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What are Polygenic risk scores (PRS)?

• PRS are a quantitative measure of the cumulative 
genetic risk or vulnerability that an individual possesses 
for a trait.

• The traditional approach to calculating PRS is to 
construct a weighted sum of the betas (or other effect 
size measure) for a set of independent loci  
thresholded at different significance levels. 
• Typically the independence is LD based (LD r2 <=.2) via clumping. 
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Traditional approach
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Traditional approach
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MUST BE INDEPENDENT



Wray et al (2014) J Child Psychol Psychiatry

βC=-.02 βG=.01 βA=.002 βG=.03 βT=.025

.052

Polygenic 
score:

AC GG AT
CC TT

1×-.02 + 2×.01 + 1×.002 + 0×.03 + 2×.025 

Effect size
from GWAS



Main uses of PRS

1) Single disorder analyses

2) Cross-disorder analysis

3) Sub-type analysis



Single trait analyses



Moderated single trait analyses



Cross-trait analysis

PRS-SCZ



Single and cross-trait analyses

Krapohl et al (2016) 
Molecular Psychiatry



Sub-type analysis



PRS and power

The power of the predictor is a function of the power of the GWAS in the 
discovery sample (due to its impact on the accuracy of the estimation of 
the betas). 

“I show that discouraging results in some previous studies were due to 
the low number of subjects studied, but a modest increase in study size 
would allow more successful analysis. However, I also show that, for 
genetics to become useful for predicting individual risk of disease, 
hundreds of thousands of subjects may be needed to estimate the gene 
effects.”

(Dudbridge, 2013)



PRS and power
For simple power calculations you can use a regression power 
calculator (for r2 of up to 0.5%).
As a general rule of thumb you usually want 2,000+ people in the 
target dataset. 

R AVENGEME (https://github.com/DudbridgeLab/avengeme)
Power calculator for discovery (GWAS) sample needed to achieve 
prediction of r2 in target sample

https://github.com/DudbridgeLab/avengeme)


Power of PRS analysis increases with 
GWAS sample size

PGC-MDD1: N=18k
max variance explained = 0.08%, 
p=0.018

PGC-MDD2: N=163k
max variance explained =0.46%,
p= 5.01e-08

Colodro-Conde L, 
Couvy-Duchesne B, et al, (2017)  
Molecular Psychiatry



General steps of processing



(1) GWAS summary statistics

From PGC results, other public domain GWAS, unpublished 

GWAS

SNP identifier (rs number, Chr:BP )

Both Alleles (effect/reference, A1/A2)

Effect

• Beta from association with continuous trait

• OR from an ordinal trait - convert to log(OR)

• Z-score, MAF and N (from an N weighted meta-analysis)

p-value

(frequency of A1)



(1) GWAS summary statistics

From PGC results, other public domain GWAS, unpublished 

GWAS

SNP identifier (rs number, Chr:BP )

Both Alleles (effect/reference, A1/A2)

Effect

• Beta from association with continuous trait

• OR from an ordinal trait - convert to log(OR)

• Z-score, MAF and N (from an N weighted meta-analysis)

p-value

(frequency of A1)

Make sure that your target genotypes are named 
the same way as your discovery data!

 imputation reference and genomic build



(2) Find SNPs in common with your local 
sample and QC
• Imputed data

• QC

• R2 >=0.6

• MAF>=0.01 

• No indels

• No ambiguos strands (*)  - A/T  or T/A or G/C or C/G 

for ((i=1;i<=22;i++))

do

awk '{ if ($5<=.01 & $5<=.99 & $6>=.6) print $1}’ file"$i".info >> available.snps

done



(*) On ambiguous strands
GWAS chip results are expressed relative to the + or – strand of the genome reference

+

-

A/C

T/G

rsxxx A C

MAF

rsxxx T G

MAF 

+

-

A/T

T/A

rsxxx A T

MAF

rsxxx T A

1-MAF 



(3) Clumping

• Select most associated SNP per LD region (pruning)

• Plink1.9 --bfile bfileReferencePanelForLD
--extract QCedListofSNPs
--clump gwasFileWithPvalue
--clump-p1  (#Significance threshold for 

index SNPs)
--clump-p2  (#Secondary significance 

threshold for clumped SNPs)
--clump-r2   (#LD threshold for clumping)
--clump-kb (#Physical distance threshold 

for clumping)
--out OutputName



#Clump data in 2 rounds using plink2 

#1st clumping & extract tops snps for 2nd round

for ((i=1;i<=22;i++))

do

plink2 --bfile reference --chr "$i" –extract available.snps --clump GWAS.noambig

--clump-p1 1 --clump-p2 1 --clump-r2 .5 --clump-kb 250  --out traitX"$i".round1

awk '{print $3, $5}' traitX"$i".round1.clumped > traitX"$i".round2.input

awk '{print $3}' traitX"$i".round1.clumped > traitX"$i".extract2

done

#2nd clumping & extract tops snps for profile

for ((i=1;i<=22;i++))

do

plink2 --bfile reference --chr "$i" --extract traitX"$i".extract2 --clump traitX"$i".round2.input  --

clump-p1 1 --clump-p2 1 --clump-r2 .2 --clump-kb 5000 --out traitX"$i".round2

awk '{print $3}' traitX"$i".round2.clumped > traitX"$i".selected

done



The traitX"$i".selected files will contain the lists of top independent snps. Merge the 

alleles, effect & P values from the discovery data onto these files. 

