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Couples often assort on...

Education (r ~0.5) Height(r~0.2-0.3)

Resemblance of spouses = Assortative Mating (AM)

But also on...

Body mass index
Personality related traits
Political preferences
Diseases susceptibility
Etc.



Evolutionary consequences of AM

* Fisher (1918), Wright (1921), Crow and Kimura (1970), Gimelfarb
(1981, 1984).

 AM induces a positive correlation between trait increasing
alleles.

» Consequence: increase of genetic variance (heritability).
e var(a,X, + a,X,) = a,?var(X,) + a,?var(X,) + 2a,a,cov(X;,X,)




Why do we care about AM?

* Increase in genetic variance may lead to more extreme
phenotypes in the population.

* AM create structures in the population that may engender health
and socioeconomic inequalities.



How do we quantify it?

Chromosome SNP Tested Allele (A1) Beta Individual le_VGI genOtypeS
1 rs1778789 A 0.01 from a study independent of

2 rs67388911 G 0.1 the reference GWAS
3 rs8800309 C 0.11 ID1ID2 .. IDN
4 rs17777893 T 0.71 rs1778789 AA AT .. TT
_y rs67388911 GA AA .. GA

Summary Statistics from a

rs8800309 CC CC .. CC

reference GWAS
rs17777893 GT TT .. GG



How do we quantify it?

Polygenic Score on odd chromosomes (So) Polygenic Score on even chromosomes (Se)

ID_1 Beta(rs1778789) #A + Beta(rs8800309) #C Beta(rs67388911) #G + Beta(rs17777893) #T
ID_2 Beta(rs1778789) #A + Beta(rs8800309) #C Beta(rs67388911) #G + Beta(rs17777893) #T

ID_N Beta(rs1778789) #A + Beta(rs8800309) #C Beta(rs67388911) #G + Beta(rs17777893) #T

0 = S(0)~S(e) (regression) = cov(Se,So)/var(Se)



Significant GPD for height and Educational
attainment
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What to know more?

nature . LETTERS
human behaVIOUf https://doi.org/10.1038/541562-018-0476-3
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Network Integration

MR E R

GENOME : EPIGENOME EXPOSOME WELL-BEING



Network Integration

B e S s R

GENOME : EPIGENOME : EXPOSOME WELL-BEING



Network Integration

B R s R

GENOME : EPIGENOME : EXPOSOME WELL-BEING






Human Reproduction, Vol.25, No.6 pp. 1569-1580, 2010
Advanced Access publication on April 8, 2010  doi:10.1093/humrep/deq084

Ihumaﬂ . ORIGINAL ARTICLE Reproductive genetics
reproduction

A genome wide linkage scan for
dizygotic twinning in 525 families
of mothers of dizygotic twins

Jodie N. Painter "', Gonneke Willemsen?2, Dale Nyholt!,

Chantal Hoekstra?, David L. Duffy!, Anjali K. Henders!',

Leanne Wallace!, Sue Healey!, Lisa A. Cannon-Albright3,

Mark Skolnick?, Nicholas G. Martin', Dorret I. Boomsma?t, and
Grant W. Montgomery 1

“Affected”
sister-pair
linkage
study
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QIMR

3,251 Mothers of DZ Twins 27,534 controls

MODZT association results - HRCr1.1 (overall)
GCTA MLMA LOCO analysis (Manhattan plot)
filtered for MAF >=0.01, Rsq =09
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-log10 P-value

Manhattan plot for DZ Twinning

NTR-QIMR-MCTFR-WGHS-deCODEall
9598 MOD/ZT “cases”, 363,756 controls Lambda 1.18
Note: small #cases implies large effect sizes! /
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SMAD3 regulates gonadal responsiveness to FSH

16 ADRB2 (Adrenoceptor Beta 2) implicated in ovulation
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15 genes for DZT: 13 new; 13 have obvious function

Genes
FSHB
SMAD3

Chr Start Stop

11 30252563 30256808]
15 67356101 67487533/

5
8
16
5
12
17
1
2
2
8
15
2

4

How well do these (PRS) predict

MODZT

MODZT+UKB (fixed effect)

