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Largest patterns of genetic variation = ancestry
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88% of GWAS participants is of European descent

A scientometric review of genome-wide association studies 
(Mills & Rahal, 2019) 
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Population stratification

 Population stratification = a systematic difference in 
allele frequencies between (sub)populations due to 
different ancestry.

 Can cause false positives if the trait values also differ 
between the (sub)populations.
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Population stratification: chopstick example

Sample 1 Americans: χ2=0, p=1

Use of chopsticks

Yes No Total

Allele 1 320 320 640

Allele 2 80 80 160

Total 400 400 800

Sample 2 Chinese: χ2=0, p=1

Use of chopsticks

Yes No Total

Allele 1 320 20 340

Allele 2 320 20 340

Total 640 40 680
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Population stratification: chopstick example

Sample 1 Americans: χ2=0, p=1

Use of chopsticks

Yes No Total

Allele 1 320 320 640

Allele 2 80 80 160

Total 400 400 800

Sample 2 Chinese: χ2=0, p=1

Use of chopsticks

Yes No Total

Allele 1 320 20 340

Allele 2 320 20 340

Total 640 40 680

There is a clear allele
frequency difference
between Americans and
Chinese
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Population stratification: chopstick example

Sample 1 Americans: χ2=0, p=1

Use of chopsticks

Yes No Total

Allele 1 320 320 640

Allele 2 80 80 160

Total 400 400 800

Sample 2 Chinese: χ2=0, p=1

Use of chopsticks

Yes No Total

Allele 1 320 20 340

Allele 2 320 20 340

Total 640 40 680

There is a clear difference
between Americans and
Chinese in proportion of 
“cases” and “controls”
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Population stratification: chopstick example

Sample 1 Americans: χ2=0, p=1

Use of chopsticks

Yes No Total

Allele 1 320 320 640

Allele 2 80 80 160

Total 400 400 800

Sample 2 Chinese: χ2=0, p=1

Use of chopsticks

Yes No Total

Allele 1 320 20 340

Allele 2 320 20 340

Total 640 40 680

Sample 1 + 2 = Americans + Chinese: 

χ2=34.2, p=4.9 × 10-9

Use of chopsticks

Yes No Total

Allele 1 640 340 980

Allele 2 400 100 500

Total 1040 440 1480
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Dealing with population stratification

Ways to deal with population stratification:

 Genomic Control (GC)

 Principal Component Analysis 

 Within Family Association

 Mixed Linear Modeling
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Dealing with population stratification

Ways to deal with population stratification:

 Genomic Control (GC)

 Principal Component Analysis 

 Within Family Association

 Mixed Linear Modeling
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Genomic Control (GC)

 Population stratification can result in higher test statistics 

(= lower p-values)

 The genomic control method estimates the factor with 

which the test statistics are inflated due to population 

stratification  λ

 Dividing by λ cancels this effect 

out for all SNPs:

 Unadjusted: λχ2

 Adjusted: χ2
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Genomic Control (GC)
 λ is measured by dividing the median of the distribution of the chi-

square statistics from the actual tests by the median of the chi-square 
distribution under the null.
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Genomic Control (GC)
 λ is measured by dividing the median of the distribution of the chi-

square statistics from the actual tests by the median of the chi-square 
distribution under the null.

 Then, GC applies its correction by dividing the actual association test chi-
square statistic results by this λ, thus making these results appropriately 
more pessimistic.
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Genomic Control (GC)
 λ is measured by dividing the median of the distribution of the chi-

square statistics from the actual tests by the median of the chi-square 
distribution under the null.

 Then, GC applies its correction by dividing the actual association test chi-
square statistic results by this λ, thus making these results appropriately 
more pessimistic.

 GC is too conservative if the trait is highly polygenic (i.e. the median test 
statistic does not represent the null distribution).
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Genomic Control (GC)
 λ is measured by dividing the median of the distribution of the chi-

square statistics from the actual tests by the median of the chi-square 
distribution under the null.

 Then, GC applies its correction by dividing the actual association test chi-
square statistic results by this λ, thus making these results appropriately 
more pessimistic.

 GC is too conservative if the trait is highly polygenic (i.e. the median test 
statistic does not represent the null distribution).

