

Meike Bartels & Bart Baselmans

Multivariate GWAMA

Michel Nivard & Aysu Okbay

MENU V Molecular Psychiatry

Article OPEN Published: 06 March 2019

The influence of X chromosome variants on trait neuroticism

Michelle Luciano [™], Gail Davies, Kim M. Summers, W. David Hill, Caroline Hayward, David C. Liewald, David J. Porteous, Catharine R. Gale, Andrew M. McIntosh & Ian J. Deary

Molecular Psychiatry (2019) | Download Citation ↓

VU Summerschool: 6 July to 20 July 2019

NATURE AND NURTURE

Twin Research and Human Genetics

Course level	Advanced Bachelor/Master, open to PhD staff and professionals	
Session 1	6 July to 20 July 2019	
Recommened course combination	Session 2: The Beautiful Mind: Global Perceptions of Mental Health Session 3: Advanced Optical Fluorescence	
Co-ordinating lecturer	Dr Camelia Minica & Dr Hamdi Mbarek	
Other lecturers	prof. Meike Bartels, Dr Abdel Abdellaoui, prof. Dr Dorret I. Boomsma, prof. Dr Eco J. C. de Geus, prof. Dr Conor Dolan, Dr Michel Nivard, Dr Jenny van Dongen, Dr Dennis van 't Ent, Dr Elsje van Bergen, Dr Gonneke Willemsen, Dr Jouke- Jan Hottenga, Dr Rick Janssen. Guest lecturers to be announced.	
Form(s) of tuition	Lectures, practicals, workshops, excursions	
Form(s) of assessment	Attendance, presentations, practical assignments	
ECTS	3 credits	
Contact hours	50	
Total tuition fee	€1150	

GENES IN BEHAVIOUR AND HEALTH (RESEARCH MASTER)

EXPLORING GENE-ENVIRONMENT INTERPLAY ACROSS OUR LIFESPAN

WWW.VU.NL/GENES

Interested in this unique Master programme in the Netherlands?

Visit our website or email <u>rm.gbh.fgb@vu.nl</u>

LOOKING FURTHER

GWAMA

<u>Genome-Wide</u> <u>Association</u> <u>Meta-Analysis</u>

- Large collaborative studies to increase sample size
- Different cohorts run their own GWA and upload summary statistics
- To make these projects successful and trustworthy, we need rigorous organisation AND quality control (QC)

SOP

Standard Operating Procedure

GWAS Well-Being Analysis Plan

This document details a standard operating procedure (SOP) for the data analysts that will be performing the GWA analyses on Well-Being (WB) in each of the participating cohorts. Standardization of the procedures will increase the precision of the final metaanalyses across all samples of the Consortium.

6 Instructions for genotype handling

Pre imputation QC

We assume genotyping data has already gone through extensive quality control. Typically, studies have excluded SNPs from further analysis (or imputation) with:

- Minor allele frequency <1%
- Call rate <95% (or <99% if SNP has MAF < 5%)
- Failure of HWE exact test at p< 1e-6
- Known to have evidence of poor clustering on visual inspection of intensity plots

Typically, studies have removed subjects that have:

- low overall call rates (< 95%)
- excess autosomal heterozygosity
- duplicate samples
- known 1st or 2nd degree relatives in the sample (i.e. leave only one from each pedigree) (unless the association analysis is family-based and correctly takes into account the observed relatedness)
- wrong gender (excessive X-chromosome homozygosity in males)
- XXY's etc.

5 Instructions for WB phenotypes and covariate coding

Inclusion

We propose to limit the analyses to subjects with European ancestry only.

Phenotype handling

The phenotype handling instructions are different depending on whether a cohort's WB measure is based on a single survey question or a set of survey question. However, the instructions regarding covariates, below this section, are the same in both cases.

For cohorts whose WB measure is the response to a single survey question: Run the GWA using linear regression.

For cohorts whose WB measure is the response to multiple survey questions: Check with us regarding how to aggregate the responses to these questions into a single WB measure. Once you have this measure, run the GWA using linear regression.

