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Human Demographic History Impacts
Genetic Risk Prediction across Diverse Populations

Alicia R. Martin,1,2,3,4 Christopher R. Gignoux,4 Raymond K. Walters,1,2,3 Genevieve L. Wojcik,4

Benjamin M. Neale,1,2,3 Simon Gravel,5,6 Mark J. Daly,1,2,3 Carlos D. Bustamante,4

and Eimear E. Kenny7,8,9,10,*

The vast majority of genome-wide association studies (GWASs) are performed in Europeans, and their transferability to other popula-

tions is dependent on many factors (e.g., linkage disequilibrium, allele frequencies, genetic architecture). As medical genomics studies

become increasingly large and diverse, gaining insights into population history and consequently the transferability of disease risk mea-

surement is critical. Here, we disentangle recent population history in the widely used 1000 Genomes Project reference panel, with an

emphasis on populations underrepresented in medical studies. To examine the transferability of single-ancestry GWASs, we used pub-

lished summary statistics to calculate polygenic risk scores for eight well-studied phenotypes. We identify directional inconsistencies in

all scores; for example, height is predicted to decrease with genetic distance from Europeans, despite robust anthropological evidence

that West Africans are as tall as Europeans on average. To gain deeper quantitative insights into GWAS transferability, we developed a

complex trait coalescent-based simulation framework considering effects of polygenicity, causal allele frequency divergence, and heri-

tability. As expected, correlations between true and inferred risk are typically highest in the population from which summary statistics

were derived. We demonstrate that scores inferred from European GWASs are biased by genetic drift in other populations even when

choosing the same causal variants and that biases in any direction are possible and unpredictable. This work cautions that summarizing

findings from large-scale GWASs may have limited portability to other populations using standard approaches and highlights the need

for generalized risk prediction methods and the inclusion of more diverse individuals in medical genomics.
Introduction

The majority of genome-wide association studies (GWASs)

have been performed in populations of European de-

scent.1–4 An open question in medical genomics is the de-

gree to which these results transfer to new populations.

GWASs have yielded tens of thousands of common genetic

variants significantly associated with human medical and

evolutionary phenotypes, most of which have replicated

in other ethnic groups.5–7 However, GWASs are optimally

powered to discover common variant associations, and the

European bias in GWASs results in associated SNPs with

higher minor allele frequencies on average compared to

other populations. The predictive power of GWAS findings

andgenetic diagnostic accuracy innon-Europeans are there-

fore limited by population differences in allele frequencies

and linkage disequilibrium structure. For example, a previ-

ous study showed that the accuracy of breeding values and

genomic prediction decays approximately linearly with

increasingdivergencebetween thediscovery and target pop-

ulation.8 Additionally, multiple individuals with African

ancestry have received false positive misdiagnoses of hyper-

trophic cardiomyopathy that would have been prevented

with the inclusion of even small numbers of African Ameri-
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cans in these studies.9 Further, a previous study finding that

96% of GWAS participants are of European descent1 has

recently been updated; although the non-European propor-

tion of GWAS participants has increased to nearly 20%, this

is primarily driven by Asian individuals, and the proportion

of individuals with African and Hispanic/Latino ancestry in

GWASs has remained essentially unchanged.4

As GWAS sample sizes grow to hundreds of thousands of

samples, they also become better powered to detect rare

variant associations.10–12 Large-scale sequencing studies

have demonstrated that rare variants show stronger

geographic clustering than common variants.13–15 Rare,

disease-associated variants are therefore expected to track

with recent population demography and/or be population

restricted.14,16–18 As the next era of GWASs expands to

evaluate the disease-associated role of rare variants, it is

not only scientifically imperative to include multi-ethnic

populations, it is also likely that such studies will

encounter increasing genetic heterogeneity in very large

study populations. A comprehensive understanding of

the genetic diversity and demographic history of multi-

ethnic populations is critical for appropriate applications

of GWASs and ultimately for ensuring that genetics does

not contribute to or enhance health disparities.4
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The most recent release of the 1000 Genomes Project

(phase 3) provides one of the largest global reference

panels of whole-genome sequencing data, enabling a

broad survey of human genetic variation.19 The depth

and breadth of diversity queried facilitates a deep under-

standing of the evolutionary forces (e.g., selection and

drift) shaping existing genetic variation in present-

day populations that contribute to adaptation and

disease.20–25 Studies of admixed populations have been

particularly fruitful in identifying genetic adaptations

and risk for diseases that are stratified across diverged

ancestral origins.26–31 Admixture patterns became espe-

cially complex during the peopling of the Americas, with

extensive recent admixture spanning multiple continents.

Processes shaping structure in these admixed populations

include sex-biased migration and admixture, isolation-

by-distance, differential drift in mainland versus island

populations, and variable admixture timing.14,32,33

Standard GWAS strategies approach population struc-

ture as a nuisance factor. A typical stepwise procedure first

detects dimensions of global population structure in each

individual, using principal-component analysis (PCA) or

other methods,34–37 and often excludes ‘‘outlier’’ individ-

uals from the analysis and/or corrects for inflation arising

from population structure in the statistical model for

association. Such strategies reduce false positives in test

statistics, but can also reduce power for association in

heterogeneous populations and are less likely to work for

rare variant association.38,39 Recent methodological

advances have leveraged patterns of global and local

ancestry for improved association power,27,40,41 fine-map-

ping,42 and genome assembly.43 At the same time, popula-

tion genetic studies have demonstrated the presence of

fine-scale sub-continental structure in the African, Native

American, and European components of populations

from the Americas.44–47 If trait-associated variants follow

the same patterns of demography, then we expect that

modeling sub-continental ancestry may enable their

improved detection in admixed populations.