 LD Score regression can be used
to estimate a more powerful
and accurate correction factor
than GC.
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Principal Component Analysis (PCA)
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Principal Component Analysis (PCA)

 PCA is a statistical method for exploring large number of 
measurements (e.g., SNPs) by reducing the measurements to 
fewer principal components (PCs) that explain the main 
patterns of variation:

 The first PC is the mathematical combination of measurements that 
accounts for the largest amount of variability in the data. 

 The second PC (uncorrelated with the first) accounts for the second 
largest amount of variability. 

 Etc...
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Principal Component Analysis (PCA)

CEPH/European
Yoruba
Han Chinese
Japanese
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Principal Component Analysis (PCA)

Han Chinese
Japanese
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Fine-scale genetic variation reflects geography

Genes mirror geography within Europe (Novembre et al, 2008) 24



Fine-scale genetic variation reflects geography

PCs reflecting
ancestry differences
usually correlate with
geography.

Genes mirror geography within Europe (Novembre et al, 2008) 25



Copy and unzip files needed for practical

 Open terminal: Applications Menu -> Terminal Emulator

 First run this in your terminal:
cp -r /home/abdel/PCA_practical .

cd PCA_practical

unzip dutch_1kG.zip

 command.txt contains all the remaining commands we are 
going to run in the terminal (which are also on the slides 
abdel_pop_strat_boulder_2019.pdf)
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Overview practical

 Analyses are based on the paper “Population Structure, Migration, and 
Diversifying Selection in the Netherlands” (Abdellaoui et al, 2013)

Analyses:

 Run PCA on 1000 Genomes, and project PCs on Dutch individuals

 Goal: identify Dutch individuals with non-European ancestry and exclude

 Run PCA on remaining Dutch individuals

 Goal: obtain PCs reflecting Dutch ancestry differences

 Software used:

 Eigenstrat -> http://genepath.med.harvard.edu/~reich/Software.htm

 Plink -> http://pngu.mgh.harvard.edu/~purcell/plink

 R -> http://www.r-project.org/
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Description of the data

 Individuals:

 171 Dutch individuals from the Netherlands Twin Registry (NTR)

 221 from 1000 Genomes (Europeans, Africans, and Asians)

 If you’re interested in the 1000 Genomes dataset in plink format (~16 
million SNPs): e-mail a.abdellaoui@amc.nl

 SNPs:

 113,164 SNPs (from Affy 6.0 chip)

 Quality Control (done in Plink):

 MAF > .05

 HWE p > .001

 SNP missingness < .05 (individual missingness < .02)

 Excluded long-range LD regions

 LD Pruned
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Why exclude long-range LD regions?

 Elevated levels of LD can be 
overrepresented in PCs, 
deluding the genome-wide 
patterns that reflect the 
subtle ancestry differences. 

GWAS on PC: PC reflects variation at chr8 
inversion
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Why exclude long-range LD regions?

 Elevated levels of LD can be 
overrepresented in PCs, 
deluding the genome-wide 
patterns that reflect the 
subtle ancestry differences. 

GWAS on PC: PC reflects variation at 
MHC region (chr 6)
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Why also prune for LD?

 From EIGENSTRAT paper Principal components analysis 
corrects for stratification in genome-wide association 
studies (Price et al, 2006): 

“Strong LD at a given locus which affects many markers could 
result in an axis of variation which corresponds to genetic 
variation specifically at that locus, rather than to genome-wide 
ancestry. Nonetheless, we recommend inferring population 
structure using all markers. This recommendation is based on 
an analysis of HapMap data which suggests that these potential 
problems will not affect results in practice.”
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Why also prune for LD?
 PCA was conducted on three sets of SNPs varying in LD on 1000 Genomes 

populations and Dutch subjects separately

 PCs were identical for 1000 Genomes across the 3 SNP sets. For the Dutch dataset, 
there were big differences:

SNP set used for PCA
Nr. of SNPs 

for PCA

Correlations between PCs and 

North-South gradient (N = 3363)

