
(Re) introduction to Linux
Sarah Medland

Boulder 2019

Getting the most out of the workshop

• Ask questions!!!

• Don’t sit next to someone you already know

• Work with someone with a different skillset
and different experience level

• Use the workshop laptop

– You will have access to your files after you leave

• Come to the social functions

• Ask questions!!!

I work in Brisbane
at QIMR

Sarah Medland

not

Morning sessions

• Optional

– Feel free to wander in and out/check email etc

• Topics

– Shift in response to feedback

– Tomorrow: PRS (plink & R)

– Wednesday: Sex differences & X chromosome

– Thursday: Python

– Friday: Simulation

Superfast intro to Linux

This year’s OS

• Debian (linux)
– Free

– Many free software packages available
• Open office

• R

• PSPP

• Terminal

• Based on Unix
– long and venerable history

– http://en.wikipedia.org/wiki/Unix

Close but not the same…

• Most basic shortcuts will work

– crtl+C for copy crtl+V for paste etc

• Supports folder based navigation

• /\ BIG PROBLEM is \ vs /

• You will have used some version of unix
previously

File hygiene is very important

• Files are stored in Unix format not DOS or Mac

– Changes the line ending characters

– Use dos2unix, unix2dos, mac2unix, unix2mac to
change formats

– Can use the file command to check format

• Unix systems are case sensitive!

• NO SPACES in your file/directory names!!

• Wildcards ie dos2unix *.dat

Working in the terminal
Input …. Output

• Input
▫ Most commands don’t need input signifiers

▫ < can be used to specify

• Output
▫ Without specifying most output will print to the screen

▫ > can be used to direct

 type: echo ‘this is a dummy file’

 echo ‘this is a dummy file’ > dummy.txt

| (pipe) | more pauses the output after a screen worth of text
has appeared hit the space bar to get the next screens
worth

The manual

• The man command can be used in conjunction with
other commands to put up some basic instructions

• type: man ls
▫ ls is the list command it pulls up a list of the files in the

directory

Also many many helpful webpages w examples

Permissions
the ability to read, write and execute files

• type: ls –l

• These are the permissions

• 1st a directory flag (d or -)

• then 3 letters to define the owners permissions

• 3 letters to define the groups permissions

• 3 letters to define the everyone else's permissions

Permissions
the ability to read, write and execute files

• read access

• write access

• execute
▫ to ‘run’ script or a program the file must be made

executable

Permissions
the ability to read, write and execute files

• To change the mode/permissions use chmod
▫ a number of ways to do this
▫ type: echo “this is a test” > dummy.txt
▫ ls –l
▫ chmod +x dummy.txt
▫ ls –l
▫ chmod -x dummy.txt
▫ ls –l
▫ what happened?

Useful ‘one liners’
• cp copy

• mv move = rename

• rm remove

• ls list

• echo

• head looks at the top 10 lines

• tail looks at the last 10 lines

• wc counts number of lines,
words, characters

• sed find and replace

• grep find and report

• awk restructure files

• pwd find where you are

• ~/ get to your home
directory

• file reports type of file

Grep

• search globally for lines matching the regular
expression, and print them

▫ For association output for chromosome 2

▫ To extract the result for snp rs59831

▫ Type: grep ‘rs59831’ output.txt > summary.txt

Grep

• Useful flags
▫ -v

 reverse grep select line that does not have the pattern

▫ -C x
 To x rows before and after the target

▫ -n
 Print the line number before the line

▫ Many more…

Awk

• derived from the surnames of its authors — Alfred
Aho, Peter Weinberger, and Brian Kernighan

• Many functions

• Very useful for restructuring data

Awk
• Ozbmi2.rec

• awk ‘{ print $1, $10, $11, $4, $5 }’ ozbmi2.rec >
new.rec

Awk

• $1 = column 1

• Print $0 = print whole line

• add subtract multiply etc

• change number of decimals

• Many functions

Sort

• Useful flags
▫ -f ignore case

▫ -n numeric sort

▫ -r reverse

▫ -c check if a file is sorted

▫ -u prints only unique lines

▫ -k2 sort starting at column 2

▫ sort –fg –k 3 (sort in numeric order on column 3)