The dawn of the GWAS era saw limited success in identi-

fying genome-wide significant loci associated with disease,

and a major endeavor to better understand the genetic

architecture of complex traits emerged. The peaks that

met genome-wide significance typically did not explain a

significant fraction of the phenotypic variance, and a

major goal to estimate how many more signals remained

yet to be discovered arose; this objective ushered in a

wave of methodological development in heritability, linear

mixed models, and polygenic risk prediction, as discussed

and reviewed extensively elsewhere.11,48–56 Numerous

complex traits have been studied with cohort sizes in the

hundreds of thousands, and yet in each case there are

many more signals that improve prediction accuracy

than meet genome-wide significance.48,57–59 For example,

including only genome-wide significant loci in the predic-

tion of schizophrenia explains <3% of the phenotypic

variance, whereas loci meeting the significance threshold
636 The American Journal of Human Genetics 100, 635–649, April 6,
that optimally balances signal versus noise (in this case,

p % 0.1) in the meta-analysis explains considerably more

(>18%) of the phenotypic variance.11 Because the predic-

tion accuracy, which is usually measured via prediction

R2, Nagelkerke’s R2, or receiver operator curve AUC, of

polygenic risk scores is currently low for most traits,56

genetic risk prediction is not clinically viable at present,

but polygenic risk scores have nonetheless repeatedly

proven valuable in research contexts across a multitude

of complex traits11,48,60–65 and will become increasingly

useful as GWAS sample sizes grow.59 Additionally, several

methodological advancements to the standard approach

have recently been undertaken.58,66–68

In this study, we explore the impact of population diver-

sity on the landscape of variation underlying human traits.

We infer demographic history for the global populations in

the 1000 Genomes Project, focusing particularly on ad-

mixed populations from the Americas, which are under-

represented in medical genetic studies.4 We disentangle

local ancestry to infer the ancestral origins of these popula-

tions.We link this work to ongoing efforts to improve study

design and disease variant discovery by quantifying biases

in clinical databases and GWASs in diverse and admixed

populations. These biases have a striking impact on genetic

risk prediction; for example, a previous study calculated

polygenic risk scores for schizophrenia in East Asians and

Africans based on GWAS summary statistics derived from

a European cohort and found that prediction accuracy

was reduced by more than 50% in non-European popula-

tions.67 To disentangle the role of demography on poly-

genic risk prediction derived from single-ancestry GWASs,

we designed a coalescent-based simulation framework re-

flecting modern human population history and show that

polygenic risk scores derived from European GWASs are

biased when applied to diverged populations. Specifically,

we identify reduced variance in risk prediction with

increasing divergence from Europe reflecting decreased

overall variance explained, anddemonstrate that anenrich-

ment of low-frequency risk and high-frequency protective

alleles contribute to an overall protective shift in European

inferred risk on average across traits. Our results highlight

the need for the inclusion of more diverse populations

in GWASs as well as genetic risk prediction methods

improving transferability across populations.
Material and Methods

Ancestry Deconvolution
We used the phased haplotypes from the 1000 Genomes con-

sortium. We phased reference haplotypes from 43 Native

American samples from Mao et al.69 inferred to have >0.99

Native ancestry in ADMIXTURE using SHAPEIT2 (v.2.r778),70

then merged the haplotypes using scripts made publicly avail-

able. These combined phased haplotypes were used as input to

the PopPhased version of RFMix v.1.5.471 with the following

flags: -w 0.2, -e 1, -n 5, - -use-reference-panels-in-EM, - -forward-

backward EM. The node size of 5 was selected to reduce bias in
2017



random forests resulting from unbalanced reference panel sizes

(AFR panel N ¼ 504, EUR panel N ¼ 503, and NAT panel

N ¼ 43). We used the default minimum window size of 0.2 cM

to enable model comparisons with previously inferred models

using Tracts.72 We used 1 EM iteration to improve the local

ancestry calls without substantially increasing computational

complexity. We used the reference panel in the EM to take better

advantage of the Native American ancestry tracts from the

Hispanic/Latinos in the EM given the small NAT reference panel.

We set the LWK, MSL, GWD, YRI, and ESN as reference African

populations, the CEU, GBR, FIN, IBS, and TSI as reference

European populations, and the samples from Mao et al.69 with

inferred >0.99 Native ancestry as reference Native American

populations, as in Abecasis et al.73
Ancestry-Specific PCA
We performed ancestry-specific PCA, as described in Moreno-Es-

trada et al.32 The resulting matrix is not necessarily orthogonal-

ized, so we subsequently performed singular value decomposition

in python 2.7 using numpy. There were a small number of major

outliers, as seen previously.32 There was one outlier (ASW individ-

ual NA20314) when analyzing the African tracts, which was ex-

pected as this individual has no African ancestry. There were eight

outliers (PUR HG00731, PUR HG00732, ACB HG01880, ACB

HG01882, PEL HG01944, ACB HG02497, ASW NA20320, ASW

NA20321) when analyzing the European tracts. Some of these in-

dividuals hadminimal European ancestry, had South or East Asian

ancestry misclassified as European ancestry resulting from a

limited 3-way ancestry reference panel, or were unexpected out-

liers. As described in the PCAmaskmanual, a handful of major out-

liers sometimes occur. As AS-PCA is an iterative procedure, we

therefore removed the major outliers for each sub-continental

analysis and orthogonalized the matrix on this subset.
Tracts
The RFMix output was collapsed into haploid bed files, and ‘‘UNK’’

or unknown ancestry was assigned where the posterior probability

of a given ancestry was <0.90. These collapsed haploid tracts were

used to infer admixture timings, quantities, and proportions for

the ACB and PEL (new to phase 3) using Tracts.72 Because the

ACB have a very small proportion of Native American ancestry,

we fit three 2-way models of admixture, including one model of

single- and two models of double-pulse admixture events, using

Tracts. In both of the double-pulse admixture models, the model

includes an early mixture of African and European ancestry fol-

lowed by another later pulse of either European or African

ancestry. We randomized starting parameters and fit each model

100 times and compared the log-likelihoods of the model fits.