No transformation of the WB measure

Cohorts should <u>not</u> transform the WB measure prior to running GWA.¹ However, make sure that WB is positively measured, i.e. <u>higher numbers = higher WB</u>. Please reverse your measure if you have a scale where higher number = lower WB.

9 Instructions for reporting results from first-pass association analyses

On the joint data from all participating cohorts a meta-analysis will be performed on the study-specific association statistics. This requires each participating study to report the following characteristics for every SNP (*all* imputed and observed SNPs to be reported, i.e. <u>no</u> p-value cut-off, <u>no</u> imputation quality cut-off and <u>no</u> maf cut-off) in plain-text ASCII files for each phenotype separately:

Variable name (case sensitive!!)	Description
SNPID	SNP ID as rs number
Chr	Chromosome number (1-22).
position	physical position for the reference sequence (indicate build 35/36 in readme file)
coded_all	Coded allele, also called modelled allele (in example of A/G SNP in which AA=0, AG=1 and GG=2, the coded allele is G)
noncoded_all	The other allele
strand_genome	+ or -, representing either the positive/forward strand or the negative/reverse strand of the human genome reference sequence; to clarify which strand the coded_all and noncoded_all are on
Beta	Beta estimate from genotype-phenotype association, at least 5 decimal places – 'NA' if not available
SE	Standard error of beta estimate, to at least 5 decimal places – 'NA' if not available
Pval	p-value of test statistic, here just as a double check – 'NA' if not available
AF_coded_all	Allele frequency for the coded allele – 'NA' if not available
HWE_pval	Exact test Hardy-Weinberg equilibrium <i>p</i> -value only directly typed SNPs, NA for imputed
callrate	Genotyping call rate after exclusions
n_total	Total sample with phenotype and genotype for SNP

298,420 individuals 181 scientists 145 institutions 167 different files $\overline{\mathcal{O}}$

2

۰. •

>

EasyQC

- For the well-being GWAMA, we used EasyQC for QC-ing the GWAS summary statistics
- Positive experience because it provides guidelines how to perform QC at the:
 - study file level
 - meta-file level
 - meta-analysis OUTPUT level

What needs to be detected

- File name errors -> sounds simple, but with 167 files it is essential that all files can be traced back to a specific cohort
- Incorrect specification of the Phenotype
- Flipped alleles
- Duplicated SNPs
- Bad imputation quality
- Association issues from incorrect analysis models
 - Population stratification
 - Unaccounted relatedness of individuals

These errors

• Limit the contribution of a specific cohort to the meta-analysis

or

• Inflate the number of inflate the number of false positive

Descriptive Summary Statistics

- Participating cohorts were asked to complete a descriptive statistics summary file for their sample
 - 8 cohorts did not specify their question, or did not report the distribution of the question (no categories specified)
 - 3 cohorts gave lower values to higher wellbeing (reversed coding)
 - 8 cohorts did not map the categories to numeric values, but where the first option was higher wellbeing (suspicious reversed coding)

Onderwerp:	RE: URGENT: Well-Being GWAS quality control issue	
Oorspronkelijk berig	<u>ht</u>	
Van: Verzonden: Tuesday, M	ay 05, 2015 3:56 PM	
Aan: Baselmans, B.M.L. Onderwerp: Re: URGEN	T: Well-Being GWAS quality control issue	

Hi Bart,

Looking through my files now, I just realised that the coding for the Diener used for the regressions was actually the other way around, 1= strongly agree and 7=strongly disagree, which I realise now my recoding either didn't save properly (again, in such a rush to do the analysis and also understand the snpStats script) or I uploaded an earlier version of the file when analysing.

Do you need me to re-run the regressions and update the betas and p values (takes around a day)? Huge apologies, as this wasn't my colleague this time...it was my fault.

