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Abstract
In a genome-wide association study (GWAS), association between genotype and

phenotype at autosomal loci is generally tested by regression models. However, X-

chromosome data are often excluded from published analyses of autosomes because

of the difference between males and females in number of X chromosomes. Fail-

ure to analyze X-chromosome data at all is obviously less than ideal, and can lead

to missed discoveries. Even when X-chromosome data are included, they are often

analyzed with suboptimal statistics. Several mathematically sensible statistics for X-

chromosome association have been proposed. The optimality of these statistics, how-

ever, is based on very specific simple genetic models. In addition, while previous sim-

ulation studies of these statistics have been informative, they have focused on single-

marker tests and have not considered the types of error that occur even under the null

hypothesis when the entire X chromosome is scanned. In this study, we comprehen-

sively tested several X-chromosome association statistics using simulation studies that

include the entire chromosome. We also considered a wide range of trait models for

sex differences and phenotypic effects of X inactivation. We found that models that do

not incorporate a sex effect can have large type I error in some cases. We also found

that many of the best statistics perform well even when there are modest deviations,

such as trait variance differences between the sexes or small sex differences in allele

frequencies, from assumptions.

K E Y W O R D S
genetic association study, GWAS, X chromosome

1 INTRODUCTION

In genome-wide association studies (GWASs) in humans,
the first step after data cleaning is testing single nucleotide
polymorphisms (SNPs) for association with a trait. Analyz-
ing autosomal markers is more straightforward than analyz-
ing X-chromosomal markers. Testing for association on the
X chromosome, which makes up 5% of the female genome,

requires specialized analysis methods—methods developed
for analyzing autosomal data are not directly applicable to
X-chromosome data because males have only one copy of
the X chromosome. Very often X-chromosome data are not
analyzed. For example, from January 2010 through March
2012, only 33% of the GWAS reported X-chromosome results
(Wise, Gyi, & Manolio, 2013). Furthermore, from January
2017 through June 2017, only 21% of the GWAS published in
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Nature Genetics and PLoS Genetics reported X-chromosome
results. Moreover, even when the X chromosome is ana-
lyzed, often suboptimal statistics are used. A recent edito-
rial in Nature Medicine points out that the failure to analyze
X chromosomal data properly or at all now extends to the lat-
est round of sequencing-based GWAS and reemphasizes the
importance of assessing the influence of sex chromosomes
and the extra effort that should be put in to include them in
genomic analysis (Anonymous, 2017).

Several promising statistical methods for X-chromosome
association testing have been developed (Clayton, 2008;
Zheng, Joo, Zhang, & Geller, 2007). However, there is a need
for complete testing of the X-chromosome methods. The best
of the proposed statistics has been shown to have correct type
I error and be most powerful only when there is no sex dif-
ference in allele frequencies (Clayton, 2008). Therefore, it is
still not known how the statistic will behave when we scan an
entire chromosome in which there is some random variation
in allele frequencies between the sexes—whether it will still
find the correct loci or will just pick out the ones that have the
largest sex-specific allele frequency differences by chance.
In this study, we test several commonly used and newly pro-
posed X-chromosome statistics using real chromosome-wide
data in order to fully understand the practical performance of
the statistics. We consider the performance of the statistics
under a variety of trait generating models—situations in
which the male and female case–control ratios are either the
same (balanced design) or different (unbalanced design),
trait models with and without sex differences in the phe-
notype distribution, dichotomous and quantitative traits,
and both rare and common minor marker alleles. We also
study the behavior of statistics under various X inactivation
models.

1.1 X-chromosome test statistics
Genotype–phenotype association is generally tested by chi-
square tests, most often Armitage's trend test, or regression
models. The phenotype can be dichotomous or quantitative,
and genotypes can be coded in different ways. Additive
coding for genotypes is typical, where at autosomal loci the
genotypes are coded as (0, 1, 2). In order to test association
at X-chromosome loci, female genotypes are coded as (0,
1, 2) and, because males have only one X chromosome,
male genotypes are coded as (0, 1) or (0, 2). In proposing
X-chromosome association statistics, it is necessary to
consider the male genotype coding, but also male/female
differences in phenotype distribution and allele frequency,
and Hardy–Weinberg equilibrium (HWE) assumptions.

In this study, we evaluated six commonly used regression
models for X-chromosome association and three additional
X-chromosome statistics that will be described next. The
regression models we included are those given in Equations

(1 – 6) below. P, G, and S stand for phenotype, genotype, and
sex, respectively. In the odd-numbered regression models, we
coded males as (0,1) and in the even-numbered models, we
coded males as (0,2). Note that these regression models, even
when they include sex as a covariate, do not account for male–
female differences in phenotypic or genotypic variance.