The single-pulse and double-pulse model with a second wave of

African admixture provided the best fits and reached similar log-

likelihoods, with the latter showing a slight improvement in fit.

We next assessed the fit of nine different models in Tracts for the

PEL,72 including several two-pulse and three-pulse models.

Ordering the populations as NAT, EUR, and AFR, we tested the

following models: ppp_ppp, ppp_pxp, ppp_xxp, ppx_xxp,

ppx_xxp_ppx, ppx_xxp_pxx, ppx_xxp_pxp, ppx_xxp_xpx, and

ppx_xxp_xxp, where the order of each letter corresponds with

the order of populations given above, an underscore indicates a

distinct migration event with the first event corresponding with

the most generations before present, p corresponds with a pulse

of the ordered ancestries, and x corresponds with no input from
The Ame
the ordered ancestries. We tested all nine models preliminarily

three times, and for all models that converged and were within

the top three models, we subsequently fit each model with 100

starting parameter randomizations.
Imputation Accuracy
Imputation accuracy was calculated using a leave-one-out internal

validation approach. Two array designs were compared for this

analysis: Illumina OmniExpress and Affymetrix Axiom World

Array LAT. Sites from these array designs were subset from chromo-

some 9 of the 1000 Genomes Project Phase 3 release for admixed

populations. After fixing these sites, each individual was imputed

using the rest of the dataset as a reference panel.

Overall imputation accuracy was binned by minor allele fre-

quency (0.5%–1%, 1%–2%, 2%–3%, 3%–4%, 4%–5%, 5%–10%,

10%–20%, 20%–30%, 30%–40%, 40%–50%) comparing the geno-

typed true alleles to the imputed dosages. A second round of ana-

lyses stratified the imputation by local ancestry diplotype, which

was estimated as described earlier. Within each ancestral diplotype

(AFR_AFR, AFR_NAT, AFR_EUR, EUR_EUR, EUR_NAT, NAT_NAT),

imputation accuracy was again estimated within MAF bins.
Empirical Polygenic Risk Score Inferences
In the most standard approach, genetic risk scores for a target

cohort are generated using genome-wide summary statistics from

a discovery GWAS with a set of SNPs common to both studies.

From this starting set of SNPs, a further reduced set of pruned,

approximately independent SNPs are then identified through a

greedy clumping algorithm. Typically, progressively larger sets of

SNPs defined by a range of p value thresholds (e.g., p < 5 3 10�8,

1 3 10�5, 1 3 10�4, 1 3 10�3, 0.01, etc.) are evaluated to identify

the best model balancing the signal to noise ratio to maximize

phenotypic variance explained.57,58 Once the optimal significance

threshold and the final set of pruned, approximately independent

set of SNPs have been selected, a polygenic risk score for each

individual in a target sample is computed as the sum of the count

of risk alleles weighted by the effect size (e.g., log odds ratio).

To compute polygenic risk scores in the 1000 Genomes samples

using summary statistics from previous GWASs, we first filtered to

biallelic SNPs and removed ambiguous AT/GC SNPs from the inte-

grated 1000 Genome call set. To get relatively independent associ-

ations when multiple significant p value associations are in the

same region in a GWAS (i.e., in LD), we performed clumping in

plink using the - -clump flag for all variants with MAF R 0.01,74

which uses a greedy algorithm ordering SNPs by p value, then

selectively removes SNPs within close proximity and LD in

ascending p value order (i.e., starting with the most significant

SNP). As a population cohort with similar LD patterns to the study

sets, we used European 1000 Genomes samples (CEU, GBR, FIN,

IBS, and TSI). To compute the polygenic risk scores, we considered

all SNPs with p values % 1 3 10�2 in the GWAS, a window size

of 250 kb, and an R2 threshold of 0.5 in Europeans to group

SNPs. After obtaining the most significant, approximately inde-

pendent signals (Table S4), we computed polygenic scores using

the - -score flag in plink.74
Polygenic Risk Score Simulations
We simulated genotypes in a coalescent framework with msprime

v.1.375 for chromosome 20 incorporating a recombination map of

GRCh37 and an assumed mutation rate of 2 3 10�8 mutations /

(base pair * generation). We used a demographic model previously
rican Journal of Human Genetics 100, 635–649, April 6, 2017 637
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Figure 1. Sub-continental Diversity and Origins of African, European, and Native American Components of Recently Admixed
American Populations
(A) ADMIXTURE analysis at K ¼ 3 focusing on admixed Americas samples, with the NAT,69 CEU, and YRI as reference populations.

(legend continued on next page)
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inferred using 1000 Genomes sequencing data14 to simulate indi-

viduals that reflect European, East Asian, and African population

histories. We focus on these populations as the demography has

previously been modeled and this avoids the challenges of simu-

lating the geographically heterogeneous47 and sex-biased process

of admixture in the Americas.76 To imitate a GWAS with European

sample bias and evaluate polygenic risk scores in other popula-

tions, we simulated 200,000 European, 200,000 East Asian, and

200,000 African individuals. Next, we assigned ‘‘true’’ causal effect

sizes tom evenly spaced alleles. Specifically, we randomly assigned

effect sizes as

b � N

�
0;

h2

m

�

where the normal distribution is specified by the mean and stan-

dard deviation (as in python’s numpy package). For all other

non-causal sites, the effect size is zero. We then define X as

X ¼
Xm
i¼1

gibi

where gi are the genotype states (i.e., 0, 1, or 2). To handle varying

allele frequencies and potential weak LD between causal sites, to

ensure a neutral model with random true polygenic risks with

respect to allele frequencies, and to obtain the total desired vari-

ance, we normalize X as

ZX ¼ X� mX

sX

:

We then compute the true polygenic risk score as

G ¼
ffiffiffiffiffi
h2

p
� ZX

such that the total variance of the scores is h2. We also simulated

environmental noise and standardize to ensure equal variance be-

tween normalized genetic and environmental effects before,

defining the environmental effect E as

ε ¼ N
�
0;1� h2

�

Z
ε
¼ ε� m

ε

s
ε

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p
� Z

ε

such that the total variance of the environmental effect is 1 – h2.