Zipping and unzipping

• zip
▫ zip my1st.zip *txt

▫ zip –mTr my1st.zip *txt

• unzip

▫ unzip my1st.zip

• gzip
▫ gzip example.txt

• Un-gzip

▫ gzip –d example.txt.gz

tar
• Unzipping tar.gz files

▫ tar -xzvf example.tar.gz

▫ Make Tar files

▫ tar cvf MyProject.tar MyProject
▫ List contents

▫ tar tvf my-archive.tar

▫ tar tzvf my-archive.tar.gz

Looking at your data

• less filename

▫ Allows you to scroll through your data

• less –S filename

▫ Shows a screen width of data (stops text
wrapping)

• zless –S filename

▫ Allows you to look at a gz file without
unzipping

Nano (text editor)

• nano filename
▫ Commands at bottom of screen

▫ Save = crtl+O

▫ Exit = crtl +X

Putting it together
• Making a ‘shell’ script to automate analyses

<contents of imaginary file inefficient.sh>

pedstats –p 1.ped –d 1.dat –pdf --prefix:1

merlin –p 1.ped –d 1.dat –m 1.map --vc --pdf --prefix:1

pedstats –p 2.ped –d 2.dat –pdf --prefix:2

merlin –p 2.ped –d 2.dat –m 2.map --vc --pdf --prefix:2

pedstats –p 3.ped –d 3.dat –pdf --prefix:3

merlin –p 3.ped –d 3.dat –m 3.map --vc --pdf --prefix:3

To run this make inefficient.sh executable then type ./inefficient.sh

Loops 1
<contents of imaginary file loop_a.sh>

for $i in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
21 22

do

pedstats –p $i.ped –d $i.dat --pdf --prefix:$i

merlin –p $i.ped –d $i.dat –m $i.map --vc --pdf --prefix:$i

done

Loops 2

<contents of imaginary file loop_b.sh>

for ((i = 1 ; i <= 22 ; i++))
do

pedstats –p $i.ped –d $i.dat --pdf --prefix:$i

merlin –p $i.ped –d $i.dat –m $i.map --vc --pdf --prefix:$i

done

Other bits

• When working on servers

▫ bg &

▫ fg

▫ nohup

▫ crtl+c

▫ crtl+z

▫ which

Shutting down you unix session

• exit

• logout

• quit

• q

Superfast intro to R

What is it?

•R is an interpreted computer language.
–System commands can be called from within R

•R is used for data manipulation, statistics, and
graphics. It is made up of:
–operators (+ - <- * %*% …) for calculations on arrays &

matrices

–large, coherent, integrated collection of functions

–facilities for making unlimited types of publication quality
graphics

–user written functions & sets of functions (packages); 800+
contributed packages so far & growing

Advantages

o Fast** and free.

o State of the art: Statistical researchers provide
their methods as R packages. SPSS and SAS are
years behind R!

o 2nd only to MATLAB for graphics.

o Active user community

o Excellent for simulation, programming,
computer intensive analyses, etc.

o Forces you to think about your analysis.

o Interfaces with database storage software (SQL)

Disadvantages
o Not user friendly @ start - steep learning curve,

minimal GUI.

o No commercial support; figuring out correct
methods or how to use a function on your own
can be frustrating.

o Easy to make mistakes and not know.

o Working with large datasets is limited by RAM!!!

o Data prep & cleaning can be messier & more
mistake prone in R vs. SPSS or SAS

o Hostility on the R listserve

Learning R....

R-help listserve....

Using R this week

• R-studio http://rstudio.org/

http://rstudio.org/

Setting this up at home

• Install R first

• Install R studio

• Install packages

Start up R via R studio

4 windows:
Syntax – can be opened in regular txt file - saved

Terminal – output & temporary input - usually unsaved

Data manager – details of data sets and variables

Plots etc

R sessions are interactive

GETTING STARTED

How to use help in R?

• R has a help system built in.

• If you know which function you want help with
use ?_______ or help(_____) with the function
in the blank.

•?hist.

•help(hist)

• If you don’t know which function to use, then use
help.search(“_______”).

•help.search(“histogram”).