Best,	Onderwerp: RE: Well-Being GWAS quality control issue -	
	Van Verzonden: Tuesday, May 05, 2015 7:35 PM Aan: Baselmans, B.M.L. CC: De Neve, Jan-Emmanuel; Bartels, M.; A. Okbay; Jaime Derringer; David Cesarini; Onderwerp: Re: Well-Being GWAS quality control issue	
	Hi Bart, The scale was scored as follows:	
	Coding: Integer 1 = very happy 2 = fairly happy 3 = not very happy 4 = not at all happy	
	However, we think the scoring should be flipped so that higher scores indicate greater well-being (as is typically done). That was what we originally	

6 Instructions for genotype handling

Pre imputation QC

We assume genotyping data has already gone through extensive quality control. Typically, studies have excluded SNPs from further analysis (or imputation) with:

- Minor allele frequency <1%
- Call rate <95% (or <99% if SNP has MAF < 5%)
- Failure of HWE exact test at p< 1e-6
- Known to have evidence of poor clustering on visual inspection of intensity plots

Typically, studies have removed subjects that have:

- low overall call rates (< 95%)
- excess autosomal heterozygosity
- duplicate samples
- known 1st or 2nd degree relatives in the sample (i.e. leave only one from each pedigree) (unless the association analysis is family-based and correctly takes into account the observed relatedness)
- wrong gender (excessive X-chromosome homozygosity in males)
- XXY's etc.

Protocol | Published: 24 April 2014

Quality control and conduct of genomewide association meta-analyses

NIH Public Access

Author Manuscript

Nat Protoc. Author manuscript; available in PMC 2014 November 01

Published in final edited form as: *Nat Protoc*. 2014 May ; 9(5): 1192–1212. doi:10.1038/nprot.2014.071.

Quality control and conduct of genome-wide association metaanalyses

Thomas W Winkler¹, Felix R Day², Damien C Croteau-Chonka^{3,4}, Andrew R Wood⁵, Adam E Locke⁶, Reedik Mägi⁷, Teresa Ferreira⁸, Tove Fall^{9,10}, Mariaelisa Graff¹¹, Anne E Justice¹¹, Jian'an Luan², Stefan Gustafsson⁹, Joshua C Randall¹², Sailaja Vedantam^{13,14,15}, Tsegaselassie Workalemahu¹⁶, Tuomas O Kilpeläinen¹⁷, André Scherag^{18,19}, Tonu Esko^{7,13,14,15}, Zoltán Kutalik^{20,21,22}, the GIANT consortium, Iris M Heid^{1,*}, and Ruth JF Loos^{23,24,25,*}

¹Department of Genetic Epidemiology, Institute of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany ²MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK ³Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA ⁴Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA ⁵Genetics of Complex Traits, University of Exeter Medical School, ,

EN DE Suche

δ

 \odot

Universität Regensburg

Software

EasyStrata

EasyQC

Regensburger GEM Plattform

The Genetic Epidemiology Unit

STARTSEITE UR Downloads

Prof. Dr. Iris Heid, Dr. Thomas Winkler, Dr. Mathias Gorski, Dr. Matthias Olden

STARTSEITE EPIDEMIOLOGIE UND PRÄVENTIVMEDIZIN GENETISCHE EPIDEMIOLOGIE

Unser Team

Forschung

Publikationen Description Software FasyOC is an

Lehre

AugUR easyqc

NAKO PUBLIKATIONEN

> KONTAKT IMPRESSUM

easystrata

VERANSTALTUNGEN

STELLENANGEBOTE

MEDIZINISCHE SOZIOLOGIE

EasyQC is an R-package that provides advanced funcionality

(i) to perform file-level QC of single genome-wide association (GWA) data-sets;

(ii) to conduct quality control across several GWA data-sets (meta-level QC);

(iii) to simplify data-handling of large-scale GWA data-sets

One could also say, it can be used as **Nonsense-Detector** for study-specific GWA data-sets.

Download

Version 9.2: <u>EasyQC 9.2.tar.gz</u> Manual: <u>EasyQC 9.0 Commands 140918 2.pdf</u> ChangeLog: <u>EASYQC_CHANGE.log</u>

Download - 1000 Genomes / HRC cleaning material

The following material can be used for quality control of 1000 Genomes or HRC imputed GWAS result data sets.

