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Couples often assort on...

Education (r ~ 0.5) Height (r ~ 0.2 - 0.3)

But also on...

- Body mass index

- Personality related traits

- Political preferences

- Diseases susceptibility

- Etc.

Resemblance of spouses = Assortative Mating (AM)



Evolutionary consequences of AM

• Fisher (1918), Wright (1921), Crow and Kimura (1970), Gimelfarb
(1981, 1984).

• AM induces a positive correlation between trait increasing 
alleles.

• Consequence: increase of genetic variance (heritability).

• var(a1X1 + a2X2) = a1
2var(X1) + a2

2var(X2) + 2a1a2cov(X1,X2) 



Why do we care about AM?

• Increase in genetic variance may lead to more extreme 
phenotypes in the population.

• AM create structures in the population that may engender health 
and socioeconomic inequalities. 
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How do we quantify it?
Chromosome SNP Tested Allele (A1) Beta

1 rs1778789 A 0.01

2 rs67388911 G -0.1

3 rs8800309 C 0.11

4 rs17777893 T 0.71

ID_1 ID_2 … ID_N

rs1778789 AA AT … TT

rs67388911 GA AA … GA

rs8800309 CC CC … CC

rs17777893 GT TT … GG

Summary Statistics from a 

reference GWAS

Individual level genotypes 

from a study independent of 

the reference GWAS
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How do we quantify it?
Chromosome SNP Tested Allele (A1) Beta

1 rs1778789 A 0.01

2 rs67388911 G -0.1

3 rs8800309 C 0.11

4 rs17777893 T 0.71

ID_1 ID_2 … ID_N

rs1778789 AA AT … TT

rs67388911 GA AA … GA

rs8800309 CC CC … CC

rs17777893 GT TT … GG

Polygenic Score on odd chromosomes (So) Polygenic Score on even chromosomes (Se)

ID_1 Beta(rs1778789) #A + Beta(rs8800309) #C Beta(rs67388911) #G + Beta(rs17777893) #T

ID_2 Beta(rs1778789) #A + Beta(rs8800309) #C Beta(rs67388911) #G + Beta(rs17777893) #T

… … …

ID_N Beta(rs1778789) #A + Beta(rs8800309) #C Beta(rs67388911) #G + Beta(rs17777893) #T

θ = S(o)~S(e) (regression) = cov(Se,So)/var(Se)

Summary Statistics from a 

reference GWAS

Individual level genotypes 

from a study independent of 

the reference GWAS



Significant GPD for height and Educational 
attainment

No signal for BMI, convergence?



What to know more?

THANK YOU!
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The Exposome



Network Integration



Network Integration



Network Integration
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“Affected” 
sister-pair 
linkage 
study



QIMR 3,251 Mothers of DZ Twins 27,534 controls

FSHB

SMAD3 ZFMP1
ADRB2

Scott Gordon



Manhattan plot for DZ Twinning
NTR-QIMR-MCTFR-WGHS-deCODEall

9598 MODZT “cases”, 363,756 controls

Note: small #cases implies large effect sizes!

LRIF1

FSHB

ADRB2 DACT2

LOC105377865
SMAD3

ZFMP1

intergenic

Lambda 1.18

IPO8

FSHB Follicle stimulating hormone beta subunit

SMAD3 regulates gonadal responsiveness to FSH

ADRB2 (Adrenoceptor Beta 2) implicated in ovulation

ZFMP1 (Zinc finger FOG member 1): testicular cancer

IPO8 (Importin 8 required for TGF-β–activated Smad2/3 

to translocate into the nucleus

Hamdi Mbarek



MODZT+UKB (fixed effect) MODZT+UKB (N-Weighted)