Correlations between PCs and 

East-West gradient (N = 3363)
λ for GWASs on 

height including 

the North-South 

PC as a covariate 

Pearson 

Correlation
Difference test

Pearson 

Correlation
Difference test

SNP set 1: All SNPs that passed QC 499,849 rPC2,↕= .428 - rPC8,↔= .205 - 1.03937

SNP set 2: SNP set 1 without the 

24 long-range LD regions
487,672 rPC1,↕= .574

p = 3.9*10-46

(versus SNP set 1)
rPC3,↔= .260

p = 4.2*10-10

(versus SNP set 1)
1.03092

SNP set 3: SNP set 2 with genome-

wide LD based SNP pruning
130,248 rPC1,↕=.588

p = 1.9*10-4

(versus SNP set 2)
rPC2,↔=.369

p = 3.5*10-21

(versus SNP set 2)
1.02961

 Conclusion: minimizing LD is necessary for more homogeneous datasets (i.e., 
datasets with subjects from a single population)

Population Structure, Migration, and Diversifying Selection in the Netherlands 
(Abdellaoui et al, 2013) 
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Files needed for EIGENSTRAT

 Input files: three files containing information about SNPs 
and samples (.ped, .map, .fam)

 Parameter file: file containing parameters for the PCA
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EIGENSTRAT input files are in plink format

Plink ped files (--recode) Plink binary files (--make-bed)

 dutch_1kG.ped

 dutch_1kG.map

 dutch_1kG.bed

 dutch_1kG.bim

 dutch_1kG.fam
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EIGENSTRAT input files are in plink format

Plink ped files (--recode) Plink binary files (--make-bed)

 dutch_1kG.ped

 dutch_1kG.map

 dutch_1kG.bed

 dutch_1kG.bim

 dutch_1kG.fam

EIGENSTRAT needs
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Values in the phenotype column (column 6) of 
.fam file:

3 = Dutch individuals

4 = CEPH individuals

5 = British individuals

6 = Finnish individuals

7 = Iberian (Spain)

8 = Toscan

9 = Han Chinese in Beijing

10 = Han Chinese South

11 = Japanese individuals

12 = Luhya individuals

13 = Yoruba individuals

European

Asian

African

36



Parameter file (.par)
 The .par file will have the following lines:

genotypename: dutch_1kG.ped -> input genotype file

snpname: dutch_1kG.map -> input snp file 

indivname: dutch_1kG.fam -> input individual file

evecoutname: dutch_1kG.evec -> output file of PCs

evaloutname: dutch_1kG.eval -> output file of all eigenvalues

numoutevec: 10 -> number of PCs to output

numoutlieriter: 0 -> maximum number of outlier removal iterations (0 turns it off)

poplistname: poplist_1kG.txt -> file containing population value of individuals (If wishing 
to infer PCs using only individuals from a subset of 
populations, and then project to individuals from all other 
populations; will be used to detect individuals of non-
European descent)

snpweightoutname: dutch_1kG.snpweight -> output file with SNP weightings of each PC
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Parameter file (.par)
 Let’s make the .par file. Run the following commands:

echo "genotypename: dutch_1kG.ped" >> dutch_1kG.par

echo "snpname: dutch_1kG.map" >> dutch_1kG.par

echo "indivname: dutch_1kG.fam" >> dutch_1kG.par

echo "evecoutname: dutch_1kG.evec" >> dutch_1kG.par 

echo "evaloutname: dutch_1kG.eval" >> dutch_1kG.par

echo "numoutevec: 10" >> dutch_1kG.par 

echo "numoutlieriter: 0" >> dutch_1kG.par

echo "poplistname: poplist_1kG.txt" >> dutch_1kG.par

echo "snpweightoutname: dutch_1kG.snpweight" >> dutch_1kG.par

 We also need to make the poplistname file (poplist_1kG.txt), containing the 
population values of the 1000 Genomes populations (4-13). Run the following 
command:

echo "4\n5\n6\n7\n8\n9\n10\n11\n12\n13" > poplist_1kG.txt
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We’re ready to run EIGENSTRAT

 Run this command:

smartpca -p dutch_1kG.par > dutch_1kG.log
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Let’s look at the PCs in R

 First, let's make the file readable for R:
sed 's/:/ /g' dutch_1kG.evec > dutch_1kG.R.evec

 Run R script to make plot and identify outliers:
R CMD BATCH outliers.R

40



Let’s look at the PCs in R

 First, let's make the file readable for R:
sed 's/:/ /g' dutch_1kG.evec > dutch_1kG.R.evec

 Run R script to make plot and identify outliers:
R CMD BATCH outliers.R

 What does the R script do? (open outliers.R)

 Read in EIGENSTRAT file

 Plot PC1 & PC2

 Write IDs to file of Dutch 
individuals scoring higher 
than maximum European 
or lower than minimum 
European scores on PC1 
or PC2 (to outliers.txt)
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Identifying Dutch with non-European ancestry

 PCs were calculated using a set of 1014 unrelated individuals from 1000 
Genomes, and were then projected on ~7500 Dutch individuals.