Regressionmodel G1∶ 𝑃 ∼ 𝐺 (0, 1) . (1)

Regressionmodel G2∶ 𝑃 ∼ 𝐺 (0, 2) . (2)

Regressionmodel G1S∶ 𝑃 ∼ 𝐺 (0, 1) + 𝑆. (3)

Regressionmodel G2S∶ 𝑃 ∼ 𝐺 (0, 2) + 𝑆. (4)

Regressionmodel G1xS∶

𝑃 ∼ 𝐺 (0, 1) + 𝑆 + 𝐺 (0, 1) ∗ 𝑆. (5)

Regressionmodel G2xS∶

𝑃 ∼ 𝐺 (0, 2) + 𝑆 + 𝐺 (0, 2) ∗ 𝑆. (6)

The statistics proposed by Clayton (2008) improve on these
regression models (at least in theory) by using generalized lin-
ear model score tests based on genotype–phenotype covari-
ance. They treat males the same as homozygote females (0,2
coding), but also account for variance differences. They do
not lose power (in contrast to a stratified analysis) even if the
phenotype varies between sexes as long as allele frequency
does not (Clayton, 2008). To compute the Clayton statistics,
let subjects 1,..., F be female and F+1,..., N be male. Yi is the
phenotype and Ai is the marker genotype for subject i. Di is
the heterozygosity indicator, which is 0 for homozygotes and
1 for heterozygotes. p, which is assumed to be same in males
and females, is the allele frequency in the population as esti-
mated from the data. The 2 degree of freedom (df) test statistic
for X-chromosome data is

𝑇2 = 𝑈𝑇 𝑉 −1𝑈 ∼ 𝜒2
2 , (7)

where

𝑈 =

[
𝑈𝐴

𝑈𝐷

]
=

⎛⎜⎜⎜⎜⎝
𝑁∑
𝑖=1

(𝑌𝑖 − 𝑌 )𝐴𝑖

𝐹∑
𝑖=1

(𝑌𝑖 − 𝑌𝐹 )𝐷𝑖

⎞⎟⎟⎟⎟⎠
, (8)

𝑉 = 𝑉𝐹

𝐹∑
𝑖=1

(𝑌𝑖 − 𝑌 )2 + 𝑉𝑀

𝑁∑
𝑖=𝐹+1

(𝑌𝑖 − 𝑌 )2. (9)
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The female and male components of the variance are

𝑉𝐹 = 1
𝐹 − 1

𝐹∑
𝑖=1⎛⎜⎜⎝

(𝐴𝑖 − �̄�)2 (𝐴𝑖 − �̄�)(𝐷𝑖 − �̄�𝐹 )

(𝐴𝑖 − �̄�)(𝐷𝑖 − �̄�𝐹 ) (𝐷𝑖 − �̄�𝐹 )
2

⎞⎟⎟⎠ , (10)

𝑉𝑀 =

(
4𝑝(1 − 𝑝) 0

0 0

)
. (11)

The Clayton 1-df test statistic is

𝑇1 = 𝑈2
1 ∕𝑉11 ∼ 𝜒2

1 . (12)

Since the Clayton 1-df statistic uses the (0,2) male genotype
coding, we will refer to this statistic as the “C2” statistic. For
autosomal loci, the variance does not include the male compo-
nent, 𝑉𝑀 , and 𝑉𝐹 is calculated over all subjects. Clayton also
proposed a regression generalization of C2, where phenotype
is a dependent variable and sex is added as a covariate, which
we will refer to as the “C2S” statistic.

Zheng et al. (2007) proposed a very different test statistic
for X-chromosome association of a dichotomous trait, which
is essentially a weighted average of separate male and female
statistics. Their statistic (which we will refer to as the “Z”
statistic) is

𝑍2
𝑚𝑓𝐺

=

(√
𝑛𝑓

𝑛𝑚 + 𝑛𝑓
𝑍𝑓𝐺 +

√
𝑛𝑚

𝑛𝑚 + 𝑛𝑓
𝑍𝑚

)2

∼ 𝜒2
1 , (13)

where

𝑍𝑓𝐺 =
𝑛

1
2
𝑓

[
𝑠𝑓

(
1
2𝑟𝑓1 + 𝑟𝑓2

)
− 𝑟𝑓

(
1
2𝑠𝑓1 + 𝑠𝑓2

)]
[
𝑟𝑓 𝑠𝑓

[
𝑛𝑓

(
1
4𝑛𝑓1 + 𝑛𝑓2

)
−
(
1
2𝑛𝑓1 + 𝑛𝑓2

)2
]] 1

2

,

(14)

𝑍𝑚 =
𝑛

1
2
𝑚

(
𝑟𝑚𝑠𝑚0 − 𝑠𝑚𝑟𝑚0

)
(
𝑛𝑚0𝑛𝑚1𝑟𝑚𝑠𝑚

) 1
2

, (15)