Scripts:

Navigation

QC workflow- step 1

Step 1: File level QC

- This stage involves cleaning of the data
 - Deleting poor quality data
 - Provide summaries to judge data quality

Think about

- Monomorphic SNPs
- Missingness (e.g. P-values, Beta's, SE's and more)
- Nonsensical information (e.g Alleles other than A, C, G or T, or p-values larger than 1 or smaller than 0 etc)
- Low number of individuals per SNP (GIANT < 30)
- Harmonization of SNP identifiers using maps with unique SNP identifiers and genomic positions

QC workflow – step 2

Step 2: Meta level QC

• This stage consists of the cross-study comparison of statistics and comparison to reference panels to identify study specific problems.

Think about

- QQ-plots to detect early signs of inflation that might be an indication of relatedness problems
- PZ plots -> by B/SE you calculate the corresponding Z statistics. From Z you can obtain P, which can be compared to the actual reported P-value.
- AF plots -> compare the reported allele frequencies to a reference data set

PZ plot

AF plot

AF correct but different ancestry

(d) wrong allele consistently labeled as effect allele

(e) a fraction of the effect alleles misspecified, e.g. MAF instead of the effect allele or incorrectly assigning strand

CLEANED.1998BC-T1DG C.WE.happy.17913 WE Abalance.771013	CLEANED.1958BC-WTCC C2.WB.happy.171013 UWD.htaliasce.171012	CLEANED.AGES.HAP CLEANED.AGES.satisfie PY.WB.20120704 d. https://wB.20120704	CLEANED.AGES.SATIS CLEANED.ALSPAC.hepp FIED.WB.20120704 knews.1792012.new	CLEANED.ALSPAC.L	CLEANED.ALSPAC.W
a definition of the second sec	- 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0			the second secon	
BLANET Date: Da		CLARGE TO CONTRACT OF CONTRACT		A Construction of the second s	CLAUSED HIT AT RESIDUE
Land ME 300001 0 0 0 0 0 0 0 0 0 0 0 0 0	Provide a state of the state of		The second secon	CLUCCELES	
The second secon	a) and a second se		THE SHORE WE ACCUME TO A SHORE		
CLASSING MECHANISM				CLAMED MR TOTAL	
	GRANE SHA MARKEN	Shall have been seen as a second seco			
GLAME IP W GLAME	Subscription Control of the second se			CLARKET France Control of Control	
0.0 0.2 0.4 0.0 0.0 0.2 0.4 0.0 0.0 1.5 CLEANED/YFS.WB.P OSAFF.15080012	Prog Lad Reg Lad	ling) of Ping) of	Region Region	Proof .	Pregland

QC workflow – step 3

Compare results with the other data-analyst and resolve any issues remaining

METAL

http://www.sph.umich.edu/csg/abecasis/metal/

Documentation can be found at the metal wiki:

http://genome.sph.umich.edu/wiki/Metal Documentation

University of Michigan | School of Public Health | Abecasis Lab

METAL

- Metal is flexible
 - By default, METAL combines p-values across studies (sample size, direction of effect)
 - Alternative, standard error based weights (but beta and standard error use same units in all studies)

METAL

- Requires results files
- 'Driver' file
 - Describes the input files
 - Defines meta-analysis strategy
 - Names output file

Steps

- 1. Check format of results files
 - 1. Ensure all necessary columns are available
 - 2. Modify files to include all information
- 2. Prepare driver file
 - 1. Ensure headers match description
 - 2. Crosscheck each results file matches Process name
- 3. Run metal

Results Files

• Previously asked for standard columns in SOP

Variable name	Description
(case sensitive!!)	·
SNPID	SNP ID as rs number
Chr	Chromosome number (1-22).
position	physical position for the reference sequence (indicate build 35/36 in readme file)
coded_all	Coded allele, also called modelled allele (in example of A/G SNP in which AA=0, AG=1 and GG=2, the coded allele is G)
noncoded_all	The other allele
strand_genome	+ or -, representing either the positive/forward strand or the negative/reverse strand of the human genome reference sequence; to clarify which strand the coded_all and noncoded_all are on
Beta	Beta estimate from genotype-phenotype association, at least 5 decimal places – 'NA' if not available
SE	Standard error of beta estimate, to at least 5 decimal places – 'NA' if not available
Pval	<i>p</i> -value of test statistic, here just as a double check – 'NA' if not available
AF_coded_all HWE_pval	Allele frequency for the coded allele – 'NA' if not available Exact test Hardy-Weinberg equilibrium p -value only directly typed SNPs, NA for imputed