 258 individuals were excluded. Parental birth place was available for 132 of 
these individuals, of which 55.3% had at least one parent born outside of 
the Netherlands (as opposed to 4% of the rest of the individuals).

Population Structure, Migration, and Diversifying Selection in the Netherlands 
(Abdellaoui et al, 2013) 
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Identifying Dutch with non-European ancestry

 PCs were calculated using a set of 1014 unrelated individuals from 1000 
Genomes, and were then projected on ~7500 Dutch individuals.

 258 individuals were excluded. Parental birth place was available for 132 of 
these individuals, of which 55.3% had at least one parent born outside of 
the Netherlands (as opposed to 4% of the rest of the individuals).
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Identifying Dutch with non-European ancestry

 PCs were calculated using a set of 1014 unrelated individuals from 1000 
Genomes, and were then projected on ~7500 Dutch individuals.

 258 individuals were excluded. Parental birth place was available for 132 of 
these individuals, of which 55.3% had at least one parent born outside of 
the Netherlands (as opposed to 4% of the rest of the individuals).

Population Structure, Migration, and Diversifying Selection in the Netherlands 
(Abdellaoui et al, 2013) 
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Exclude Dutch individuals with non-European 
ancestry and 1000 Genomes

awk '$6>3{print $1,$2}' dutch_1kG.fam > 1kG.ids 

cat outliers.txt 1kG.ids > remove_outliers.ids

plink --bfile dutch_1kG --remove remove_outliers.ids --make-bed --out dutch 

plink --bfile dutch --recode --out dutch
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Parameter file (.par)
 Let’s make the .par file. Run the following commands:

echo "genotypename: dutch.ped" >> dutch.par

echo "snpname: dutch.map" >> dutch.par

echo "indivname: dutch.fam" >> dutch.par

echo "evecoutname: dutch.evec" >> dutch.par 

echo "evaloutname: dutch.eval" >> dutch.par

echo "numoutevec: 10" >> dutch.par 

echo "numoutlieriter: 0" >> dutch.par

echo "poplistname: poplist_NL.txt" >> dutch.par

echo "snpweightoutname: dutch.snpweight" >> dutch.par

 We also need to make the poplistname file (poplist_NL.txt). Run the following
command:

echo "3" > poplist_NL.txt
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We’re ready to run the 2nd round of 
EIGENSTRAT!

 Run this command:

smartpca -p dutch.par > dutch.log
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Let’s plot the first two PCs in R

 First, let's make the file readable for R:
sed 's/:/ /g' dutch.evec > dutch.R.evec

 Run R script to make plot :
R CMD BATCH plot_NL.R
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Let’s plot the first two PCs in R

 First, let's make the file readable for R:
sed 's/:/ /g' dutch.evec > dutch.R.evec

 Run R script to make plot :
R CMD BATCH plot_NL.R

 What does the R script do? (open plot_NL.R)
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Same plot, with N=4,441

Population Structure, Migration, and Diversifying Selection in the Netherlands 
(Abdellaoui et al, 2013) 
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PC1, PC2, and PC3

 The color of the dots represent the mean PC value per postal 
code (based on current living address of the 4,441 subjects).

Population Structure, Migration, and Diversifying Selection in the Netherlands 
(Abdellaoui et al, 2013) 
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PC1 (N=4,441)

 Correlates .656 with European 
North-South PC.

 Serial founder effect? (correlation 
with F: .245)

 Spouse correlation = .555

Population Structure, Migration, and Diversifying Selection in the Netherlands 
(Abdellaoui et al, 2013) 
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Serial founder effect: heterozygosity decreases (F increases) as 
you move away from Addis Ababa, Ethopia

 Genome-wide homozygosity (F) can be computed in plink with --het
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Height

 Northern Dutch are known to be taller on average than the 

Dutch from the Southern parts of the Netherlands. Also 

within Europe, Northern Europeans are taller on average 

than Southern Europeans.