We then define the total liability as

L ¼
ffiffiffiffiffi
h2

p
� ZX þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p
� Z

ε

¼ Gþ E:

We assigned 10,000 European individuals at the most extreme

end of the liability threshold ‘‘case’’ status assuming a prevalence

of 5%. We randomly assigned 10,000 different European individ-

uals ‘‘control’’ status. We ran a GWAS with these 10,000 European
(B, D, and F) Local ancestry karyograms for representative PEL ind
American components shown.
(C, E, and G) Ancestry-specific PCA applied to admixed haploid ge
populations from 1000 Genomes (where possible) for (C) African tr
number of admixed samples that constituted major outliers from th
ASW sample (NA20314) and (E) eight samples, including three ACB

The Ame
case subjects and 10,000 European control subjects, computing

Fisher’s exact test for all sites withMAF> 0.01. As before for empir-

ical polygenic risk score calculations from real GWAS summary

statistics, we clumped these SNPs into LD blocks for all sites with

p% 1 3 10�2, and R2 % 0.5 in Europeans within a window size of

250 kb. We used these SNPs to compute inferred polygenic risk

scores as before, summing the product of the log odds ratio and ge-

notype for the true polygenic risk in a cohort of 10,000 simulated

European, African, and East Asian individuals (all not included in

the simulated GWAS). We compared the true versus inferred poly-

genic risk scores for these individuals across varying complexities

(m ¼ 200, 500, 1,000) and heritabilites (h2 ¼ 0.33, 0.50, 0.67).
Results

Genetic Diversity within and between Populations in the

Americas

We first assessed the overall diversity at the global and

sub-continental level of the 1000 Genomes Project

(phase 3) populations19 using a likelihood model via

ADMIXTURE77 and PCA78 (Figures S1 and S2). The six pop-

ulations from the Americas demonstrate considerable con-

tinental admixture, with genetic ancestry primarily from

Europe, Africa, and the Americas, recapitulating previously

observed population structure.19 To quantify continental

genetic diversity in these populations, we repeated the

analysis using YRI, CEU, and NAT69 samples as reference

panels (population labels and abbreviations in Table S1).

We observed widely varying continental admixture contri-

butions in the six populations from the Americas at K ¼ 3

(Figure 1A and Table S2). For example, when compared to

the ASW, the ACB have a higher proportion of African

ancestry (m ¼ 0.88, 95% CI ¼ [0.87–0.89] versus m ¼ 0.76,

95% CI ¼ [0.73–0.78]; two-sided t test p ¼ 3.0 3 10�13)

and a smaller proportion of EUR and NAT ancestry. The

PEL have more NAT ancestry than all of the other AMR

populations (m ¼ 0.77, 95% CI ¼ [0.75–0.80] versus CLM:

m ¼ 0.26, 95% CI ¼ [0.24, 0.27], p ¼ 2.9 3 10�95; PUR:

m ¼ 0.13, 95% CI ¼ [0.12, 0.13], p ¼ 4.8 3 10�93; and

MXL: m ¼ 0.47, 95% CI ¼ [0.43, 0.50], p ¼ 1.7 3 10�28)

ascertained in 1000 Genomes.

We explored the origin of the subcontinental-level

ancestry from recently admixed individuals by iden-

tifying local ancestry tracts26,32,71,79 (Material and

Methods, Figure S3). As proxy sources of populations for

the recent admixture, we used EUR and AFR continental

samples from the 1000 Genomes Project as well as NAT

samples genotyped previously.69 Concordance between

global ancestry estimates inferred using ADMIXTURE at

K ¼ 5 and RFMix was typically high (Pearson’s correla-

tion R98%, see Figure S4). Using Tracts,72 we modeled
ividual HG01893 with (B) African, (D) European, and (F) Native

nomes as well as ancestrally homogeneous continental reference
acts, (E) European tracts, and (G) Native American tracts. A small
e ancestry-specific PCA analysis were removed, including (C) one
, two ASW, one PEL, and two PUR samples.
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the length distribution of the AFR, EUR, and NAT tracts to

infer that admixing began ~12 and ~8 generations ago in

the PEL and ACB populations, respectively (Figure S5),

consistent with previous estimates from other populations

from the Americas.44,72,32

We further investigated the subcontinental ancestry of

admixed populations from the Americas one ancestry at

a time using a version of PCA modified to handle highly

masked data (ancestry-specific or AS-PCA) as implemented

in PCAmask.32 Example ancestry tracts in a PEL individual

subset to AFR, EUR, and NAT components are shown in

Figures 1B, 1D, and 1F, respectively. Consistent with previ-

ous observations, the inferred European tracts in Hispanic/

Latino populations most closely resemble southern Euro-

pean IBS and TSI populations with some additional

drift32 (Figure 1E). The European tracts of the PUR are

more differentiated compared to the CLM, MXL, and PEL

populations, consistent with sex bias (Figure S6 and Table

S3) and excess drift from founder effects in this island pop-

ulation.32 In contrast to the southern European tracts from

the Hispanic/Latino populations, the African descent pop-

ulations in the Americas have European admixture that

more closely resembles the northwestern CEU and GBR

European populations. The clusters are less distinct, owing

to lower overall fractions of European ancestry, but the

European components of the Hispanic/Latino and African

American populations are significantly different (Wil-

coxon rank sum test p ¼ 2.4 3 10�60).

