path diagram for regression of the latent FTND factor and CPD on the SNP

H2b SNP to CPD & Reciprocal Factor

(f) H_{2b} : Path diagram for the the SNP causing CPD, which reciprocally causes Nicotine Dependence.

Two Factor Model

Model-Fitting Results: Bidirectionality

Table 2: Model fit statistics for tests of mediation of SNP 1s16969968 effects via FTND latent factor (upper panel), or via CPD item (lower panel).

	- <u>21.1</u> .	AIÇ	ΔRef	A2LL	∆#	P
FIND Mediation Models						
1 Free SNP Paths	41730.04	-22665.96	-			
2 Equated SNP Paths	41740.10	-22673.90	1	10.06	9	0.35
S Full Mediation	41756.88	-22659.62	2	16.29	1	5.459-05
4 Direct Effect	41747.72	-22668.28	2	7.62	1	5.789-03
CPD Mediation Models						
5 All Free Regressions	45141.80	-19254.20	-			
6 Equal Regression for F1	45142.87	-19259.68	۶.	0.67	8	0.90
7 Equal Regression for F2	45168.74	-19235.26	6	26.94	4	2.045-05
8 Equal Regression for CPD	45319.72	-19082.28	6	177.92	8	2.489-38
9 Equal Regression	45145.56	-19256.44	6	8.76	8	0.29

Definitions: PTND, Pagerström Test for Nicothes Dependence; CPD, Cigarettes per day; -2LL, twice negative log-likelihood; AIC, Akalke Information Criterion; ΔRef , reference model for likelihood ratio test; ΔLL , difference in -2LL from reference model (likelihood ratio test); Δdf , degrees of freedom of ΔZLL ; p, p-weine of ΔLL . AIC is calculated as -2LL-2df where df is the number of raw data observations minus the number of free parameters; lower values represent more paraimonious fit.

Factor Model Alternative: Mutualism

Identified with data from relatives MZ & DZ Twins or adoptees needed for A/C resolution

What if Variation is Discrete?

Latent Class and Latent Profile Models

Factor Mixture Models

Latent Growth Curve Mixture Models

Regime Switching

Mixture Distributions

Pearson, K. (1894). Contributions to the mathematical theory of evolution

 Skewness in a set of measurements of the ratio of forehead to body length of crabs

Two species or one?

Latent Class (Subgroup)

Class 1 probabilit y *p*

Class 2 probabilit y (1-*p*)

Conditionally Independent ?!

Expensive!

Poislighed in Smal edited form up: Int J Methods Poychiat Rev. 2010 June ; 19(2): 63-73. doi:10.1002/mpr.301.

Searching For Valid Psychiatric Phenotypes: Discrete Latent Variable Models

Jeannie-Marie S. Leoutsekoe, PhD, MHS¹, Peter P. Zandi, PhD, MHS², Karen Bandeen-Roohe PhD³, and Constantine G. Lyketsos, MD, MHS¹,²

Factor Mixture Model

Class 1 probabilit y *p*

Class 2 probabilit y (1-*p*)

Growth Curve Mixture

Class 1 probabilit y *p*

Class 2 probabilit y (1-*p*)

Regime Switching Model

Posterior Probabilities of Trajectories for Individual 46 -2inL= 16.108

Yeer

Obligate Missingness

- Estimating correlation between Stem and Probe
 - 3+ categories of Stem and at least 2 lead to probe
 - 2 binary Stem items and endorsing either or both = probe
 - Binary Stem but collected from relatives who correlate < 1</p>

Do not mark missing probes as zero! Usually causes inflated item correlations

Obligate Missingness Stem: Have you

- Stem: Have you ever used cocaine? 0/1/2
- Probe: Was it difficult to cut down or quit?
- Probe items are
 MAR conditional on
 Stem being 1 or 2
- WLS but not ML drastically attenuate correlation estimate
- Must code probes as missing!

Figure 2: Attenuation of the estimated correlation using WLS based on the level of MAR missingness.

Genetic Correlations Vary with Age 8-18yrs, Giedd Study N~700

0.40 0.36

Genetic Correlation

0.32 0.28 0.24 0.20 0.16 0.12 0.08 0.04 0.00

Multilevel Model for Twin Data

Adding Site Effects

Genetic Heterogeneity with Age/Cohort

- Neuroticism within-person .6 correlation over 10 years
- Twin studies show rG < 1 over time</p>
- Expressed genetic factors change during development
- Substance Use

Different age, different genes?

The Decay in the Correlation over Time

Age-Related Decay of Correlation

Verhulst, B., Eaves, L. J., and Neale, M. C. (Jul 2014). Moderating the covariance between family member's substance use behavior. Behav Genet, 44(4):337–46.

$Cov = Acov + e^{-|\Delta age|} + Ccov + e^{-|\Delta age|} + Ccov +$

Application

Virginia 30,000 Data on Smoking

Twins, their parents, spouses, sibs and children Twins only here, N=14,763

Crude smoking measure (1980s)

(1) never smoked, (2)
used to smoke but gave it
up, (3) smoked on and off,
(4) smoked most of his/her
life.

Strong evidence of decay with age difference

Decay in the Correlation between First Degree Relatives as a Function of Age Difference

Age Difference (in Years)

Future Directions

- Use Genetic relatedness matrices GRMs in place of close family relatives
 - Technical challenges, invert 20k x 20k matrices or larger
 - Extend GW-SEM

- Extend tests for direction of causation with combined twin family, multivariate and repeated measures data
- Dynamical models for high density repeated measures

Acknowledgements

NIDA R01 DA-18673 NIDA R25 DA-26119 NIMH R25 MH-19918 Study participants Workshop participants **OpenMx** Team

- VIPBG
 Brad Verhulst
- Shaunna Clarke
- Hermine Maes
- Steve Aggen
- Joshua Pritikin

Computers

