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This session

1. Family based association analyses: intro
(Dorret Boomsma)

2. Genetic association tests: Plink and R
3. Apply the GWAS results (Jenny van Dongen)



Data collected in families

Some methods require twin / family data:
-> heritability
-> linkage 

However, when looking at association, we need 
to adjust for clustering in family data.



Focus: family-based Genome-Wide Association Studies

These are regression based approaches, with outcomes 
(phenotypes) and predictors (Genetic Variants (GV), or 
polygenic scores, other and covariates)

Ignoring clustering in family data may lead to wrong 
conclusions: point estimates of effects OK, but SE too small!



Mixed models

What does ‘mixed model’ mean?



What does ‘mixed model’ mean

Mixed models contain fixed effects

(parameters) and random effects

The elementary mixed model is a

two-way ANOVA model:

One fixed factor, one random factor



One-way fixed effect ANOVA

Evaluate the effect of a factor with a limited number of levels.
-Level effect definition: mean score
-Obtained in the population of subjects

FACTOR LEVELS
1 2 3
Y11 y21 y31
y12 y22 y32
y13 y23 y33
y14 y24 y34
y15 y25 y35

means m1 m2 m3

(the factor could represent 3 genotypes: e.g. AA, Aa and aa).



Procedure

1. randomly sample subjects from the population.

2. randomly “assign” them to the levels of the factor.

3. compute the sample means for each level.

4. “decide” if observed differences between the means 
are sufficient evidence for differences between the 
levels in the population.



The population is not observed and observed sample
differences might change if the experiment is repeated 
with the same factor levels but with a different 
random sample.

How to conclude that observed differences between 
the means can be taken as evidence for differences in 
the population?

We need a yardstick to measure the size of the 
differences between levels.  



How to conclude that differences between level means 
are evidence for differences in the population?

We need a yardstick to measure the size of the 
differences -> the variance of the scores within the levels 
of the factor in the population (i.e. based on the 
differences of the individual scores to the level means).

Larger variance increases likelihood of observing 
differences in the sample if the levels have no effect. 
The probability refers to repetitions of the experiment.



In this simple design, the levels of the factor remain 
the same over repeated experiments. The level 
effects are therefore fixed effects or parameters.

The individual scores change over experiments and 
are therefore called random effects (defined as 
deviations from the level effects).



The linear model: yij = m + bi + eij

m = general constant; fixed effect
bi = effect of factor level i; fixed effect; same levels in 
repeated experiments
eij = yij – (m + bi) = residual: random effect (different 
subjects in repeated experiments)

Statistical properties of eij : mean zero and variance σe
2

Models such as these, where eij is the only random 
effect, are called fixed effects models.



A change in the design: Ss are still sampled randomly from the 
population, but each subject is observed at each factor  level.

FACTOR LEVELS
1 2 3
y11 y21 y31
y12 y22 y32
y13 y23 y33
y14 y24 y34
y15 y25 y35

means m1 m2 m3

(the factor cannot represent 3 genotypes for the same person (AA, Aa and aa) but 
if we have family members they can be observed at each level of the factor).

Row scores come from the same subject / family. In the previous design, 
y11 and y12 referred to different Ss, who were sampled independently. We 
now have within subject (or within family)  correlation or covariance
among y11, y12, y13.



The linear model now is: yij = m + ai + bj + eij

m = general constant; fixed effect
ai = effect of subject i; random effect, since ai changes over 
repeated experiments; mean zero; variance σa

2

bj = effect of factor level j; fixed effect; same levels in 
repeated experiments

eij = yij – ( m + ai + bj ) residual or error; random effect;

Model contains fixed factor effects and one random effect 
besides the residual. Such models are called mixed models.  



Consequences of the model

Expected variance within the level of a factor is 
σa

2 + σe
2

Covariance of observations at two different 
levels of the factor is σa

2



General representation of mixed models as matrix equation:

y = Xb + Za + e

b = [ m, b1, b2, b3]’
a = [a1, a2]’

For the first two subjects:
X Z e
m b1 b2 b3 a1 a2

y11 = 1  1    0    0 1   0 e11

y12 = 1  0    1    0 1   0 e12

y13 = 1  0    0    1 1   0 e13

y21 = 1  1    0    0 0   1 e21

y22 = 1  0    1    0 0   1 e22

y23 = 1  0    0    1 0   1 e23



Specification of the covariance structure

Expected covariance matrix of the random effects: Va:

a1 a2
a1 σa

2 0
a2 0   σa

2

For the residuals: R = σe
2 I     ( i.e. a diagonal matrix)



Linear regression (discarding covariates) in unrelated Subjects  (j=1...N)

phenoj = b0 + b1*GVj + ej (y = XB + e)

Wald test b1/s.e.(b1) s.e. (b1) from (Xt V-1X)-1, V is cov matrix of e.

pheno
Genetic
Variant

e
b1

pheno1 GV1e1

b1

pheno2 GV2e2

b1

linear regression (discarding covariates) twins / sibs (i=1...Nmz (Ndz) and j=1,2)

phenoij = b0 + b1*GVij + eij (y = XB + e)

rmz

rdz .5 (dz/ sibs) or 1 (mz)



pheno1 GV1e1

b1

pheno2 GV2e2

b1

linear regression (discarding covariates) in twins / sibs

phenoij = b0 + b1*GVij + eij (i=1...Nmz (Ndz) and j=1,2)

r .5 (dz/ sibs) or 1 (mz)