The ability to localize aggregated ancestral genomic

tracts enables insights into the evolutionary origins of

admixed populations. To disentangle whether the consid-

erable Native American ancestry in the ASW individuals

arose from recent admixture with Hispanic/Latino individ-

uals or recent admixture with indigenous Native American

populations, we queried the European tracts. We find that

the European tracts of all ASW individuals with consider-

able Native American ancestry are well within the ASW

cluster and project closer in Euclidean distance with AS-

PC1 and AS-PC2 to northwestern Europe than the Euro-

pean tracts from Hispanic/Latino samples (p ¼ 1.15 3

10�3), providing support for the latter hypothesis and

providing regional nuance to previous findings.44

We also investigated the African origin of the admixed

AFR/AMR populations (ACB and ASW), as well as the

Native American origin of the Hispanic/Latino popula-

tions (CLM, MXL, PEL, and PUR). The African tracts of

ancestry from the AFR/AMR populations project closer to

the YRI and ESN of Nigeria than the GWD, MSL, and

LWK populations (Figure 1C). This is consistent with slave

records and previous genome-wide analyses of African

Americans indicating that most sharing occurred in West

and West-Central Africa.80–82 There are subtle differences

between the African origins of the ACB and ASW popula-

tions (e.g., difference in distance from YRI on AS-PC1

and AS-PC2 p ¼ 6.4 3 10�6), likely due either to mild

island founder effects in the ACB samples or differences

in African source populations for enslaved Africans who
640 The American Journal of Human Genetics 100, 635–649, April 6,
remained in Barbados versus those who were brought

to the USA. The Native tracts of ancestry from the AMR

populations first separate the southernmost PEL popula-

tions from the CLM, MXL, and PUR on AS-PC1, then

separate the northernmost MXL from the CLM and

PUR on AS-PC2, consistent with a north-south cline of

divergence among indigenous Native American ancestry

(Figure 1G).32,83

Impact of Continental and Sub-continental Diversity on

Disease Variant Mapping

To investigate the role of ancestry in phenotype interpreta-

tion from genetic data, we assessed diversity across popula-

tions and local ancestries for recently admixed populations

across the whole genome and sites from two reference da-

tabases: the GWAS catalog and ClinVar pathogenic and

likely pathogenic sites. We recapitulate results showing

that there is less variation across the genome (both

genome-wide and on the Affymetrix 6.0 GWAS array sites

used in local ancestry calling) in out-of-Africa versus Afri-

can populations, but that GWAS variants are more poly-

morphic in European and Hispanic/Latino populations

(Figures S7A, S7B, S8A, and S8B).We use a normalizedmea-

sure of the minor allele frequency, an indicator of the

amount of diversity captured in a population, to obtain a

background coverage of each population, as done previ-

ously (e.g., Figure S4 from Auton et al.19). We show that

the Affymetrix 6.0 array has a slight European bias (Figures

S5A and S6A).We compared the site frequency spectrum of

variants across the genome versus at GWAS catalog sites

and identify elevated allele frequencies at GWAS catalog

loci, particularly in populations with more European

ancestry (e.g., the EUR, AMR, and SAS super populations,

Figures S5C and S5D).We further compared heterozygosity

(estimated here as 2pq) and the site frequency spectrum in

recently admixed populations across diploid and haploid

local ancestry tracts, respectively. Sites in the GWAS cata-

log and ClinVar are more and less common than

genome-wide variants, respectively (Figure 2). Whereas

heterozygosity across the whole genome is highest in Afri-

can ancestry tracts, it is consistently the greatest in Euro-

pean ancestry tracts across these databases (Figures 2,

S8C, and S8D), reflecting a strong bias toward European

study participants.1–4,19,84 These results highlight imbal-

ances in genome interpretability across local ancestry

tracts in recently admixed populations and the utility of

analyzing these variants jointly with these ancestry tracts

over genome-wide ancestry estimates alone.

We also assessed imputation accuracy across the 3-way

admixed populations from the Americas (CLM, MXL,

PEL, PUR) for two arrays: the Illumina OmniExpress and

the Affymetrix Axiom World Array LAT. Imputation accu-

racy was estimated as the correlation (r2) between the

original genotypes and the imputed dosages. For both

array designs, imputation accuracy across all minor allele

frequency (MAF) bins was highest for populations with

the largest proportion of European ancestry (PUR) and
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Figure 2. Heterozygosity by Continental
and Diploid Local Ancestry
Heterozygosity, estimated here as 2pq, is
calculated in admixed populations stratified
by diploid local ancestry in (A) the whole
genome, (B) sites from the GWAS catalog,
and (C) sites from ClinVar classified as
‘‘pathogenic’’ or ‘‘likely pathogenic.’’ The
mean and 95% confidence intervals were
calculated by bootstrapping 1,000 times.
Populations not shown in a given panel
have too few diploid ancestry tracts overlap-
ping sites to calculate heterozygosity.
lowest for populations with the largest proportion of

Native American ancestry (PEL, Figures S9A and S9B). We

also stratified imputation accuracy by local ancestry tract

diplotype within the Americas. Consistently, tracts with

at least one Native American ancestry tract had lower

imputation accuracy when compared to tracts with only

European and/or African ancestry (Figures 3 and S10).

Transferability of GWAS Findings across Populations

To quantify the transferability of European-biased genetic

studies to other populations, we next used published

GWAS summary statistics to infer polygenic risk scores48

across populations for well-studied traits, including

height,10 waist-hip ratio,85 schizophrenia,11 type II dia-

betes,86,87 and asthma88 (Figures 4A–4D and S11, Material

and Methods). Most of these summary statistics are

derived from studies with primarily European cohorts,

although GWASs of type II diabetes have been performed
The American Journal of Huma
in both European-specific cohorts as

well as across multi-ethnic cohorts.