• In QC all files are checked (and if necessary corrected)

INPUT FILES

• We will use two GWAs results dataset

results1.txt

- results2.txt

Columns METAL uses

- SNP
- OR
- SE [for standard error meta-analysis]
- P-value [for Z-score meta-analysis]
- If we had two samples of different sizes we would have to add an N/weight column

Meta-analysis running

- We will run meta-analysis based on effect size and on test statistic
- For the weights of test statistic, I've assumed that the sample sizes are the same
 - METAL defaults to weight of 1 when no weight column is supplied
Step 2: driver file: meta_run_file

PERFORM META-ANALYSIS based on effect size and on test statistic
Loading in the input files with results from the participating samples
Note: Order of samples is ...[sample size, alphabetic order,..]
Phenotype is ..
MB March 2019

MARKER SNP ALLELE A1 A2 PVALUE P EFFECT log(OR) STDERR SE

PROCESS results1.txt PROCESS results2.txt

OUTFILE meta_res_Z .txt

ANALYZE CLEAR SCHEME STDERR

PROCESS results1.txt PROCESS results2.txt

OUTFILE meta_res_SE .txt ANALYZE specifies column names

processes two results files

Output file naming

Conducts Z-based meta-analysis from test statistic Clears workspace Changes meta-analysis scheme to beta + SE

processes two results files

Output file naming Conducts effect size meta-analysis # Labels SEPARATOR TAB MARKER cptid ALLELE EFFECT_ALLELE OTHER_ALLELE EFFECT BETA PVALUE PVAL FREQ EAF WEIGHT N

Larger Consortia

Options SCHEME SAMPLESIZE MINMAXFREQ ON AVERAGEFREQ ON GENOMICCONTROL 0.999

Process files PROCESS CLEANED.1958T1D.LS.gz PROCESS CLEANED.BASE.LS.gz PROCESS CLEANED.HNRSoexpr.LS.gz PROCESS CLEANED.HRS.LS.gz PROCESS CLEANED.NHSBRCA.LS.gz PROCESS CLEANED.RUSHMAP.LS.gz PROCESS CLEANED.1958WTC.LS.gz PROCESS CLEANED.EGCUT370.LS.gz PROCESS CLEANED.HNRSomni1.LS.gz PROCESS CLEANED.KORAF3.LS.gz PROCESS CLEANED.NHSCHD.LS.gz PROCESS CLEANED.TEDS.LS.gz PROCESS CLEANED.AGES.LS.gz PROCESS CLEANED.EGCUTOMNI.LS.gz PROCESS CLEANED.HPFSCHD.LS.gz

Etc

Analyse and output MINWEIGHT 50000 ANALYZE HETEROGENEITY

Running metal

- metal < metal_run_file
- metal is the command
- metal_run_file is the driver file
- This will output information on the running of METAL things to standard out [the terminal]
- It will spawn 4 files:
 - 2 results files: meta_res_Z1.txt + meta_res_SE1.txt
 - 2 info files: meta_res_Z1.txt.info + meta_res_SE1.txt.info

Output

- Overview of METAL commands
- Any errors
- And your best hit from meta-analysis

METAL Practical

Copy files from **faculty/meike/2019/metal** to your own folder

- Open Metal_prac_Boulder2019.pdf
 - follow along
 - run the meta-analysis
 - create Manhattan plots

Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses

Depressive Symptoms and Neuroticism

Genetic Correlations

Okbay et al., Nature Genetics, 2016

ARTICLES https://doi.org/10.1038/s41588-018-0320-8

Multivariate genome-wide analyses of the well-being spectrum

Bart M. L. Baselmans^{1,2}, Rick Jansen^{3,4}, Hill F. Ip¹, Jenny van Dongen^{1,2}, Abdel Abdellaoui^{2,5}, Margot P. van de Weijer¹, Yanchun Bao⁶, Melissa Smart⁶, Meena Kumari⁶, Gonneke Willemsen^{1,2,4}, Jouke-Jan Hottenga^{1,2,4}, BIOS consortium⁷, Social Science Genetic Association Consortium⁷, Dorret I. Boomsma^{1,2,4}, Eco J. C. de Geus^{1,2,4}, Michel G. Nivard^{1,2,8*} and Meike Bartels^{1,2,4,8*}