𝑟𝑚𝑖 (𝑟𝑓𝑖) and 𝑠𝑚𝑖 (𝑠𝑓𝑖) are number of male (female) cases and
controls, respectively, having genotype i and 𝑟𝑚 = 𝑟𝑚0 + 𝑟𝑚1
(𝑟𝑓 = 𝑟𝑓0 + 𝑟𝑓1 + 𝑟𝑓2), 𝑠𝑚 = 𝑠𝑚0 + 𝑠𝑚1 (𝑠𝑓 = 𝑠𝑓0 + 𝑠𝑓1 +
𝑠𝑓2), 𝑛𝑚 (𝑛𝑓 ) is number of males (females), and 𝑛𝑚𝑖 = 𝑟𝑚𝑖 +
𝑠𝑚𝑖 ( 𝑛𝑓𝑖 = 𝑟𝑓𝑖 + 𝑠𝑓𝑖). Their statistic is based on sex-specific
allele frequencies. Therefore, male genotype coding is not an
issue. However, it assumes HWE in females and it does not
take into account X inactivation.

Zheng et al. (2007) tested their statistic in limited simu-
lation studies. They showed that the tests that assume HWE
are more powerful than the tests that are robust to departures
from HWE. Hickey and Bahlo (2011) performed more exten-
sive simulation studies of X-chromosome association testing
in GWAS to investigate the effects of the sex ratios and allele
frequencies in the case and control cohorts on the size and
power of eight test statistics under three different disease mod-
els accounting for X inactivation (Hickey & Bahlo, 2011).
Unlike the simulations by Zheng et al., Hickey and Bahlo con-
sidered different numbers of males and females in a GWAS,
a full spectrum of allele frequencies, and more than one dis-
ease prevalence. They concluded that Clayton's test statistic is
robust and powerful across a wide range of simulation param-
eters. In this paper, we extend this work further to consider a
broader range of trait models and methods and to consider the
effects of scanning an entire chromosome of data to detect the
most significant loci.

2 MATERIALS AND METHODS

We tested the type I error and power of the six regression
models, the two specialized X-chromosome association test
statistics by Clayton and Zheng et al. described above, and a
regression generalization of Clayton's test. We considered rare
and common minor alleles at the marker, dichotomous and
quantitative traits, and trait model variations such as variance
differences induced by X inactivation. We also considered
balanced and unbalanced datasets, where male and female
case–control ratios are approximately equal, or not. For this
study, we defined balanced and unbalanced dataset designs
as follows: if the ratio of 𝑅𝑓 = 𝑟𝑓∕𝑠𝑓 (number of female
cases/number of female controls) to 𝑅𝑚 = 𝑟𝑚∕𝑠𝑚 (number
of male cases/number of male controls) is between 0.80
and 1.20, then the dataset is defined as balanced, otherwise
unbalanced.

The simulations for type I error rates are based on real data
for the entire X chromosome excluding the pseudo-autosomal
regions. The simulations for power are based on simulated
SNPs using the real data sample sizes. Our rationale for this
approach is as follows. Conventional statistical theory mea-
sures the optimality of statistics in terms of having correct
type I error and maximal power for a single test. But in
genomic applications, we apply a test thousands to millions of
times and pick out the most significant loci for further study.
In that situation, it is not the expected value of the behavior of
the statistic that matters, but rather the behavior of the extreme
values (order statistics). For example, Clayton's test statistic
was shown by Hickey and Bahlo (2011) to be most powerful,
but only when there is no sex difference in allele frequencies.
How will that statistic behave when we scan an entire chromo-
some in which there is a small amount of random variation
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in allele frequencies between the sexes? We performed our
simulation study using real chromosome-wide data in order
to fully understand the practical performance of the statistics
in realistic situations.

Genotype data for our simulations came from the Gene
Environment Association Studies (GENEVA) preterm birth
dataset (dbGaP accession number: phs000103.v1.p1). In this
GWAS dataset, there are approximately 2,000 mother–baby
pairs genotyped using the Illumina Human 660W-Quad chip.
We dropped mothers’ data and used only 1,795 babies in our
study. There are 863 female babies (393 cases and 470 con-
trols) and 932 male babies (451 cases and 481 controls) in
the dataset. PLINK was used to obtain the minor allele fre-
quencies (MAFs) and the HWE p values (Purcell et al., 2007).
SNPs with HWE p-value< 0.0001 were excluded. After filter-
ing, 12,242 X-chromosome SNPs were retained for the com-
mon allele analyses (MAF > 0.02) and 622 SNPs for rare
allele analyses (0 < MAF < 0.02).