We identify clear directional inconsis-

tencies in these inferred scores. For

example, although the height sum-

mary statistics show the expected

southern/northern cline of increasing

European height (FIN, CEU, and

GBR populations have significantly

higher polygenic risk scores than IBS

and TSI, p ¼ 1.5 3 10�75, Figure S9A),

polygenic scores for height across

super populations show biased predic-

tions; the African populations sampled

are genetically predicted to be consid-

erably shorter than all Europeans and

minimally taller than East Asians

(Figure 4A), which contradicts empir-

ical observations (with the exception

of some indigenous pygmy/pygmoid

populations).89,90 Additionally, poly-

genic risk scores for schizophrenia,

while at a similar prevalence across

populations where it has been well

studied91 and sharing significant ge-

netic risk across populations,92 shows
considerably decreased scores in Africans compared

to all other populations (Figure 4B). Lastly, the rela-

tive order of polygenic risk scores computed for type II

diabetes across populations differs depending on

whether the summary statistics are derived from a Euro-

pean-specific (Figure 4C) or multi-ethnic (Figure 4D)

cohort.

Ancestry-Specific Biases in Polygenic Risk Score

Estimates

We performed coalescent simulations to determine how

GWAS signals discovered in one ancestral case/control

cohort (i.e., ‘‘single-ancestry’’ GWAS) are expected to

impact polygenic risk score estimates in other populations

under neutrality using summary statistics (for details, see

Material and Methods). In brief, we simulated variants

according to a previously published demographic model

inferred from Africans, East Asians, and Europeans.14 We
n Genetics 100, 635–649, April 6, 2017 641



Figure 3. Imputation Accuracy by Local Ancestry in the Americas
Accuracy was assessed via a leave-one-out strategy, stratified by diploid local ancestry on chromosome 9 for the Illumina OmniExpress
genotyping array. Dashed lines indicate heterozygous diploid ancestry, and solid lines show homozygous diploid ancestry.
specified ‘‘causal’’ alleles and effect sizes randomly, such

that each causal variant has evolved neutrally and has a

mean effect of zero with the standard deviation equal

to the global heritability divided by number of causal

variants. We computed the true polygenic risk for each in-

dividual as the product of the estimated effect sizes and

genotypes, then standardized the scores across all individ-

uals. We calculated the total liability as the sum of the

genetic and random environmental contributions, then

identified 10,000 European case subjects with the most

extreme liabilities and 10,000 other European control sub-

jects. We computed Fisher’s exact tests with this European

case-control cohort, then quantified inferred polygenic

risk scores as the sum of the product of genotypes and

log odds ratios for 10,000 samples per population not

included in the GWAS.

In our simulations and consistent with realistic coales-

cent models, most variants are rare and population spe-

cific; ‘‘causal’’ variants are sampled from the global site fre-

quency spectrum, resulting in subtle differences in true

polygenic risk across populations (Figures S12, 5A, and

5B). We mirrored standard practices for performing a

GWAS and computing polygenic risk scores (see above

and Material and Methods). While causal variants in our

simulations are drawn from the global site frequency spec-

trum and are therefore mostly rare, inferred scores are

derived specifically from common variants that are typi-

cally much more common in the study population than

elsewhere (here Europeans with case/control MAF R

0.01). Consequently, while the distribution of mean true
642 The American Journal of Human Genetics 100, 635–649, April 6,
polygenic risk across simulation runs for each population

are not significantly different (Figure 5A), the inferred

risk is less than zero in Europeans (p ¼ 1.9 3 10�54, 95%

CI ¼ [�84.3, �67.4]), slightly less than zero in East Asians

(p ¼ 5.9 3 10�5, 95% CI ¼ [�19.1, �6.6]), and not sig-

nificantly different from zero in Africans (Figure 5B); the

variance in inferred risk scores, a proxy for the fraction of

heritable variation explained, also decreases with this

trend. Specifically, when h2 ¼ 0.67 and m ¼ 1,000 causal

markers, we find that the true and inferred polygenic risk

scores in the EUR population are significantly correlated

(i.e., non-zero, mean r¼ 0.59, p< 13 10�200), but the cor-

relations in EAS and AFR populations are significantly less

than in EUR (r ¼ 0.35 and p ¼ 1.5 3 10�48, r ¼ 0.22 and p

< 13 10�200, respectively). Because of allele frequency dif-

ferences, number of SNPs, and inferred effect size differ-

ences along the frequency spectrum, the scale is orders of

magnitude different between the true and inferred raw,

unstandardized scores, cautioning that while they are

informative on a relative scale (Figures 5C and S11), their

absolute scale should not be over interpreted. The inferred

risk difference between populations is driven by the

increased power to detect minor risk alleles rather than

protective alleles in the study population,93 given the dif-

ferential selection of case and control subjects in the liabil-

ity threshold model. We demonstrate this empirically in

these neutral simulations within the European population

(Figure S14A), indicating that this phenomenon occurs

even in the absence of population structure and when

case and control cohort sizes are equal.
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Figure 4. Biased Genetic Discoveries In-
fluence Disease Risk Inferences
Inferred and standardized polygenic risk
scores across all individuals and colored
by population for (A) height based on sum-
mary statistics from Wood et al.,10 (B)
schizophrenia based on summary statistics
from the Schizophrenia Working Group of
the Psychiatric Genomics Consortium,11