We introduce two novel methods for multivariate genome-wide-association meta-analysis (GWAMA) of related traits that correct for sample overlap. A broad range of simulation scenarios supports the added value of our multivariate methods relative to univariate GWAMA. We applied the novel methods to life satisfaction, positive affect, neuroticism, and depressive symptoms, collectively referred to as the well-being spectrum ($N_{obs} = 2,370,390$), and found 304 significant independent signals. Our multivariate approaches resulted in a 26% increase in the number of independent signals relative to the four univariate GWAMAs and in an ~57% increase in the predictive power of polygenic risk scores. Supporting transcriptome- and methylome-wide analyses (TWAS and MWAS, respectively) uncovered an additional 17 and 75 independent loci, respectively. Bioinformatic analyses, based on gene expression in brain tissues and cells, showed that genes differentially expressed in the subiculum and GABAergic interneurons are enriched in their effect on the well-being spectrum.

Nat Genet. 2019 Mar;51(3):445-451.

		238105	e de la contra de	er uns	S UNS	3 UNS	P UNP	AND DE	Per UK	BON DO	5°_0	BOAC S	5 1	J29900	UNET NE	UNB2	S SOA	S SUS	UNB ²	JKB1A	26 20 148, 50	50 ⁴ C	
DS 23andme	ي 1			් 0.77								چ 0.31	0.6	بلار	0.56		بلار 0.29		۹ ^۳ 0.42	رم 0.52	م ې 0.6		- 1.65
DS CHARGE	0.01	1	0.81	0.73	1.18	0.82	0.83	1.65	1.06	1.1	0.88	0.62	0.66	0.97	0.71	1.17	0.68	0.95	0.87	0.96	1.08		
DS GP UKB1	0	0.01	1	0.94	1.08	0.91	0.92	1.17	0.85	0.49	0.48	0.42	0.62	0.69	0.66	0.74	0.5	0.66	0.47	0.55	0.62		- 1.48
DS GP UKB2	0	0	0.02	1	1.12	0.88	0.84	1.37	0.79	0.9	0.35	0.58	0.53	0.65	0.7	0.65	0.7	0.5	0.39	0.48	0.48		
DS GP UKB3	0	0.01	0	0	1	0.92	0.92	1.24	0.67	0.42	0.25	0.12	0.63	0.74	0.76	0.69	0.32	0.49	0.45	0.48	0.54		- 1.32
DS psy UKB1	0	0.01	0.41	0.17	0.12	1	1	1.34	0.77	0.57	0.45	0.42	0.52	0.6	0.66	0.63	0.51	0.56	0.46	0.55	0.65		
DS psy UKB2	0	0.01	0.46	0.01	0	0.9	1	1.23	0.81	0.49	0.45	0.42	0.55	0.62	0.64	0.66	0.45	0.6	0.47	0.59	0.64		- 1.15
DS psy UKB3	0	0.01	0	0.01	0.47	0.25	0	1	0.84	1.27	0.33	0.5	0.41	0.75	1.13	0.79	1.58	0.53	0.5	0.51	0.96		
DS SSGAC	0	0	0.13	0.01	0.01	0.11	0.11	0.01	1	1.15	0.8	0.89	0.66	0.83	0.76	0.72	0.48	0.76	0.6	0.67	0.8		- 0.99
DS US	0.01	0	0.02	0.01	0.03	0.01	0.02	0	0	1	0.9	0.78	0.41	0.85	0.93	0.81	0.79	0.55	0.8	0.55	0.54		
LS SSGAC	0.01	0.1	0	0	0.01	0	0	0	0.01	0	1	0.68	0.33	0.5	0.34	0.7	0.69	0.45	0.63	0.74	1.37		- 0.82
LS US	0	0	0	0.01	0	0	0	0	0.01	0.63	0	1	0.2	0.55	0.43	0.49	0.86	0.31	0.49	0.56	0.44		
NEU 23andMe	0.13	0	0.01	0.01	0.01	0	0.01	0.01	0	0	0	0.01	1	0.87	0.77	0.89	0.52	1.01	0.6	0.58	0.67		- 0.66
NEU UKB1	0	0	0.33	0.01	0.01	0.23	0.25	0	0.23	0	0	0.01	0.01	1	0.93	0.96	0.71	1.05	0.55	0.62	0.7		
NEU UKB2	0	0.01	0.01	0.33	0	0.09	0.01	0.01	0.01	0	0	0.01	0	0.03	1	0.91	0.69	0.91	0.58	0.62	0.72		- 0.49
NEU SSGAC	0	0.02	0.15	0.01	0	0.11	0.12	0	0.37	0	0.01	0	0.01	0.44	0.02	1	0.67	1.02	0.55	0.6	0.73		
NEU US	0.01	0	0	0	0.01	0	0	0.01	0.01	0.46	0.01	0.28	0	0	0.01	0	1	0.76	0.66	0.32	0.71		- 0.33
NEU UKB3	0	0	0	0	0.32	0.06	0	0.25	0.01	0	0	0	0	0	0	0	0	1	0.55	0.65	0.75		
PA UKB1 4526	0.01	0.01	0.11	0.01	0.01	0.08	0.09	0	0.12	0	0	0	0	0.23	0.01	0.11	0.01	0	1	0.99	0.83		- 0.16
PA UKB1 20458	0.01	0	0.1	0.01	0	0.08	0.08	0	0.08	0.01	0	0.01	0	0.18	0	0.09	0	0	0.19	1	0.9		
PA SSGAC	0	0.16	0.03	0.01	0	0.02	0.02	0	0.11	0.01	0.19	0.01	0.01	0.06	0	0.16	0.01	0	0.27	0.07	1		Lo