For type I error studies, we used the above-described
genotype data, and simulated phenotypes (both dichotomous
and quantitative) independent of all genotypes. The type I
error rate was computed by simulating one set of pheno-
types, and then tallying the number of positive SNPs across
all the SNPs chromosome-wide. The full dataset includes
393 female cases, 470 female controls, 451 male cases, and
481 male controls, which is balanced according to our def-
inition. To create other balanced (male and female case–
control ratios are the same) and unbalanced datasets for the
dichotomous traits, we dropped subsets of males and females
(who were randomly selected) to arrive at the desired ratios.
We also simulated “spiked in” genotypes for 120 additional
common loci with larger than normal absolute sex differ-
ences in allele frequency in the range of (0.07, 0.15). The
MAFs of the spiked-in genotypes were in the range of (0.03,
0.50). Additional details regarding the spiked-in SNPs are
provided in Supporting Information Table S1. Details regard-
ing the three balanced and the six unbalanced dataset designs
we created can be found in the first two columns of Sup-
porting Information Table S2. Computing the error rate for
only real SNPs, only spiked-in SNPs, and then both real
and spiked in SNPs together allowed us to test the behav-
ior of the statistics both for normal variation between male
and female allele frequencies and for extreme situations.
Figure 1 shows the density plot of the real and spiked-in
SNPs’ allele frequency differences used in the type I error rate
analyses.

For power analyses, we simulated 200 replicates of a sin-
gle SNP–phenotype pairs (for both balanced and unbalanced
designs). For dichotomous traits, we simulated two pheno-
type groups: cases and controls. We considered two different
allele frequency assumptions for common alleles. First, given
the number of cases and controls, we assumed marker allele
frequencies of 0.50 and 0.46 for controls and cases, respec-

F I G U R E 1 Allele frequency differences between females and

males

Notes. The solid line refers to 12,242 real X-chromosome SNPs with

MAF > 0.02. The dashed line refers to 120 spiked-in SNPs with large

allele frequency differences between females (F) and males (M)

tively (same in males and females). Note that this does not
imply a particular genetic risk model in females, but does
assume that the type of effect is relatively similar between
males and females. Then, we tested the more unexpected sit-
uation in which female MAFs were 0.47 and 0.49 for con-
trols and cases, and male allele frequencies were 0.50 and
0.46 for controls and cases (i.e., opposite effect directions in
the two sexes). For the rare allele analysis, we tested allele
frequencies of 0.02 and 0.01 for controls and cases (same in
males and females); and the scenario with female frequen-
cies of 0.025 and 0.015 for controls and cases, and male
allele frequencies of 0.02 and 0.01 for controls and cases.
These scenarios are not comprehensive, but were chosen to
examine the behavior of the statistics when male and female
allele frequencies are similar and when they are different.
To explore the behavior of the association statistics when
applied to quantitative phenotypes, we used the genetic mod-
els as shown in Table 1. We simulated phenotypes from
three different phenotype distributions for each sex. Power
was calculated as the fraction of positive tests across all 200
replicates.

2.1 Test statistics
After simulating the data, we analyzed it using three
approaches: regression analysis, Clayton's, and Zheng's meth-
ods. For regression analysis, we fitted the models (G1-G2xS)
introduced in Equations (1)–(6). Then, we applied Clayton's
method using Clayton's 1-df test statistic (C2) as shown in
Equation (12) and a regression generalization of Clayton's
test, where sex was added as a covariate (the C2S statistic).
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T A B L E 1 Quantitative phenotype power analysis models

Phenotype distributions
Normal (mean, SD = 13) Common allele Rare allele
Mean value for
male genotype

Mean value for female
genotype

A B AA AB BB
Male minor allele
frequency

Female minor
allele frequency

Male minor allele
frequency

Female minor
allele frequency

15 16 15 16 17 0.30 0.30 0.01 0.01

15 17

15 16 15 16 17 0.33 0.30 0.015 0.01

15 17

15 16 15 16 17 0.37 0.30 0.02 0.01

15 17

15 16 15 16 17 0.30 0.40 0.01 0.015

15 17

15 16 15 16 17 0.45 0.30 0.01 0.02

15 17

Finally, we applied Zheng's test as shown in Equation (13)
(the Z statistic).