• QuickR webpage

•https://www.statmethods.net/

Importing Data

First make sure your data is in an easy to read
format such as space, tab or CSV

Use code:
D <- read.table(“ozbmi2.txt”,header=TRUE)

D <-read.table(“ozbmi2.txt”,na.strings=“-

99”,header=TRUE)

D <- read.table(“ozbmi2.csv”, sep=“,”

header=TRUE)

D <- read.csv(“ozbmi2.csv”, header=TRUE)

Exporting Data

Tab delimited
write.table(D, “newdata.txt”,sep=“\t”)

To xls

library(xlsReadWrite)

write.xls(D, “newdata.xls")

Checking data

#list the variables in D

names(D)

dimensions of D

dim(D)

print the first 10 rows of D

head(D, n=10)

#referring to variables in D
#format is Object$variable

head(D$age, n=10)

Basic Manipulation

#You can make new variables within an existing
object

D$newage<- D$age*100

#Or overwrite a variable

D$age<- D$age*100

#Or recode a variable

#D$catage <- ifelse(D$age > 30,

c("older"), c("younger"))

Checking data

#Mean and variance

mean(D$age, na.rm =TRUE)

var(D$age , na.rm =TRUE)

#For a number of variables

lapply(D, mean, na.rm=TRUE)

sapply(D, mean, na.rm=TRUE)

Checking data

A bit more info

summary(D$age)

summary(D$age[which(D$agecat==1)])

What about a categorical variable

table(D$agecat)

table(D$agecat,D$zyg)

Some basic analysis

typing D$ is getting annoying so we can attach the
data

attach(D)

table(agecat,zyg)

#detach(D)

Correlations anyone?

cor(wt1,bmi1, use="complete")

cor(ht1,bmi1, use="complete")

regression

Multiple Linear Regression
fit <- lm(bmi1 ~ age + zyg, data=D)

summary(fit)

Other useful functions
coefficients(fit) # model coefficients

confint(fit, level=0.95) # CIs for model

parameters

anova(fit) # anova table

vcov(fit) # covariance matrix for model parameters

Basic plots

Histogram

#basic

hist(age)

#basic

hist(age, breaks=12, col=‘red’)

Add labels

hist(age, breaks=12, col='red', xlab='age in
years',main='Histogram of age‘)

Looking at your data...

#Kernal density plot

d <- density(age, na.rm = "TRUE") # returns the
density data

plot(d) # plots the results

Looking at your data...

#Kernal density plot by zyg?
library(sm)

create value labels

zyg.f <- factor(zyg, levels= seq(1,5),

labels = c("MZF", "MZM", "DZF", "DZM", "DZOS"))

plot densities

sm.density.compare(age, zyg, xlab="Years")

title(main="Years by ZYG")

add legend

colfill<-c(2:(2+length(levels(zyg.f))))

legend(.8,3, levels(zyg.f), fill=colfill)

Huh what?

> library(sm)

Error in library(sm) : there is no package called 'sm'

> sm.density.compare(age, zyg, xlab="Years")

Error: could not find function "sm.density.compare"

Adding a package...

install.packages()

Looking at your data...

#Kernal density plot by zyg?
library(sm)

create value labels

zyg.f <- factor(zyg, levels= seq(1,5),

labels = c("MZF", "MZM", "DZF", "DZM", "DZOS"))

plot densities

sm.density.compare(age, zyg, xlab="Years”)

title(main="Years by ZYG")

add legend

colfill<-c(2:(2+length(levels(zyg.f))))

legend(.8,3, levels(zyg.f), fill=colfill)

That’s great but how do I save it?

make a png file to hold the plot

png("zygdensity.png")

create value labels

zyg.f <- factor(zyg, levels= seq(1,5),

labels = c("MZF", "MZM", "DZF", "DZM", "DZOS"))

plot densities

sm.density.compare(age, zyg, xlab="Years”)

title(main="Years by ZYG")

add legend via mouse click

colfill<-c(2:(2+length(levels(zyg.f))))

legend(.8,3, levels(zyg.f), fill=colfill)

close the png file to allow viewing

dev.off()

Final Words of Warning

“Using R is a bit akin to smoking.
The beginning is difficult, one
may get headaches and even
gag the first few times. But in
the long run, it becomes
pleasurable and even addictive.
Yet, deep down, for those
willing to be honest, there is
something not fully healthy in
it.” --Francois Pinard

Time for coffee

explodingdog.com