 In our sample, height does not correlate very high with the 

North-South gradient of the current living address:

 males: r = .055, p = .032; females: r = .066, p = .001

 Height however correlates higher and more significantly 

with the North-South PC: 

 males: r = .178,  p = 3×10-12; females: r = .166, p = 1×10-18

Population Structure, Migration, and Diversifying Selection in the Netherlands 
(Abdellaoui et al, 2013) 
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PC1 (N=4,441)

 Correlates .656 with European 
North-South PC.

 Serial founder effect? (correlation 
with F: .245)

 Spouse correlation = .555

Population Structure, Migration, and Diversifying Selection in the Netherlands 
(Abdellaoui et al, 2013) 
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Religion in the Netherlands

1849 Current NTR 
dataset (N=25,450)

Genotyped 
dataset (N=6,367)

 The Netherlands had a long history (>400 years) of societal segregation and 
assortment based on religious affiliation. 

 Spouse correlation for religion in current dataset = .728 (p < .001)

 This may have increased parental relatedness among religious people. 

Association between autozygosity and major depression: Stratification due to religious assortment 
(Abdellaoui et al, 2013)
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PC2 (N=4,441)

 Spouse correlation = .164

Population Structure, Migration, and Diversifying Selection in the Netherlands 
(Abdellaoui et al, 2013) 
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PC3 (N=4,441)
 Was only observed with minimized LD

 Spouse correlation = .174

 Bible belt?

Votes for 
conservative 
Christian party 
(SGP)

Population Structure, Migration, and Diversifying Selection in the Netherlands 
(Abdellaoui et al, 2013) 
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PC3 (N=4,441)
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Natural selection vs genetic drift

 The 1000 individuals with the lowest PC score were compared with the 1000 
individuals with the highest PC score

 Using the 500 000 SNPs it is estimated what the expected divergence is under 
genetic drift

 For each SNP we then compute whether the divergence is significantly greater than 
expected under genetic drift (i.e., whether they are under selection)

Population Structure, Migration, and Diversifying Selection in the Netherlands 
(Abdellaoui et al, 2013) 
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Using PCs and Fst to identify loci under selection

Population Structure, Migration, and Diversifying Selection in the Netherlands 
(Abdellaoui et al, 2013) 

 Bayescan 2.1 was used to calculate Fst values for all SNPs and 
identify outliers with a Bayesian approach 

 Fst‘s were computed between top 1000 and bottom 1000 
individuals for each ancestry-informative PC
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Using PCs and Fst to identify loci under selection

 Bayescan 2.1 was used to calculate Fst values for all SNPs and 
identify outliers with a Bayesian approach 

 Fst‘s were computed between top 1000 and bottom 1000 
individuals for each ancestry-informative PC

 Fst is then decomposed into 2 components:

 population-specific component (β), shared by all loci

 locus-specific component (α), shared by both populations

 If α is significantly different from 0, the locus may have been 
under selection:

 α > 0 = diversifying selection

 α < 0 = balancing selection (power to detect this is weak)

 Significance is based on FDR corrected q-value (< .05)

Population Structure, Migration, and Diversifying Selection in the Netherlands 
(Abdellaoui et al, 2013) 
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Using PCs and Fst to identify loci under selection: results

 499,849 SNPs in total (51.4% within genes):

 PC1 (North-South): 273 significant SNPs (59% within 88 genes)

 PC2 (East-West): 172 significant SNPs (58.1% within 55 genes)

 PC3 (Middle-Band): 100 significant SNPs (75% within 41 genes)

 Several of the genes with significant SNPs have been observed 
to be strongly differentiated within Europe in previous studies:

 LCT (PC1), HERC2 (PC1), CADPS (PC1), IRF1 (PC1), SLC44A5 (PC1), 
R3HDM1 (PC1), ACOXL (PC3), and BTBD9 (PC3)

Population Structure, Migration, and Diversifying Selection in the Netherlands 
(Abdellaoui et al, 2013) 
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HERC2 & eye color

 Highest Fst observed in PC1 for SNP in HERC2 gene (rs8039195). 
Strongly associated with eye color in several GWASs (p = 7.8 × 10-112

in current dataset).