MODZT+UKB (N-Weighted)

Gene based P GWAS top SNP P
1.76E-10 7.31E-22
1.69E-07 1.91E-11
0.22 2.08E-08
3.61E-07 6.5E-09
2.05E-09 5.02E-10
5.78E-07
2.92E-08
6.10e-07
2.31E-05
8.56E-05
1.4E-04
2.03E-05
7.31E-06
0.024
0.022

Al Al Al Al Al

Gene based P
2.56E-11
1.97E-08

0.44
2.34E-08
6.16E-10
4.67E-07
2.27E-09
4.,75E-07
2.59E-06
1.04E-06
1.48E-06
1.22E-06
6.35E-07
1.45E-04

1.73E04

N Al Al Al Al Al Al Al Al Al Al Al Al Al Al

Al Al A Al Al A Al A A Al A A Al A A

Gene based P
1.31E-09
3.69E-07

0.42
2.2E-07
5.64E-07
2.35E-04
7.59E-08
2.84E-04
1.35E-04
1.36E-06
1.28E-06
6.75E-06
2.12E-05
1.34E-06
2.72E-06

DZT in an out population (e.g. Iceland}
Large differences in DZT rate between Africans, Europeans, Asians

Large differences between early age (18) and late (37) MODZT

Other female reproductive traits (menarche, menopause, age 1st kid, #kids)
Female infertility
Reproductive cancers (breast, ovarian, testicular, prostate)
Evidence for selection at these loci (eugenic?, dysgenic?)
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Convergence of Mendelian

and complex disease genetics

Hilary Martin
Wellcome Sanger Institute (near Cambridge, UK)



Mendelian versus complex disease genetics:
a false dichotomy?

Rare variants Common variants

Mendelian

: 2
diseases Major role

Some well-known examples (e.g.
Complex diseases | MODY), but don’t account for much Major role
heritability




Common variants contribute to rare neurodevelopmental disorders
previously assumed to be Mendelian

e ~7000 patients with rare, severe neurodevelopmental disorders in the Deciphering Developmental

Disorders study versus ~9000 controls
hZ,p ~8% (for MAF>5%)

* replicated with polygenic scores in 1270 cases from Australia versus 1700 controls

Years of schooling — | p=5.1x10"" b
Intelligence — —_— p=2.2x10% . . . .
Schizophrenia P p=5.9x10% Common genetic variants contribute to risk of rare
N severe neurodevelopmental disorders
"EI" D H D = Mari E. K. Niemi', Hilary C. Martin', Daniel L. Rice’, Giuseppe Gallone, Scott Gordon?, Martin Kelemen!, Kerrie McAloney?,
MEJD[ depreﬂ‘s'hﬁ_ﬁ dlSD[dgl B . ﬁ:g\’kg}rifléf\{ﬁfﬁxénﬂﬁés81(Iiﬁr:tldc]%j?;ecte[“:‘O.NILhUldbG Martin?, Caroline F. Wright”, David R. Fitzpatrick®,
Childhood 1Q & . oo . . .
Autism spectrum disorder — o No significant difference in any polygenic score
Bipolar disorder — S — between patients with versus without a
| “diagnostic” rare variant
Height — ——
Body mass index — ——
Child birth length - &
Intracranial volume - &
Birth weight — _
' ' ' | WY AN
-05 0.0 0.5 1.0

Genetic correlation

Jeff Barrett Mari Niemi



Child — mid-parent PRS
(standard deviations on the mid-parent distribution)

Polygenic transmission-disequilibrium test in autism

Polygenic scores for autism, schizophrenia and educational attainment are significantly over-
transmitted to autism patients, regardless of their 1Q
Still see over-transmission of autism and schizophrenia PRS to probands with a large-effect de novo

mutation . U .
Polygenic transmission disequilibrium confirms that
P 150 % 10~ common and rare variation act additively to create risk for

0.20 - autism spectrum disorders 047

Daniel Weiner, Emilie Wigdor, ..., Elise Robinson. P 0.019
P 5035107 Nat Gen, 2017 0.3 1
0.15 - =2.23x