3 RESULTS

3.1 Dichotomous trait analyses for common
alleles
Supporting Information Table S2 shows complete results for
type I error for dichotomous traits. When the dataset is bal-
anced, we observed that all type I error rates fall in the
Bradley's liberal criterion range of 0.025 to 0.075 (Bradley,
1978) and none of them exceeds 0.058. In the unbalanced
designs regression models G1 and G2 and the Clayton 1-df
statistic C2 had extremely high type I error for the spiked-
in SNPs (see Results for the “Spiked-in” dataset in Support-
ing Information Table S2), and regression model G1 had
extremely high type I error for the real SNPs. If the datasets
are very unbalanced (e.g., datasets U_0.11 and U_8.40), the
type I error may be as high as 0.89 if a sex covariate is not
included. As detailed in the Appendix, the reason for this
is that, under the null hypothesis, in a case–control study
cohort, the overall disease probability, ignoring sex, for a spe-
cific genotype group is a function of the conditional disease
probabilities given sex and the MAF. The disease probabil-
ities within the samples are equal across different genotype
groups when the proportion of cases is the same in both sexes
(i.e., balanced design). The probability of disease for different
genotype groups can differ dramatically when the proportion
of cases differs in males and females (Supporting Informa-
tion Figure S1). Figure 2 shows the type I error rates for the
real SNPs for the tests of dichotomous traits, excluding model
G1 so that the other analysis models can be compared more
appropriately. We also provide the Q–Q plots for the most

balanced set (B_0.89) and one of the most unbalanced sets
(U_8.40) (Supporting Information Figures S2 and S3). For
the balanced design (Supporting Information Figure S2), all
p values are consistent with the theoretical distribution. How-
ever, for the unbalanced design, analysis model G1 drastically
deviates from the theoretical distribution, while the rest of the
analysis models are consistent as expected (Supporting Infor-
mation Figure S3).

To further our goal of understanding how the statistics per-
form under realistic study conditions, we asked whether a “top
10″ gene list might be dominated by aberrant SNPs (such as
our spiked in SNPs with large sex differences in allele fre-
quency) even if the statistic behaves well in most cases and
even under the null hypothesis. Table 2 shows the number of
SNPs in the “top 10″ list (10 smallest p values) that were
spiked in. For the balanced design, we again see no prob-
lem, but for the unbalanced design the top 10 list is indeed
dominated by the spiked in SNPs for the same three methods
that showed problems in Supporting Information Table S2—
regression models G1 and G2, and the Clayton C2 statistic.

In the dichotomous phenotype power analysis (Figure 3;
Supporting Information Table S3), we observed that under
design B_0.89 when the male and female allele frequencies
are equal in cases and controls, regression model G1S has
highest power among the statistics that had robust type I error
across all designs. However, when the male and female allele
frequencies are unequal, regression model G2S and the Clay-
ton C2S statistic are most powerful under design B_0.89. In
unbalanced designs, among the statistics with robust type I
error, G1S and Z have the highest power for the model with
similar male and female effects, though G2S and C2S are bet-
ter in some cases for the model with opposite sex effects. Note
that a power estimate of 0.5 has a standard error of approxi-
mately 0.036.
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F I G U R E 2 Type I error rates of the methods for dichotomous phenotypes and 12,242 real SNPs

Notes. The red line indicates the nominal type I error rate of 0.05, while the black lines indicate the boundaries of the Bradley's liberal criterion range.

Simulations designated B and U represent balanced and unbalanced designs; the Rf/Rm ratio ranges from 0.87 to 8.40 is indicated. Details of the

various simulation designs can be found in Supporting Information Table S2. The G1 statistic was excluded from this graph because of its high type I

error rates

T A B L E 2 Number of spiked-in SNPs on the top 10 list

Design
Females
(Case/Cont)

Males
(Case/Cont)

G1: P∼
G(0,1)

G2: P∼
G(0,2)

G1S: P∼
G(0,1)+S

G2S: P∼
G(0,2)+S

C2: Clayton
(1-df) Z: Zheng

B_0.89 393/470 451/481 0 0 0 1 0 0

U_8.40 393/150 150/481 5 10 0 0 10 0

Details of the simulation designs can be found in Supporting Information Table S2.

3.2 Quantitative trait analyses for common
alleles
Type I error results for quantitative phenotypes are given in
Supporting Information Table S4. Results are very similar
to those for dichotomous phenotypes. For regression model
G1, we observed very high type I error rates when male
and female phenotype means were different (essentially
equivalent to an unbalanced design). However, regression
models with male genotypes coded as (0,2), and/or the
models with a sex covariate have well-controlled type I error
rates.

In quantitative phenotype power analysis (Supporting
Information Table S5), among the methods that have well-
controlled type I error rates, regression model G2S and Clay-
ton's C2S statistic again have highest power when males with
the B genotype have the same mean as homozygous BB
females. However, when the B males’ mean is the same as
heterozygous AB females, G1S is more powerful.