N Genes Chr Start Stop Gene based P GWAS top SNP P Gene based P Gene based P

1 FSHB 11 30252563 30256808 1.76E-10 7.31E-22 2.56E-11 1.31E-09

2 SMAD3 15 67356101 67487533 1.69E-07 1.91E-11 1.97E-08 3.69E-07

3 ADRB2 5 148206156C56061.48E+08 0.22 2.08E-08 0.44 0.42

4 GNRH1 8 25276776 25282170 3.61E-07 6.5E-09 2.34E-08 2.2E-07

5 ZFPM1 16 88519725 88603424 2.05E-09 5.02E-10 6.16E-10 5.64E-07

6 RGS7BP 5 63802084 63908139 5.78E-07 4.67E-07 2.35E-04

7 IPO8 12 30781922 30848920 2.92E-08 2.27E-09 7.59E-08

8 SHBG 17 7517382 7536700 6.10e-07 4.75E-07 2.84E-04

9 GCSAML 1 2.48E+08 2.48E+08 2.31E-05 2.59E-06 1.35E-04

10 STON1-GTF2A1L 2 48757064 49003654 8.56E-05 1.04E-06 1.36E-06

11 LHCGR 2 48859428 48982880 1.4E-04 1.48E-06 1.28E-06

12 DOCK5 8 25042238 25275598 2.03E-05 1.22E-06 6.75E-06

13 RNF111 15 59157374 59389618 7.31E-06 6.35E-07 2.12E-05

14 FSHR 2 49189296 49381676 0.024 1.45E-04 1.34E-06

15 BMPR1B 4 95679119 96079599 0.022 1.73E04 2.72E-06

MODZT

15 genes for DZT: 13 new; 13 have obvious function

How well do these (PRS) predict
• DZT in an out population (e.g. Iceland}
• Large differences in DZT rate between Africans, Europeans, Asians
• Large differences between early age (18) and late (37) MODZT
• Other female reproductive traits (menarche, menopause, age 1st kid, #kids)
• Female infertility 
• Reproductive cancers (breast, ovarian, testicular, prostate)
• Evidence for selection at these loci (eugenic?, dysgenic?)
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Convergence of Mendelian 
and complex disease genetics

Hilary Martin

Wellcome Sanger Institute (near Cambridge, UK)



Mendelian versus complex disease genetics:
a false dichotomy?

Rare variants Common variants

Mendelian 
diseases

Complex diseases

Major role

Major role

?

Some well-known examples (e.g. 
MODY), but don’t account for much 

heritability



Common variants contribute to rare neurodevelopmental disorders 
previously assumed to be Mendelian

• ~7000 patients with rare, severe neurodevelopmental disorders in the Deciphering Developmental 
Disorders study versus ~9000 controls

• h2
SNP ~8% (for MAF>5%)

• replicated with polygenic scores in 1270 cases from Australia versus 1700 controls

No significant difference in any polygenic score 
between patients with versus without a 

“diagnostic” rare variant

Mari NiemiJeff Barrett



Polygenic transmission-disequilibrium test in autism
• Polygenic scores for autism, schizophrenia and educational attainment are significantly over-

transmitted to autism patients, regardless of their IQ
• Still see over-transmission of autism and schizophrenia PRS to probands with a large-effect de novo 

mutation

Daniel Weiner, Emilie Wigdor, …, Elise Robinson.

Nat Gen, 2017



Common variants modifying penetrance of rare variants 
affecting cognition?

Mari Niemi, Eugene Gardner

ongoing collaboration with Andrea Ganna, Sali Farhan at Broad to expand sample size!

• rare loss-of-function variants in highly constrained genes increase risk of severe ID/DD and impact 
cognition in the general population

• are people in healthy population cohorts protected against such variants by polygenic background?
• preliminary work in INTERVAL, a cohort of healthy British blood donors

LoF (pLI>0.9) (N=459)
no LoF (N=3,356) 

p=0.04 
(one-tailed t-test)

13% of ~2000 people



Common variants modifying penetrance of 
rare variants in breast cancer



Open questions

• How much do low-frequency variants (e.g. MAF 0.1-5%) contribute to 
heritability of rare neurodevelopmental disorders?

• To what extent do common variants contribute to other rare disorders? e.g. 
heart defects

• Do polygenic scores and rare variants act additively on traits, or is there an 
interaction?

• Can we increase power to detect rare variants by conditioning on polygenic risk 
scores?