Population Structure, Migration, and Diversifying Selection in the Netherlands 
(Abdellaoui et al, 2013) 
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HERC2 & eye color

 Highest Fst observed in PC1 for SNP in HERC2 gene (rs8039195). 
Strongly associated with eye color in several GWASs (p = 7.8 × 10-112

in current dataset).

 Fst‘s were calculated for 3495 SNPs in 
and around HERC2 between Northern 
European populations (British and 
Finnish) and Southern European 
populations (Iberian and Toscan) from 
1000 Genomes. 

Population
rs8039195  (HERC2)

CC CT TT

Finnish .0 6.5 93.5

Northern Dutch .4 13.1 86.5

British 1.2 21.4 77.4

Southern Dutch 2.3 23.9 73.7

Iberian .0 50.0 50.0

Toscan 16.8 42.1 41.1

Population Structure, Migration, and Diversifying Selection in the Netherlands 
(Abdellaoui et al, 2013) 
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HERC2 & eye color

 Highest Fst observed in PC1 for SNP in HERC2 gene (rs8039195). 
Strongly associated with eye color in several GWASs (p = 7.8 × 10-112

in current dataset).

 Fst‘s were calculated for 3495 SNPs in 
and around HERC2 between Northern 
European populations (British and 
Finnish) and Southern European 
populations (Iberian and Toscan) from 
1000 Genomes. 

 Of the SNPs genotyped in the Dutch, rs8039195 had the highest Fst. 

Population
rs8039195  (HERC2)

CC CT TT

Finnish .0 6.5 93.5

Northern Dutch .4 13.1 86.5

British 1.2 21.4 77.4

Southern Dutch 2.3 23.9 73.7

Iberian .0 50.0 50.0

Toscan 16.8 42.1 41.1

Population Structure, Migration, and Diversifying Selection in the Netherlands 
(Abdellaoui et al, 2013) 
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HERC2 & eye color

 Highest Fst observed in PC1 for SNP in HERC2 gene (rs8039195). 
Strongly associated with eye color in several GWASs (p = 7.8 × 10-112

in current dataset).

 Fst‘s were calculated for 3495 SNPs in 
and around HERC2 between Northern 
European populations (British and 
Finnish) and Southern European 
populations (Iberian and Toscan) from 
1000 Genomes. 

 Of the SNPs genotyped in the Dutch, rs8039195 had the highest Fst. 

 Of all 3495 SNPs, highest Fst was observed for rs12913832 (LD with 
rs8039195: r2 = .394, D’ = .993), the SNP with the largest effect on 
human blue/brown eye color.

Population
rs8039195  (HERC2)

CC CT TT

Finnish .0 6.5 93.5

Northern Dutch .4 13.1 86.5

British 1.2 21.4 77.4

Southern Dutch 2.3 23.9 73.7

Iberian .0 50.0 50.0

Toscan 16.8 42.1 41.1

Population Structure, Migration, and Diversifying Selection in the Netherlands 
(Abdellaoui et al, 2013) 
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Using PCs and Fst to identify loci under selection: results

 Other notable genes include: 
 FTO (PC1): has been associated with BMI and obesity many times. 

Population Structure, Migration, and Diversifying Selection in the Netherlands 
(Abdellaoui et al, 2013) 
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Using PCs and Fst to identify loci under selection: results

 Other notable genes include: 
 FTO (PC1): has been associated with BMI and obesity many times. 

 LCT (PC1): influences the ability to digest lactose into adulthood. 

Population Structure, Migration, and Diversifying Selection in the Netherlands 
(Abdellaoui et al, 2013) 
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Using PCs and Fst to identify loci under selection: results

 Other notable genes include: 
 FTO (PC1): has been associated with BMI and obesity many times. 

 LCT (PC1): influences the ability to digest lactose into adulthood. 

 HCP5 (HLA Complex P5 gene) from the MHC region. One of two genes 
that appear in multiple PCs (PC1 & PC2), and plays a role in the immune 
system. Strong divergence of genes from the HLA complex has been 
observed in many human populations. Other immunity-related genes 
that showed significant signals of selection in this study as well as 
previous studies are: IRF1 (PC1), ACE (PC1), LRRC4C (PC2), PLCL1 (PC3), 
and HSPD1 (PC3).