3.3 Rare allele analysis
Our rare allele analyses focused on SNPs with MAF < 0.02.
Since these SNPs yield tests for which asymptotic
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F I G U R E 3 Power of the methods for dichotomous phenotypes

Notes. Power of the methods that had robust type I error rates across all designs where the male and female allele frequencies are equal in cases and

controls, with dichotomous phenotypes. Simulations designated B and U represent balanced and unbalanced designs; the Rf/Rm ratio ranges from

0.87 to 8.40 is indicated. Details of the various simulation designs can be found in top half of Supporting Information Table S3. The G1 statistic was

excluded from this graph because of its high type I error rates, hence inflated power estimates

assumptions are less likely to hold, we wanted to study
the behavior of the statistics on this subset of SNPs sep-
arately. On the X chromosome there are 622 SNPs with
0 < MAF < 0.02 and HWE p-value > 0.0001.

Figure 4 shows the type I error rates of the X-chromosome
statistics for rare minor alleles for dichotomous phenotypes.
Although the type I error rates of regression models G1xS and
G2xS are a little higher than the others, all rates fall within
Bradley's liberal criterion range of 0.025 to 0.075 (Bradley,
1978). A more detailed breakdown is provided in Support-
ing Information Table S6. Most of the results are consistent
with those for the common SNPs, except that the type I error
for regression model G1 does not seem to be severely inflated
as we observed in the common SNPs. To further investigate
this, we plotted the type I error rate by MAF in our data and
observed that the type I error of regression model G1 increases
with the MAF for the unbalanced design U_0.34 (Figure 5B)
and the type I error rate increases faster for the unbalanced
design U_8.40 (Figure 5C). The type I error is well controlled

for the balanced design B_0.89 (Figure 5A). Similar results
were observed for quantitative phenotypes.

To explain this phenomenon, we illustrate the case of the
quantitative phenotype in Figure 6. Under the null, for the
unbalanced design U_0.34 (assuming the mean of the females
is higher than that of the males), an apparent positive associa-
tion is detected for a common allele (Figure 6A). However, for
a rare allele, the homozygous minor allele group has very few
or no datapoints; thus the positive association is not signifi-
cant, thus not affecting the type I error as much (Figure 6B).

Figure 7 shows the results of power analyses for the
dichotomous phenotype rare allele scenario with MAFs of
0.02 and 0.01 for controls and cases (same in males and
females). We observed that the regression model G1S and
regression model G1xS have relatively higher power in the
most of the sampling designs. However, the power of regres-
sion model G1 is very unstable across different sampling
designs. Similar results were observed for a quantitative
phenotype.
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F I G U R E 4 Type I error rates of the methods for dichotomous phenotypes in rare allele scenarios

Notes. The minor allele frequencies in cases and controls are 0.01 and 0.02 in both males and females. The red line indicates the nominal type I error

rate of 0.05, while the black lines indicate the boundaries of the Bradley's liberal criterion range. Simulations designated B and U represent balanced

and unbalanced designs; the Rf/Rm ratio ranges from 0.87 to 8.40 is indicated. Details of the various simulation designs can be found in the first

section of Supporting Information Table S6. The G1 statistic was excluded from this graph because of its high type I error rates

F I G U R E 5 G1 model type I error rates

Notes. G1 model (𝑃 ∼ 𝐺 (0, 1)) type I error rates over different MAF for the designs (A) B_0.89, (B) U_0.34, and (C) U_8.40

3.4 X inactivation
Another issue that should be considered in the evaluation
of X-chromosome association statistics is X inactivation. X
inactivation is transcriptional silencing of the majority of
one of the X chromosomes in a complex manner in females
(Lyon, 1961). Because of X inactivation, none of the statistics
described above are actually based on a correct trait model.

The X inactivation model affects the presumed mean and vari-
ance for the female heterozygote genotype group, and thus in
theory could affect the choice of the best statistic.

There has been some work on statistics that model X inacti-
vation (Clayton, 2009; Wang, Yu, & Shete, 2014). For exam-
ple, Clayton (2009) suggests that for allelic tests, each allele in
females should be counted as half to reflect the dosage com-
pensation for X inactivation.
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F I G U R E 6 Genetic association for unbalanced design

Notes. Genetic association for the unbalanced design U_0.34 under null

hypothesis on the (A) common allele and (B) rare allele. Black dots and

yellow dots indicate mean value of male phenotype and female pheno-

type, respectively. The size of dots is proportional to sample sizes within

the categories. Green symbols indicate overall mean value of phenotype.

Blue lines indicate fitted lines that are estimated from the regression

model

We propose a more realistic trait model, in which the allele
silenced is not uniform throughout the organism—it may or
may not even be uniform in a particular tissue. We suggest that
a heterozygote female could randomly be anything between
pure A and pure B. If this is the case, the variance and the
mean of a quantitative trait for female heterozygotes would
not be simple as in the case above. In particular, the variance
would be much higher than the one we could estimate from
the sample. In quantitative traits, most X-inactivation models
result in higher trait variance for heterozygote females than for
homozygote males or females. In theory, this variance differ-
ence could increase the type I error of traditional regression-
based tests.