Analysis options: 
A. ignore relatedness
B. model correlated background
C. discard 1 twin member (e.g., occasionally: drop 1 MZ twin) 
D. GEE regression (GEE = Generalized Estimating Equations) -> prac



options: A. ignore relatedness
B. model correlated residual (background)
C. discard 1 twin member 
D. GEE regression

A. BAD – results in downward bias in s.e. (b1) and increase in type I error 
rate (false positives!)

B. Good,  linear mixed modeling or OpenMx
C. BAD – loss of power 
D. Good, corrects s.e. (b1) for correlated residuals

Computational Burden:

B. 1. Genetic covariance structure modeling (ACE  / ADE) in OpenMx or 
linear mixed modeling (SPSS, R: nlme, R: lmer) – heavy, unwieldy
B. 2. Based on genetic relatedness matrix OK: GCTA, Fast-LLM (any 
pedigree structure)
D.1. GEE (Generalized Estimating Equations) regression – light, simple OK 
in the case of nuclear family data (what about extended pedigrees?). 



Both GEE and mixed model are suitable when independent 
errors' assumption is violated. 
GEE takes into account the within-cluster correlations by using 
an empirical covariance matrix (sandwich). It can really only 
account for one source of clustering at a time. In a GEE we 
cannot put any structure the correlation pattern.
A mixed model accounts for correlated outcomes by using 
random effects for each cluster variable. So mixed models are 
more versatile .



Benefits of family data (in genetic association studies)

Control for factors that can spuriously influence association tests 
(e.g. population stratification).

Base estimates of association effects on within family tests.

QC: Can test for Mendelian transmission errors.

Can obtain estimates of transmitted and un-transmitted PRS (if 
family design involves parents and offspring).

Can estimate heritability from pedigree (check on phenotype data).

May be easier to recruit large numbers by targeting families.



GWAS meta-analyses for height / BMI in a Europeans (~250,000 Ss for 
height and ~350,000 for BMI). We re-estimated the effects of each SNP in 
a within-family design, which is unbiased by population stratification, 
and used these effect sizes to create a genetic predictor for both 
phenotypes (also termed ‘polygenic score’).

Within family tests



Predicted genetic means (a,c) and observed means (b,d) for height and BMI for 14 Eu nations. 
From recently published data, we estimated national differences in mean height and BMI, 
with a European average height of 171.1 cm and an average BMI of 25.0  for males.



Identification of seven loci affecting mean TELOMERE length and 

their association with disease

Veryan Codd et al. (ENGAGE consortium) Nature Genetics, 2013
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Twin registries supplied  34% of samples



13% cases 

9% controls



Other considerations

Does not control cryptic relatedness. 

Family sizes differ (not everyone can participate with their family).

May decrease statistical power. 



Power calculation (see R script (provided by Conor) in faculty folder)

Suppose you have  N unrelated Ss and you want to calculate power?
Simple: use Gpower, R libraries (pow), or dedicated (genetics) software

Suppose you have Nmz and Ndz twin pairs and N unrelated Ss and want to 
calculate power?
Simple: calculate effective sample size and use standard software

Nmz pairs is effectively N1mz = (Nmz*2) / (1 + rmz)
Ndz pairs is effectively N1dz = (Ndz*2) / (1 + rdz)
N unrelateds N=N1u

Total effective sample size N = N1u + N1mz + N1dz.

rmz and rdz are 
phenotypic (intraclass) 
correlation coefficients.



General equation is   NE = (K*M) / (1 + (M-1)*r)

Applied to Nmz pairs
NE = effective sample size
K = number of clusters Nmz pairs
M = number of members per cluster M=2 (for pairs!)
r = intra-class correlation rmz

Suppose we have MZ pairs, with and without siblings and 
DZ pairs with and without siblings

Rough and ready: suppose we have 

300 MZ + 0 sibs, i.e., 600 individuals
200 MZ + 1 sibs, i.e., 400 + 200 = 600 individuals 
150 MZ + 2 sibs, i.e., 300 + 300 = 600 individuals

Calculate NE for each using the intraclass correlation (average phenotypic relatedness) 



rmz = .5
rfs (full sib) = .25

300 MZ + 0 sibs, i.e., 600 individuals
1 .5
.5 1 r=.5 NE=300*2/(1+.5) = ~400  

200 MZ + 1 sibs, i.e., 400 + 200 = 600 individuals
1 .5 .25
.5 1 .25
.25 .25 1 r =~.333 NE=(200*3)/(1+.333) = ~450 

150 MZ + 2 sibs, i.e., 300 + 300 = 600 individuals
1 .5 .25 .25
.5 1 .25 .25
.25 .25 1 .25
.25 .25 .25 .25 r= ~.29     NE=(150*4)/(1+.29) = ~465 

Total sample size in individuals = 600+600+600 = 1800
Total effective sample size  = 400 +450 + 465 =1315



unrelated N=2000

unrelated N=1000

Ndz=1000 pairs

Nmz=1000 pairs
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NEmz=
(Nmz*2)/(1+rmz)

NEdz=
(Ndz*2)/(1+rdz)

rdz = .5*rmz

R2=1%
alpha=.001