To do a final strand check merge the alleles of the target set onto these files. If any 

SNPs are flagged as mismatched you will have to manual update the merged file - flip 

the strands (ie an A/G snp would become a T/C snp) but leave the effect as is. 

Create Score files (SNP EffectAllele Effect) and P files contain (SNP Pvalue).

(4) Calculate risk scores

for ((i=1;i<=22;i++))

do

awk '{ if ($6==$8 || $6==$9  ) print $0, "match" ; if ($6!=$8 && $6!=$9 ) print $0, "mismatch"}' 

traitX."$j".merged > strandcheck.traitX."$i"

grep mismatch strandcheck.traitX*

done



(4) Calculate risk scores
for ((i=1;i<=22;i++))

do

plink --noweb --dosage Your_chr"$i".plink.dosage.gz format=1 Z --fam 

Your_chr"$i".plink.fam --score traitX."$i".score --q-score-file traitX."$i".P --q-score-

range p.ranges --out Your_chr"$i".PRS

done

p.ranges

S1  0.00 0.000001

S2  0.00 0.01

S3  0.00 0.10

S4  0.00 0.50

S5  0.00 1.00



base    <- lm (ICV ~         age + sex + PC1 + PC2 +PC3 +PC4 + other-covariates, data =mydata)

score1 <- lm (ICV ~ S1 + age + sex + PC1 + PC2 +PC3 +PC4 + other-covariates, data =mydata)

score2 <- lm (ICV ~ S2 + age + sex + PC1 + PC2 +PC3 +PC4 + other-covariates, data =mydata)

model_base <- summary(base)

model_score1 <- summary(score1)

model_score2 <- summary(score2)

model_base$r.squared

model_score1$r.squared

model_score2$r.squared

anova(base,score1)

anova(base,score2)

(5) Run association analysis –unrelated 
individuals



(5) Run association analysis, controlling 
for relatedness

gcta --reml
--mgrm-bin GRM
--pheno phenotypeToPredict.txt
--covar discreteCovariates.txt
--qcovar quantitativeCovariates.txt
--out Output 
--reml-est-fix 
--reml-no-constrain



Other Methods



Genetic Best Linear Unbiased Predictor

Application to genetic data (animal breeding) HENDERSON, C. 
R. (1950). Estimation of genetic parameters

Review of method and example: 
Henderson, C. R. (1975). Best Linear Unbiased Estimation and 
Prediction under a Selection Model

Charles Roy Henderson 
1911-1989 



BLUP in context of linear models

GWAS estimates: marginal 
SNP effect

Joint and conditional 
SNP effect

N individuals
YNx1 phenotype centered
XNx1 SNP centered

N individuals
YNx1 phenotype centered
XNxm SNPs centered

Yang et al., 2012

BLUP effect

N individuals
YNx1 phenotype centered
ZNxm SNPs centered
smx1 vector of SNP effects 
assumed ~N(0, 𝛔2

s)

Goddard et al., 2009



Calculating BLUP effect sizes

Z’Z: nxn variance-covariance matrix of genotypes
Often not available from GWAS
Can be estimated from the GWAS allele frequencies and LD from a reference panel 
(assumed same population)
Yang et al., 2012

gcta64 --bfile ReferencePanelForLD
--cojo-file GWAS_sumstat.ma 
--cojo-sblup 1.33e6 
--cojo-wind 1000 
--thread-num 20

--cojo-sblup = m * (1 / h2
SNP - 1)

With m the number of SNPs



BLUP limitations and perspective

Requires to inverse
Which can be computationally intensive for large sample sizes

Open field of prediction models
• BLUP “shrinks” the estimates: hypothesis of normally distributed effect sizes 

“infinitesimal model”
• Other shrinkage methods include LASSO: hypothesis of mixture of effect sizes 

(double exponential…)

• Non-additive models? That may include epistasis, dominance
• Semi-parametric models

see Goddard et al., 2009 for review



LDpred
Bayesian estimation of the BLUP effect sizes: “posterior mean effect size of each 
marker by using a prior on effect sizes and LD information from an external reference 
panel” 
Vilhjalmsson et al., 2015



LDpred
Application to real data
Vilhjalmsson et al., 2015

BLUP marginally better than 
Pruning + Thresholding



PRSice

Multiple testing due to the high resolution in 
p-value threshold.