We studied the behavior of the statistics under different
X-inactivation models. To test the potential effects of differ-
ent variances in males and females, we simulated quantitative
phenotype variables with uniform and genotype-specific vari-
ances. We compared Clayton's statistic and regression meth-
ods in terms of type I error and power under X-inactivation
models, where randomly one of the X chromosomes in

F I G U R E 7 Power of the methods for dichotomous phenotypes in rare allele scenarios

Notes. The minor allele frequencies in cases and controls are 0.01 and 0.02 in both males and females. Simulations designated B and U represent

balanced and unbalanced designs; the Rf/Rm ratio ranges from 0.87 to 8.40 is indicated. Details of the various simulation designs can be found in the

first section of Supporting Information Table S7
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T A B L E 3 Clayton and regression results for continuous phenotypes

Phenotype distribution Test

Heterozygote
females

Homozygote
females and males Probability

Clayton
(1-df)

Robust
regression using
M estimator

Linear
regression

N(11, 30) N(10+G, 8) Power 0.969 0.987 0.957

N(10, 30) N(10, 8) Type I error 0.021 0.022 0.012

Clayton and regression results based on simulated 1,000 200-sample datasets. G takes values (0, 1, 2) for female genotypes (AA, AB, BB) and (0,2) for male genotypes

(A,B).

females is transcriptionally inactivated, by using simulated
datasets. From these experiments, we observed that type I
error rates and powers of the robust linear regression anal-
yses using an M estimator (Venables, Ripley, & Venables,
2002) and Clayton's test (Clayton 1-df) are close (Table 3).
Wang et al. (2014) proposed an approach of maximizing like-
lihood ratio of all biological possibilities of X inactivation
process and showed that their approach had higher power than
Clayton's test. We did not include the Wang et al. method
in our comparisons because it is computationally intensive
and therefore not a chromosome-scanning method; our focus
is on the effects of chromosome-wide analysis on statistical
performance.

4 DISCUSSION

Failure to analyze X-chromosome data at all is obviously less
than ideal, and can lead to missed discoveries—for example,
the first step in the SNP quality control process in a GWAS
for diabetic nephropathy was to remove the X chromosome
(Pezzolesi et al., 2009), but when the dataset was submit-
ted to the database of genotypes and phenotypes (dbGAP),
the standard precompute analysis by dbGAP discovered that
the X-linked SNP rs16997315 was strongly associated with a
p-value of 4.7× 10−11 (according to the Phenotype–Genotype
Integrator website from NCBI). Even if the X-chromosome
data are analyzed, suboptimal statistics may be used. To ana-
lyze X-chromosome data, specialized analysis methods are
needed. Although there are some statistics developed for
X-chromosome analysis, they assume relatively simple
genetic models. Moreover, these statistics are seldom used for
real data analysis, at least partly because their statistical prop-
erties (strengths and weaknesses) are not well understood.

In this study, we aimed to extensively evaluate three spe-
cialized X-chromosome association test statistics (Clayton,
2008; Zheng et al., 2007), C2, C2S, and Z, and compare
them with regression models using realistic simulated datasets
under various genetic models. We considered balanced and
unbalanced datasets; if the ratio of Rf = (number of female
cases/number of female controls) to Rm = (number of male
cases/number of male controls) is between 0.80 and 1.20, then

the dataset is defined as balanced, otherwise unbalanced. We
emphasized the behavior of the statistics, especially under the
null hypothesis, when scanning the whole X chromosome, so
that, for example, there may be natural variation in the dif-
ference between male and female allele frequencies. In eval-
uating power, we also looked for statistics with power that is
robust to modeling assumptions.

We found that when the sampling design is balanced (for
a dichotomous trait) or the male and female trait means are
similar (for a quantitative trait), all statistics have correct
type I error. However, statistics without a sex effect in the
model can have extremely high type I error when the sam-
pling is unbalanced or quantitative trait means differ between
the sexes. This problem is substantially alleviated when the
male genotype is coded as 0/2 instead of 0/1, except for the
most extreme circumstances (such as our spiked in SNPs).
Our chromosome-wide real data experiment makes it difficult
to determine why the 0/2 coding works better, but does give
strong confidence that the result is realistic. For unbalanced
designs, regression model G1 has very high type I error rates
and should not be used. For unbalanced designs with extreme
sex-specific allele frequency differences (e.g., the spiked-in
SNPs), regression models G1 and G2 and the Clayton C2
statistics are not appropriate, although such large sex differ-
ences in allele frequency are quite rare in real datasets. Loley
et al. (2011) arrived at the same conclusion regarding the
Clayton C2 statistic. They suggested checking for allele fre-
quency differences before applying such tests, but that advice
does not provide a roadmap for genome-wide application. Our
recommendation is to apply a statistic that has appropriate
type I error regardless of allele frequency differences between
the sexes. Thus, we recommend always including a sex effect
in the analysis model as a general precaution.