'y P=550x10"%
0.2

P=502x10""°
0.10 - ¢

P =0.013
0.1+ P =0.80

P=169x107*
P=217x10"°

ot

0.00 ~f----—---—-

] ]
ASD | | SCZ | | EA | ASD scz EA
4 All proband 1Q < 70 (n = 1,341) ¥ All proband IQ > 70 (n = 2,743) Polygenic risk score

30 |  Mid—parent

Child — mid-parent PRS (standard deviations
on the mid—parent distributuon)

-0.1 1




Common variants modifying penetrance of rare variants

affecting cognition?

 rare loss-of-function variants in highly constrained genes increase risk of severe ID/DD and impact

cognition in the general population

* are people in healthy population cohorts protected against such variants by polygenic background?

e preliminary work in INTERVAL, a cohort of healthy British blood donors

13% of ~2000 people

|

LoF in fetal
brain-expressed - ®
high pLI gene

-1 * cognitive ability | l

polygenic score

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1

change in g-score (SD)

=

LoF (pLI>0.9) (N=459)
no LoF (N=3,356)

0=0.04

(one-tailed t-test)

i

0
Intelligence polygenic score

2 4

ongoing collaboration with Andrea Ganna, Sali Farhan at Broad to expand sample size!

Mari Niemi, Eugene Gardner



Breast cancer risk

Breast cancer risk
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Common variants modifying penetrance of
rare variants in breast cancer

Predicted cancer risks by percentile of the polygenic risk scores

Breast cancer
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Evaluation of Polygenic Risk Scores for Breast
and Ovarian Cancer Risk Prediction in BRCA1
and BRCA2 Mutation Carriers &

Karoline B Kuchenbaecker, Lesley McGuffog, Daniel Barrowdale, Andrew Lee,
Penny Soucy, Joe Dennis, Susan M Domchek, Mark Robson, Amanda B Spurdle,
Susan J Ramus, ... Show more

JNCI: Journal of the National Cancer Institute, Volume 109, Issue 7, 1 July 2017,
djw302, https://doi.org/10.1093/jnci/djw302



Open questions

* How much do low-frequency variants (e.g. MAF 0.1-5%) contribute to
heritability of rare neurodevelopmental disorders?

* To what extent do common variants contribute to other rare disorders? e.g.
heart defects

* Do polygenic scores and rare variants act additively on traits, or is there an
interaction?

* Can we increase power to detect rare variants by conditioning on polygenic risk
scores?

* To what extent can we improve polygenic prediction by incorporating rare
variants? (as individual variants, or in aggregated groups)



Acknowledgements
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For cognition and schizophrenia in particular, rare and common
variant signals are enriched in highly constrained genes

High constrained genes: significantly depleted of loss-of-function
variants in healthy people

Rate ratio for de novo ®
variants in ID/DD cases

Partitioning heritability o
enrichment

compared to controls
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Brief Communication  Published: 03 Octaber 2016

damaging mutations
influence educational
attainment in the general
population

ndrea Ganna B, Giulio Genovese

10 10 4

1 Educational attalnment
107 1T & : o

Article | Published: 03 October 2015

Increased burden of ultra-rare
protein-altering variants among
4 877 individuals with
schizophrenia

Giulio Genovese B8, Menachem Fromer, Eli A Stahl, Douglas M Ruderfer, Kimberly
Chambert, Mikael Landén, Jennifer L Moran, Shaun M Purcell, Pamela Sklar,

Patrick F Sullivan, Christina M Hultman & Steven A McCarrol| B8

.
Schizoprenia

Qualifications: Co.llege or University degree

Duratiam to first press of snap-buttog in each round

Karczewski et al, doi: http://dx.doi.org/10.1101/531210.