Authors suggest p<0.001 if using the best fit 
PRS.

Significance threshold dependent on LD in the 
target sample and distribution of the 
phenotype predicted.

Unclear if it holds for phenotypes with skewed 
distributions and for non UK samples.

Euesden et al., 2014



Classic / OLS BLUP PRSice

Dosage or best guess Best guess Dosage or best guess

clumping BLUP effects summed 
over all SNPs

clumping

Multiple PRS by p-
value thresholds

Unique PRS All p-value threshold
tested

Bonferroni correction Unclear significance 

threshold for 
association

Hypothesis: effect sizes 

of SNPs normally 
distributed

Fast (can be 
parallelized)

Matrix inversion, can 
be long for large N

Slower and harder to 
parallelize (R package)

PLINK GCTA, PLINK R (PLINK)





A couple of “worked” examples





• The prevalence of schizophrenia is higher in urban areas
than in rural areas  O.R. = 2.39 (1.62–3.51), (Vassos et
al 2012, Schizophrenia Bulletin).

• Two major hypotheses have been proposed to explain
this phenomenon:

(1) causation hypothesis: the stress of city life and
undefined factors in the urban environment
increase the risk of this disease.

(2) selection hypothesis: individuals with genetic
liability for schizophrenia move into urban areas.

Background



• Twin models have shown
genetic factors have a higher
impact on the country vs. city
living as people grow older,
while the impact of family
background decreases.

Whitfield et al. 2005, Twin
Research and Human Genetics



Adults with higher genetic risk for schizophrenia are more

likely to live in urbanised and populated areas than those

with lower risk.

Hypothesis



• 15,544 individuals in 7,015 families (65.6% females, age
mean: 54.4, SD: 13.2) living in Australia.

■ Participants were genotyped
genome-wide and imputed to
1000G v.3.

■ Reported their postcode as part
of the protocols of several
studies on health and wellbeing
conducted from QIMR.

Methods





Measures of urbanicity:

Population density 

Remoteness

+Socio economic status (SES)

(data from the Australian Bureau 
of Statistics)



phenotype= intercept + beta0*covariates + beta1*g + e with g ~ N(0, GRM)

phenotype: population density or remotedness

covariates: PRS-SCZ, age, sex, (SES), 

4 first genetic principal components, imputation chip

e: error

GRM: Genetic correlation matrix

We calculated p-values using the t-statistic calculated on the
basis of the Fix_eff and SE from the GCTA output.

We then applied Bonferroni correction (Sidak method) for
multiple testing yielding a significant threshold of 0.004.

Genome-wide Complex Trait Analysis v. 1.22
(Yang J et al 2011, Am J Hum Genet )





• People with a higher genetic risk for schizophrenia 

may prefer to live in more urban and populated areas.

• Importantly, this study does not use a case-control sample but 

an unselected population sample where the genetic risk for 

schizophrenia was estimated.

• Greater genetic predisposition to schizophrenia is at 

least one mechanism explaining why this illness is 

more prevalent in city environments.

• Future research should test if this effect is replicated 

in another countries, analyse migration effects and 

identify what aspects of urbanised life correlate with 

SCZ genetic risk.

Conclusions





Diathesis-Stress model in depression

Depression = Diathesis + Stress   +       Diathesis*Stress

(Predisposition, 

Vulnerability)
(Disruption of 

psychological 

equilibrium)

Hypothesised 

contribution

to risk

Depression =
Personal stressful life events (PSLE)

Network stressful life events (NSLE)

lack of social support (SS)

PRS*PSLE

PRS*NSLE

PRS*SS

Polygenic risk 

scores

(PRS)



• 5,221 twins from 3,083  twin families 

• European ancestry (<6SD from PC1/PC2 centroid)

• Mean age 35.7, range 17-85, 66% females

• Depression, Personal & Network stressful life events, Perceived 
social support

• GWAS arrays, imputed to 1000G reference

Sample and data



Measure of Depression

12 depression items  

Selected from: 

Delusion Symptoms Scale Inventory (DSSI) 

+ 

Symptoms Check List (SCL)

All scores were estimated using Item Response Theory (IRT)

– improves distribution, deals with missingness



REALITY CHECK - Increased odds of DSM-IV MDD diagnosis per decile of 

depression IRT score

• Association between 

Depression score and
lifetime DSM-IV MDD 
diagnoses from telephone 

interview studies conducted 4-12 

years after DSSI/SCL)

• p-value = 3.0e−108

 Disease odds >6x in top 
decile of depression score 
compared to first decile



Measures of Stress

Personal stressful life events (PSLE)
(adapted from List of threatening experiences (Brugha et al. 1985,)

Serious problem with spouse, family member, friend, neighbour, workmate

Event: Divorce, separation, illness, injury, accident, burgled, robbed, lost job, 

financial problems, legal troubles...