Our power studies did not produce a clear preference for
0/1 coding or 0/2 coding, and since any real trait is likely to
have effects from multiple SNPs that may behave according
to different models, we are unable to recommend one cod-
ing over the other. However, it should be reassuring to ana-
lysts to see that the power difference between 0/1 and 0/2
coding is rarely large, so an arbitrary choice should not be
harmful.

For X inactivation models, although Clayton's test per-
forms similarly to robust regression methods, both seem to
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have conservative type I error. Further investigation of the
tests under X inactivation models may be needed.

One issue we did not address involves methods for
sequenced X-chromosome data. If an allele of an X-
chromosome SNP is very rare, in females we would expect
to see mostly AA individuals with a few ABs and maybe
one or two BBs. The (0,1,2) coding analysis model is not
appropriate for this type of data because BB individuals
will be influential points in the regression and can bias the
analysis (Figure 6). Therefore, females should be coded as
(0,1), where AB and BB females are 1. However, for males,
it is not obvious whether (0,1) or (0,2) coding is appropriate.

In conclusion, this simulation study showed that available
statistical tests can appropriately handle X-chromosome data
in genomic studies and are fairly robust to deviations from
assumptions, as long as a sex effect is included in the model.
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APPENDIX
Disease probabilities
Assume MAF is 𝑝, and female and male probabilities are
𝑃 (𝐹 ) = 𝑃 (𝑀) = 1∕2.

Let G0, G1, and G2 be female homozygous, heterozygous,
and homozygous genotypes, respectively, and G0 and G1 be
male genotypes.

For females we have

𝑃 (𝐹 ,𝐺0) = 𝑃 (𝐹 )𝑃 (𝐺0|𝐹 ) = 1
2
(1 − 𝑝)2,

𝑃 (𝐹 ,𝐺1) = 𝑃 (𝐹 )𝑃 (𝐺1|𝐹 ) = 𝑝(1 − 𝑝),

𝑃 (𝐹 ,𝐺2) = 𝑃 (𝐹 )𝑃 (𝐺2|𝐹 ) = 1
2
𝑝2.

For males we have

𝑃 (𝑀,𝐺0) = 𝑃 (𝑀)𝑃 (𝐺0|𝑀) = 1
2
(1 − 𝑝),

𝑃 (𝑀,𝐺1) = 𝑃 (𝑀)𝑃 (𝐺1|𝑀) = 1
2
𝑝.

Under the null hypothesis, the conditional disease proba-
bilities given sexes are:

𝑃 (𝐷|𝐹 ,𝐺0) = 𝑃 (𝐷|𝐹 ,𝐺1) = 𝑃 (𝐷|𝐹 ,𝐺2) = 𝑓1,

𝑃 (𝐷|𝑀,𝐺0) = 𝑃 (𝐷|𝑀,𝐺1) = 𝑓2.
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The marginal disease probabilities given genotype are

𝑃 (𝐷|𝐺0) =
𝑃 (𝐷,𝐺0)
𝑃 (𝐺0)

=
𝑃 (𝐷,𝐹 ,𝐺0) + 𝑃 (𝐷,𝑀,𝐺0)

𝑃 (𝐺0)

=
𝑓1

1
2 (1 − 𝑝)2 + 𝑓2

1
2 (1 − 𝑝)

1
2 (1 − 𝑝)2 + 1

2 (1 − 𝑝)

=
𝑓1(1 − 𝑝) + 𝑓2
(1 − 𝑝) + 1

,

𝑃 (𝐷|𝐺1) =
𝑃 (𝐷,𝐺1)
𝑃 (𝐺1)

=
𝑃 (𝐷,𝐹 ,𝐺1) + 𝑃 (𝐷,𝑀,𝐺1)

𝑃 (𝐺1)

=
𝑓1𝑝(1 − 𝑝) + 𝑓2

1
2𝑝

𝑝(1 − 𝑝) + 1
2𝑝

=
𝑓1(1 − 𝑝) + 𝑓2∕2
(1 − 𝑝) + 1∕2

,

𝑃 (𝐷|𝐺2) =
𝑃 (𝐷,𝐺2)
𝑃 (𝐺2)

=
𝑃 (𝐷,𝐹 ,𝐺2) + 𝑃 (𝐷,𝑀,𝐺2)

𝑃 (𝐺2)
=

𝑓1
1
2𝑝

2

1
2𝑝

2
= 𝑓1.

The marginal disease probabilities are equal when 𝑓1 = 𝑓2.
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