(C) type II diabetes summary statistics
derived from a European cohort from
Gaulton et al.,86 and (D) type II diabetes
summary statistics derived from a multi-
ethnic cohort from Mahajan et al.87
We find that the correlation between true and inferred

polygenic risk is generally low (Figures 5C and S13), con-

sistent with limited variance explained by polygenic

risk scores from GWASs of these cohort sizes for height

(e.g., ~10% of variance explained for a cohort of size

183,72763) and schizophrenia (e.g., ~7% variance ex-

plained for a cohort of size 36,989 case subjects and

113,075 control subjects11). Low correlations in our simu-

lations are most likely because common tag variants are a

poor proxy for rare causal variants. As expected, correla-

tions between true and inferred risk within populations

are typically highest in the European population (i.e., the

population in which variants were discovered, Figures 5A

and S13). To quantify the differential prediction accuracy

of polygenic risk scores across populations, we also eval-

uate the log odds ratio of being a case subject compared

to a control subject across deciles of inferred polygenic

risk in each population. We identify greater power to

discern between case and control subjects in the EUR dis-

covery population relative to the AFR and EAS populations

(i.e., more heritable variation explained, as evidenced by a

steeper slope) (Figure S14B). Across all populations, the

mean Spearman correlations between true and inferred

polygenic risk increase with increasing heritability while

the standard deviations of these correlations significantly

decrease (p ¼ 0.05); however, there is considerable

within-population heterogeneity resulting in high varia-

tion in scores across all populations. We find that in these
The American Journal of Human
neutral simulations, a polygenic risk

score bias in essentially any direction

is possible even when choosing the

exact same causal variants and herita-

bility and varying only fixed effect

size (i.e., inferred polygenic risk in

Europeans can be higher, lower, or in-

termediate compared to true risk rela-

tive to East Asians or Africans, Figures

S12 and 5B).

Discussion

To date, GWASs have been per-

formed opportunistically in primar-
ily single-ancestry European cohorts, and an open ques-

tion remains about their biomedical relevance for

disease associations in other ancestries. As studies gain

power by increasing sample sizes, effect size estimates

become more precise and novel associations at lower fre-

quencies are feasible. However, rare variants are largely

population-private, and their effects are unlikely to trans-

fer to new populations. Because linkage disequilibrium

and allele frequencies vary across ancestries, effect size

estimates from diverse cohorts are typically more precise

than from single-ancestry cohorts (and often tempered),5

and the resolution of causal variant fine-mapping is

considerably improved.87 Across a range of genetic archi-

tectures, diverse cohorts provide the opportunity to

reduce false positives. At the Mendelian end of the spec-

trum, for example, disentangling risk variants with

incomplete penetrance from benign false positives and

localizing functional effects in genes is much more

feasible with large diverse population cohorts than with

single-ancestry analyses.94 Multiple false positive reports

of pathogenic variants causing hypertrophic cardiomy-

opathy, a disease with relatively simple genomic architec-

ture, have been returned to individuals of African descent

or unspecified ancestry that would have been prevented

if even a small number of African American samples

were included in control cohorts.9 At the highly complex

end of the polygenicity spectrum, we and others have

shown that the utility of polygenic risk inferences and
Genetics 100, 635–649, April 6, 2017 643
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Figure 5. Coalescent Simulation Framework to Generate True and Inferred Polygenic Risk Scores
Results of true and inferred polygenic risk scores, as well as their correlation, were computed via GWAS summary statistics from 10,000
simulated EUR case and control subjects modeling European, East Asian, and African population history (demographic parameters are
from Gravel et al.14).
(A) The distribution ofmean true, unstandardized polygenic risk scores for each population across 500 simulations withm¼ 1,000 causal
variants and h2 ¼ 0.67.
(B) The distribution of mean inferred, unstandardized polygenic risk for the same simulation parameters as in (A) (center) and standard-
ized true versus inferred polygenic risk scores for three different coalescent simulation replicates showing 10,000 randomly drawn sam-
ples from each population not included as case or control subjects (right).
(C) Violin plots show Pearson’s correlation across 50 iterations per parameter set between true and inferred polygenic risk scores across
differing genetic architectures, including m ¼ 200, 500, and 1,000 causal variants and h2 ¼ 0.67.
the heritable phenotypic variance explained in diverse

populations is improved with more diverse cohorts.92,95

Standard single-ancestry GWASs typically apply linear

mixed model approaches and/or incorporate principal

components as covariates to control for confounding

from population structure with primarily European-

descent cohorts.1–3 A key concern when including multi-

ple diverse populations in a GWAS is that there is

increasing likelihood of identifying false positive variants

associated with disease that are driven by allele frequency

differences across ancestries. However, previous studies

have analyzed association data for diverse ancestries and

replicated findings across ethnicities, assuaging these con-

cerns.6,87 In this study, we show that this ancestry stratifi-

cation is not continuous along the genome: long tracts of

ancestrally diverse populations present in admixed sam-

ples from the Americas are easily and accurately detected.
644 The American Journal of Human Genetics 100, 635–649, April 6,
Querying population substructure within these tracts

recapitulates expected trends, e.g., European ancestry in

African Americans primarily descends from northern

Europeans in contrast to European ancestry from

Hispanic/Latinos, which primarily descends from

southern Europeans, as seen previously.44 Additionally,

population substructure follows a north-south cline in

the Native component of Hispanic/Latinos, and the

African component of admixed African descent popula-

tions in the Americas most closely resembles reference

populations from Nigeria (notwithstanding the limited

set of African populations from the 1000 Genomes Proj-

ect). Admixture mapping has been successful at large

sample sizes for identifying ancestry-specific genetic risk

factors for disease.30 Given the level of accuracy and sub-

continental resolution attained with local ancestry

tracts in admixed populations, we emphasize the utility
2017



of a unified framework to jointly analyze genetic associa-

tions with local ancestry simultaneously.40

The transferability of GWASs is aided by the inclusion of

diverse populations.96 We have shown that European dis-

covery biases in GWASs are recapitulated in local ancestry

tracts in admixed samples. We have quantified GWAS

study biases in ancestral populations and shown that

GWAS variants are at lower frequency specifically within

African and Native tracts and higher frequency in Euro-

pean tracts in admixed American populations. Imputation

accuracy is also stratified across diverged ancestries,

including across local ancestries in admixed populations.