• To what extent can we improve polygenic prediction by incorporating rare 
variants? (as individual variants, or in aggregated groups)



Acknowledgements

Mari Niemi Jeff Barrett Matt HurlesEugene Gardner



For cognition and schizophrenia in particular, rare and common 
variant signals are enriched in highly constrained genes

High constrained genes: significantly depleted of loss-of-function 
variants in healthy people 

Karczewski et al, doi: http://dx.doi.org/10.1101/531210.



• 429 Finnish intellectual disability (ID) cases versus 2195 controls
• heritability explained by polygenic risk scores for EA is the highest in mild ID (2.2%) but 

lower for more severe ID (0.6%)

Common variants contribute to rare neurodevelopmental 
disorders previously assumed to be Mendelian
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Behavioral Genetics in the 
molecular age - answers to 

age old questions

Matthew Keller

CU Boulder



BG is interested in quantifying factors 
that cause individual differences

• Traditionally, we’ve done this using close relatives & twins

• Has been enormously successful and we’ve been able to make 
broad-brushed conclusions about genes & env.

• But these studies require strong assumptions about causes of 
relative similarity. For us who care about, e.g., VA:VNA, VF 
(familial variance from parental effects) VC (shared 
environmental effects), or AM (assortative mating), twin and 
family models can be biased and coarse

• We want ways to investigate old questions in new (and 
potentially less biased) ways

• Following are new ways to do this using molecular data



1. SNP data to estimate ~full VA’

• GREML is done on unrelated (distantly related) individuals – we 
don’t require assumptions about causes of similarity between 
close relatives.

• As we move to very large sequence reference panels (e.g., 
TOPMed; n ~ 100k) – or to large sequence data itself, 
VA’_GREML should begin to approach VA. If VA’_GREML is 
much different than VA’_twin, something interesting is going on!

• Upward biases in VA’_twin? De novo variants? Phenotypic 
heterogeneity?

• This is exciting: new and independent way of estimating VA. Via 
triangulation, we’ll know ~ true VA soon.



2. SNP data to estimate allelic spectra of 
V(G) and COV(G)

• What is the mix of rare vs. common variants affecting trait 
variation? Important for study design and evolutionary 
interpretations.

• GREML models (previous slide) on imputed or sequence data, 
when done properly (multiple GRMs stratified by MAF and 
individual LD) can give us estimates of the allelic spectra

• These same methods can help us understand if rg is the same 
across the allelic spectra



 Recent work* uses GREML and/or PRS to directly estimate the 

additive genetic correlation between mates
o Spousal height correlation completely consistent with primary AM, but that of 

BMI is about ½ primary AM and ½ other factors (convergence? social 

homogamy?)

 This is exciting: assumptions about the cause of spousal 

similarity can now be empirically tested!

3. SNP data to understand causes of 
spousal similarity

* Robinson et al., 2017



 Passive G-E correlations arise when genetic effects are not 

random with respect to env. effects
o Most commonly: env. of offspring a function of parental phenotypes

 Comparing between- and within-family GWAS estimates can 

provide estimates of the importance of G-E covariance

 Similarly, looking at relationship between PRS of transmitted 

genome vs. PRS of untransmitted genome as a way to test 

parenting effects on offspring. 

4. SNP data to investigate familial 
transmission

* Kong et al., 2018
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Integrating polygenic scores into 
social sciences

Aysu Okbay



EA1 (N=126,559), 3 hits 

EA2 (N=293,723), 74 hits 

EA3 (N=1,131,881), 1,271



Educational attainment polygenic scores



Nearly as good as conventional controls in 
social science

The EA score now 
predicts more than 
household income!

Makes many previously 
underpowered 
analyses feasible



Polygenic scores in social sciences

Genes as controls Gene × environment interactions

Policy Income

Genes



Example: Policy evaluation

Questions:
• Did the reform affect individuals in 

different EA PGS bins 
heterogeneously?

• Did the reform achieve what it meant 
to achieve? More equality?

The Swedish educational 
reform:
• Increased compulsory 

schooling from 7 to 9 years
• Delayed ability tracking
• Was rolled out gradually 

generating quasi-
experimental variation

Preliminary result:
• higher ability females were more likely to obtain a high school degree, which is 

beyond the new minimum established by the reform.
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Migration

Mate Choice

a.abdellaoui@amc.nl dr_appie



Non-religiousProtestantCatholic

1849 Today



Below average 
migration distance

Lower 
educated 

fathers

Higher 
educated 

fathers

Above average 
migration distance

• Educational attainment was significantly associated with Froh (inbreeding) 

• But parental education was much more significantly associated with Froh

• Why?