Social Support (SS)
(Kessler Perceived SS, KPSS)

How much your close network: listens to your worries, understands the way 

you feel / think, helps you if needed, shares private feelings with you

All scores were estimated using Item Response Theory (IRT) 

– improves distribution, deals with missingness

Network stressful life events (NSLE) 
(adapted from List of threatening experiences)

Illness, Injury, death or personal crisis in close network (spouse, child, 

mother, father, twin, sibling, someone else close)



MAIN EFFECTS  - POLYGENIC RISK SCORES

(max variance explained = 0.46%,
p = 4.3e-08)

N=163k



Main effects  - Polygenic Risk Scores

(max variance explained = 0.46%,
p = 4.3e-08)

N=163k

(max variance explained = 0.08%,
p=0.018)

N=18k

Note increased variance accounted for with larger N
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PRS main effects appear larger in males

MAIN EFFECTS  - POLYGENIC RISK SCORES
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* Blue is negative

MAIN EFFECTS  - STRESSORS

P
SL

E
N

SL
E

SS

Note sex differences for SS

P
SL

E
N

SL
E

SS P
SL

E
N

SL
E

SS

* p-value=4.7e−03



Test of Interaction - it’s all coming from females !



PSLE

Diathesis

Depression 
score

the effect of the PSLE-diathesis interaction is visible when comparing the 

bottom (minimal PSLE) and top (maximal PSLE) edges of the surface



Practical



Todays Data

• http://labs.med.miami.edu/myers/LFuN/LFuN.html

• post-mortem gene expression in ‘brain’ tissue

• N=364

• Real data – unfiltered!

http://labs.med.miami.edu/myers/LFuN/LFuN.html


https://sites.google.com/broadinstitute.org/

ukbbgwasresults/



• for i in {1..22} 

• do 

• echo $i

• rm chr"$i".pass 

• zcat chr"$i".info.gz | awk '{ if ($5>=.01 && $7 >=.6) print $1}' > chr"$i".pass 

• done

• for i in {1..22} 

• do 

• echo $i

• ~/bin/plink2 --vcf chr"$i".dose.vcf.gz --extract chr"$i".pass --make-bed --out QCchr"$i" --threads 5

• done

• for i in {2..22} 

• do

• echo QC"$i".bed QC"$i".bim QC"$i".fam >>join.list

• done

• for i in 20160 20161 20162 2887 3466 3476 

• do

• echo SNP P A1 A2 Beta > "$i".4clumping

• zless "$i".assoc.tsv.gz | awk '{print $1, $6, $9}' | sed 's/:/ /g' | awk '{ if (NR>1) print $1 ":" $2, $6, $3, $4, $5}' 
>> "$i".4clumping

• done

• ~/bin/plink1.9 --bfile QC1 --merge-list join.list --make-bed  --out gwide



• for i in 20160 20161 20162 2887 3466 3476 

• do

• ~/bin/plink1.9 --bfile ../imputed/gwide --clump "$i".4clumping --clump-p1 1 --clump-p2 1 --clump-r2 .2 --clump-kb 2000 --clump-
verbose --clump-annotate A1 A2 Beta --out ind"$i"

• done

• for i in {1..22} 

• do 

• echo $i

• ~/bin/plink2 --bfile QCchr"$i" --exclude  3alleles --make-bed --out QC"$i" --threads 5

• done

• for i in 20160 20161 20162 2887 3466 3476 

• do

• grep INDEX ind"$i".clumped | awk '{print $2, $7, $8, $9, $10}' | sed 's/,//g' >> ind"$i".scores

• done

• ~/bin/plink1.9 --bfile ../imputed/gwide --score ind"$i".scores 1 4 5 sum no-mean-imputation include-cnt --out tobacco"$i"

• for i in 20160 20161 20162 2887 3466 3476 

• do

• awk '{ if ($2 <= .01) print $0 }' ind"$i".scores > ind"$i".b

• awk '{ if ($2 <= .0001) print $0 }' ind"$i".scores > ind"$i".c

• awk '{ if ($2 <= .000001) print $0 }' ind"$i".scores > ind"$i".d

• cp ind"$i".scores  ind"$i".a

• done

• for i in 20160 20161 20162 2887 3466 3476 

• do

• for j in a b c d 

• do

• ~/bin/plink1.9 --bfile ../imputed/gwide --score ind"$i"."$j" 1 4 5 sum include-cnt --out "$j"."$i"

• done

• done



Todays data

• PRS for Ever Smoked and Pack Years
• a no threshold

• b <= .01

• c <= .0001

• d <= .000001

• Phenotypes expression of BDNF, CHRNA5 & HTR2A in 
Cortex

• Covariate AD status & Ancestry MDS