With decreased imputation accuracy especially on Native

American tracts, there is decreased power for potential

ancestry-specific associations. This differentially limits

conclusions for GWASs in an admixed population in a

two-pronged manner: the ability to capture variation and

the power to estimate associations.

As GWASs scale to sample sizes on the order of hundreds

of thousands to millions, genetic risk prediction accuracy

at the individual level improves.59 However, we show

that the utility of polygenic risk scores computed using

GWAS summary statistics are dependent on genetic simi-

larity to the discovery cohort. Best linear unbiased predic-

tion (BLUP) methods have been proposed to improve risk

scores, but they require access to raw genetic data typically

from very large datasets, are also dependent on LD struc-

ture in the study population, and offer only modest im-

provements in prediction accuracy.52 Furthermore, poly-

genic risk scores (PRSs) contain a mix of true positives

(which have the bias described above) and false positives

in the training GWAS. False positives, being chance statis-

tical fluctuations, do not have the same allele frequency

bias and therefore unfortunately play an outsized role in

applying a PRS in a new population.

We have demonstrated that polygenic risk scores

computed via current standard methods with summary

statistics from a single-ancestry discovery cohort have

numerous problems: differences in polygenic risk scores

across populations are significant but not supported by

epidemiological or anthropometric studies of the same

traits, and directionality biases in polygenic risk scores

across populations are unpredictable. Our coalescent simu-

lations recapitulate these results and show that across rep-

licates (i.e., traits, and thus not necessarily within a single

trait), cross-population prediction accuracy is diminished

with increasing divergence from the discovery cohort.

These simulations provide further insight into directional

inconsistencies in inferred polygenic risk scores with the

same demographic model across replicate simulations,

indicating that different traits are likely to suffer from

biases that cannot be adjusted, e.g., using prinicipal com-

ponents alone. Directional selection is expected to bias

polygenic risk inferences even more. Because biases arise

from genetic drift alone, we recommend (1) avoiding inter-

pretations from polygenic risk score differences extrapo-

lated across populations, as these are likely confounded
The Ame
by latent population structure that is not properly cor-

rected for with current standard methods, (2) mean-

centering polygenic risk scores for each population, and

(3) computing polygenic risk scores in populations with

similar demographic histories as the study sample to

ensure maximal predictive power. Further, additional

methods that account for local ancestry in genetic risk

prediction to incorporate different ancestral linkage

disequilibrium and allele frequencies are needed. This

study demonstrates the utility of disentangling ancestry

tracts in recently admixed populations for inferring recent

demographic history and identifying ancestry-stratified

analytical biases; we also motivate the need to include

more ancestrally diverse cohorts in GWASs to ensure that

health disparities arising from genetic risk prediction do

not become pervasive in individuals of admixed and

non-European descent.
Supplemental Data

Supplemental Data include 14 figures and 4 tables and can be

found with this article online at http://dx.doi.org/10.1016/j.

ajhg.2017.03.004.
Conflicts of Interest

C.D.B. is amember of the scientific advisory boards for Liberty Bio-

security, Personalis, 23andMe Roots into the Future, Ancestry.

com, IdentifyGenomics, and Etalon and is a founder of CDB

Consulting. C.R.G. owns stock in 23andMe. M.J.D. is a member

the scientific advisory board for Ancestry.com. E.E.K. and C.R.G.

are members of the scientific advisory board for Encompass Biosci-

ences. E.E.K. consults for Illumina. B.M.N. is a member of the sci-

entific advisory board for Deep Genomics.
Acknowledgments

We thank Suyash Shringarpure, Brian Maples, Andres Moreno-

Estrada, Danny Park, Noah Zaitlen, Alexander Gusev, and Alkes

Price for helpful discussions/feedback. We thank Verneri Antilla

for providingGWAS summary statistics.We thank Jerome Kelleher

for several conversations about msprime, providing example

scripts, and implementing new simulation capabilities. This

work was supported by funds from several grants: the National

Human Genome Research Institute under award numbers

U01HG009080 (E.E.K., C.D.B., C.R.G.), U01HG007419 (C.D.B.,

C.R.G., G.L.W.), U01HG007417 (E.E.K.), U01HG005208 (M.J.D.),

T32HG000044 (C.R.G.), and R01GM083606 (C.D.B.), the

National Institute of General Medical Sciences under award num-

ber T32GM007790 (A.R.M.) at the National Institute of Health, the

National Institute for Mental Health 5U01MH094432-02 (R.G.W.,

M.J.D.), the Directorate of Mathematical and Physical Sciences

award 1201234 (S.G., C.D.B.) at the National Science Foundation,

the Canadian Institutes of Health Research through the Canada

Research Chair program and operating grant MOP-136855

(S.G.), and a Sloan Research Fellowship (S.G.).

Received: November 23, 2016

Accepted: March 10, 2017

Published: March 30, 2017
rican Journal of Human Genetics 100, 635–649, April 6, 2017 645

http://dx.doi.org/10.1016/j.ajhg.2017.03.004
http://dx.doi.org/10.1016/j.ajhg.2017.03.004
http://Ancestry.com
http://Ancestry.com
http://Ancestry.com


Web Resources

ancestry_pipeline, https://github.com/armartin/ancestry_pipeline/
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T., Locke, A.E., Mägi, R., Strawbridge, R.J., Pers, T.H., Fischer,

K., Justice, A.E., et al.; ADIPOGen Consortium; CARDIO-

GRAMplusC4D Consortium; CKDGen Consortium; GEFOS

Consortium; GENIE Consortium; GLGC; ICBP; International

Endogene Consortium; LifeLines Cohort Study; MAGIC In-

vestigators; MuTHER Consortium; PAGE Consortium; and

ReproGen Consortium (2015). New genetic loci link adipose

and insulin biology to body fat distribution. Nature 518,

187–196.

86. Gaulton, K.J., Ferreira, T., Lee, Y., Raimondo, A., Mägi, R.,
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