Population Structure, Migration, and Diversifying Selection in the Netherlands 
(Abdellaoui et al, 2013) 
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Using PCs and Fst to identify loci under selection: results

 Other notable genes include: 
 FTO (PC1): has been associated with BMI and obesity many times. 

 LCT (PC1): influences the ability to digest lactose into adulthood. 

 HCP5 (HLA Complex P5 gene) from the MHC region. One of two genes 
that appear in multiple PCs (PC1 & PC2), and plays a role in the immune 
system. Strong divergence of genes from the HLA complex has been 
observed in many human populations. Other immunity-related genes 
that showed significant signals of selection in this study as well as 
previous studies are: IRF1 (PC1), ACE (PC1), LRRC4C (PC2), PLCL1 (PC3), 
and HSPD1 (PC3).

Population Structure, Migration, and Diversifying Selection in the Netherlands 
(Abdellaoui et al, 2013) 

Bayescan can be found here: http://cmpg.unibe.ch/software/bayescan/

72

http://cmpg.unibe.ch/software/bayescan/


Converting plink files to Bayescan format with 
the script convert_to_bayescan.pl

Plink transposed files 
(--recode --transpose)

Plink binary files (--make-bed)

 dutch.tped

 dutch.tfam

 dutch.bed

 dutch.bim

 dutch.fam

convert_to_bayescan.pl needs

• The populations you want to compare have to be coded as 1 and 2 in the 
phenotype column (6th column) of the .tfam file. 

• Use --pheno to update phenotypes : 
http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml#pheno

Usage:
perl convert_to_bayescan.pl dutch dutch_outputfile
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Geographic Distribution of Ancestry in 
UK Biobank
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Current living 
address

Place of birthAssessment 
centers
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Moran’s I

Clustered 
together

Moran’s I = 1 Moran’s I = 0 Moran’s I = -1

A measure of spatial autocorrelation

Spatially random Dispersed
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 Local authorities (378 areas) – evenly spaced cut-offs

Moran’s I = .77 
p < 10-4

Moran’s I = .83 
p < 10-4

Moran’s I = .58 
p < 10-4

Moran’s I = .84 
p < 10-4

Moran’s I = .93 
p < 10-4

Ancestry differences in Great Britain
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Ancestry differences in Great Britain

 MSOA: 8,436 areas – class-interval cut-offs
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Moran’s I = .70 
p < 10-4

Moran’s I = .78 
p < 10-4

Moran’s I = .61 
p < 10-4

Moran’s I = .61 
p < 10-4

Moran’s I = .43 
p < 10-4

Ancestry differences in Great Britain

 Local authorities: 378 areas – evenly spaced cut-offs
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 MSOA: 8,436 areas – class-interval cut-offs
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Moran’s I = .57 
p < 10-4

Moran’s I = .60 
p < 10-4

Moran’s I = .50 
p < 10-4

Moran’s I = .47 
p < 10-4

Moran’s I = .49 
p < 10-4

Ancestry differences in Great Britain

 Local authorities: 378 areas – evenly spaced cut-offs
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Moran’s I = .57 
p < 10-4

Moran’s I = .60 
p < 10-4

Moran’s I = .50 
p < 10-4

Moran’s I = .47 
p < 10-4

Moran’s I = .49 
p < 10-4

Ancestry differences in Great Britain

 MSOA: 8,436 areas – evenly spaced cut-offs
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Moran’s I = .30 
p < 10-4

Moran’s I = .10 
p = .002

Moran’s I = .53 
p < 10-4

Moran’s I = .25 
p < 10-4

Moran’s I = .56 
p < 10-4

Ancestry differences in Great Britain

 Local authorities: 378 areas – evenly spaced cut-offs
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p < 10-4
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Moran’s I = .51 
p < 10-4

Moran’s I = .11 
p = 3 x 10-4

Moran’s I = .22 
p < 10-4

Moran’s I = .58 
p < 10-4

Moran’s I = .23 
p < 10-4

Ancestry differences in Great Britain

 Local authorities: 378 areas – evenly spaced cut-offs
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Ancestry differences in Great Britain
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Ancestry differences in Great Britain

 Polygenic scores, before and after regressing out 100 PCs
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Next up: 

Linear Mixed Modeling (LMM) 

with Dr. Aysu Okbay
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