• Higher educated parents migrated significantly more often and greater distances

• There is strong assortative mating for educational attainment



Correlation between offspring ancestry and geography 
significantly decreased as parental education increased



Assortative mating for educational attainment is 
measurable at the genetic level (with polygenic scores)



Polygenic scores, before and after regressing out 100 PCs



Uncorrected for PCs

Corrected for 100 PCs

Spatial autocorrelation (i.e., geographic clustering) 
of 30 polygenic scores



Educational
Attainment

Polygenic Score

(EA3, without British 
cohorts)

Townsend 
Index

Overall Health 
(phenotypic)





Migration

Mate Choice

a.abdellaoui@amc.nl dr_appie
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DAVID EVANS



Using Genetics to Investigate the 
Developmental Origins of Health and 

Disease

David Evans

University of Queensland

University of Bristol



Prevalence of Impaired Glucose Tolerance or 
T2D in 64 year old men in the UK
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GWAS Analysis of Birthweight in UKBB and EGG

Novel loci
Known loci

Fetal GWAS in 
321k individuals: 

174 loci

Maternal GWAS in 
230k individuals: 

93 loci

• Birthweight GWAS reflects a mixture of maternal and fetal genetic effects

• Unrelated individuals*



Disentangling Mother and Child Effects on 
Birth Weight
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Maternal vs Fetal Effects for Birth Weight 
SNPs





Estimating Causal Effects of Maternal SBP on 
Offspring Birthweight

• No confounding from offspring genotype

• Very large sample sizes

SNPf

SNPm SBP BW

C(1)

SNPf

SNPm SBP BW

C(2)

SNPm BW

(3) SNPm SBP(i)

(ii)

SNPf BW

Maternal 
Exposure 

phenotype Outcome
Number of 

SNPs Beta SE P-value
Systolic blood 

pressure
Maternal effect on BW 

(unconditional) 68 -0.0158 0.0022 6.13E-10

(mmHg)
Fetal effect on BW 

(unconditional) 68 -0.0082 0.0020 1.43E-04
Maternal effect on BW 

(adjusted) 68 -0.0148 0.0021 1.98E-09
Fetal effect on BW 

(adjusted) 68 -0.0008 0.0019 6.70E-01



Relationship between maternal and child

SNPs, offspring birthweight (BW) and

systolic blood pressure (SBP). Each model

provides an explanation for the negative

genetic correlation between birthweight and

SBP observed in Horikoshi et al (2016).

SNPs may exert maternal and/or fetal

genetic effects on birthweight. A red cross

indicates a blocked path due to conditioning

on offspring/maternal genotype. The dashed

black path represents the possibility of

genetic pleiotropy mediated through the fetal

genome. The dashed red path represents

possible postnatal effects of maternal SNPs.

Using Maternal Effects to Investigate the Effect of Birth Weight on Later Life Outcomes





• Two year postdoctoral position

• One year postdoctoral position

• PhD position
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Monday Tuesday Wednesday Thursday Friday

Intro 2 Unix & R plink & GRMs GWAS & genetic data 

formats

LD score regression & 

genetic correlation

Simulation

Causes of Variation ACE:  from twins to 

GRMs

Multivariate Models Developmental Models Genomic SEM 

Biometrical Genetics Binary & Ordinal Data 

& Measurement

Genetic Factor Models Direction of Causation 

DOC

Model Assumptions & 

Extended Pedigrees

OpenMx: Regression 

& tools 4 SEM

Multilevel Models GREML in OpenMx PRS & Mendelian 

Randomization MR

Statistical Power

ACE Model (full script 

+ umx)

Heterogeneity: Sex & 

GxE interaction

GW-SEM Combined DOC-MR Lightning Rounds

34th International Statistical Genetics Workshop – Boulder CO 2020

Thank you for participating!  See you next year?!