Two Multivariate Approaches

1. N-weighted multivariate GWAMA (N-GWAMA) with a unitary effect of the SNP on all traits

2. Model-averaging GWAMA (MA-GWAMA) in which we relaxed the assumption of a unitary effect of the SNP on all traits.

https://github.com/baselmans/multivariate_GWAMA

Nweighted GWAMA

Nweighted GWAMA is a R function that performs a multivariate GWAMA of genetically correlated traits while correcting for sample overlap. The details of the method is described in Baselmans et al. (Nature Genetics) http://dx.doi.org/10.1038/s41588-018-0320-8

• The current version is 1_2_2

Getting Started

You can source the function in R using the following line of code: source("https://github.com/baselmans/multivariate_GWAMA/blob/master/Test_Data/N_weighted_GWAMA.function.1 _2_2.R?raw=TRUE")

Model Averaging GWAMA

Model averaging GWAMA is R code that performs a multivariate GWAMA of genetically correlated traits while correcting for sample overlap. The details of the method is described in Baselmans et al. (Nature Genetics) http://dx.doi.org/10.1038/s41588-018-0320-8

Note: LD Score Regression has the assumption that the included test statistics follow a standard normal distribution under the null hypothesis of no effect. In MA GWAMA we can't guarantee that this assumption will be met. Interpreting results from LD Score regression should be done with some reservation. (Automated function will follow as soon a possible)

Getting Started

You can use MA GWAMA using the following R code (A function to source will follow as soon as possible). In the Test_Data folder you can download an example R script called: test_MA_GWAMA.R

Article | Published: 01 January 2018

Multi-trait analysis of genome-wide association summary statistics using MTAG

Patrick Turley A, Raymond K. Walters, Omeed Maghzian, Aysu Okbay, James J. Lee, Mark Alan Fontana, Tuan Anh Nguyen-Viet, Robbee Wedow, Meghan Zacher, Nicholas A. Furlotte, Patrik Magnusson, Sven Oskarsson, Magnus Johannesson, Peter M. Visscher, David Laibson, David Cesarini A, Benjamin M. Neale A, Daniel J. Benjamin A, 23andMe Research Team & Social Science Genetic Association Consortium

Nature Genetics 50, 229–237 (2018) Download Citation 🚽