PRS score in SD units

Common variants contribute to rare neurodevelopmental
disorders previously assumed to be Mendelian

e 429 Finnish intellectual disability (ID) cases versus 2195 controls
» heritability explained by polygenic risk scores for EA is the highest in mild ID (2.2%) but

lower for more severe ID (0.6%)

EDU PRS in cases and controls d SCZ PRS in cases and controls

00 T T
0.3 -

" 4 fs:?ri;f::?]ed control Contribution of rare and common variants
= {,{;urpcﬁ;ascwariatesj to intellectual disability in a sub-isolate
3 02 - of Northern Finland
D Mitja I. Kurki'?3, Elmo Saarentaus® 3, Olli Pietils
CI"J MI Torniainen-Holm>3 Eij

— c Satu Korpi-Heikkila®, Jonna Komi
- Markku Peltonen®, Aki S. Havul
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Q —
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@ vs. matched control
(four PCs as covariates)

1 oo [ I S o
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Behavioral Genetics in the
molecular age - answers to
age old questions

Matthew Keller
CU Boulder



BG is interested in quantifying factors
that cause individual differences
Traditionally, we’ve done this using close relatives & twins

Has been enormously successful and we’ve been able to make
broad-brushed conclusions about genes & env.

But these studies require strong assumptions about causes of
relative similarity. For us who care about, e.g., VA:VNA, VF
(familial variance from parental effects) VC (shared
environmental effects), or AM (assortative mating), twin and
family models can be biased and coarse

We want ways to investigate old questions in new (and
potentially less biased) ways

Following are new ways to do this using molecular data



1. SNP data to estimate ~full VA’

* GREML 1s done on unrelated (distantly related) individuals — we
don’t require assumptions about causes of similarity between
close relatives.

* As we move to very large sequence reference panels (e.g.,
TOPMed; n ~ 100k) — or to large sequence data itself,
VA’ GREML should begin to approach VA. If VA" GREML 1s

much different than VA~ twin, something interesting 1s going on!
* Upward biases in VA~ twin? De novo variants? Phenotypic
heterogeneity?

* This 1s exciting: new and independent way of estimating VA. Via
triangulation, we’ll know ~ true VA soon.



2. SNP data to estimate allelic spectra of
V(G) and COV(G)

* What 1s the mix of rare vs. common variants affecting trait
variation? Important for study design and evolutionary
interpretations.

* GREML models (previous slide) on imputed or sequence data,
when done properly (multiple GRMs stratified by MAF and
individual LD) can give us estimates of the allelic spectra

* These same methods can help us understand if rg 1s the same
across the allelic spectra



3. SNP data to understand causes of
spousal similarity

m  Recent work™ uses GREML and/or PRS to directly estimate the

additive genetic correlation between mates

o  Spousal height correlation completely consistent with primary AM, but that of
BMI is about 2 primary AM and "2 other factors (convergence? social
homogamy?)

m  This 1s exciting: assumptions about the cause of spousal
similarity can now be empirically tested!

"Robinson et al., 2017



4. SNP data to investigate familial

transmission
m Passive G-E correlations arise when genetic effects are not

random with respect to env. effects
o  Most commonly: env. of offspring a function of parental phenotypes
m  Comparing between- and within-family GWAS estimates can
provide estimates of the importance of G-E covariance

m  Similarly, looking at relationship between PRS of transmitted
genome vs. PRS of untransmitted genome as a way to test
parenting effects on offspring.

"Kong et al., 2018
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Integrating polygenic scores into
soclal sciences

Aysu Okbay
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Educational attainment polygenic scores
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Nearly as good as conventional controls in
social science

g\g 25 B Add Health The EA score now
= HRS .

T 20 = predicts more than
@]

3 15 household income!
o

x 10

s

= :
5 s % Makes many previously
= . underpowered

o

Both parents' Mother's  Father's Verbal EduYears Household Marital

education education education cognition PGS income status analyses feaSIble



Polygenic scores in social sciences

Genes as controls Gene X environment interactions




Example: Policy evaluation

The Swedish educational

reform:

* Increased compulsory
schooling from 7 to 9 years

* Delayed ability tracking

* Was rolled out gradually
generating quasi-
experimental variation

Questions:

* Did the reform affect individuals in
different EA PGS bins
heterogeneously?

* Did the reform achieve what it meant
to achieve? More equality?

Preliminary result:
* higher ability females were more likely to obtain a high school degree, which is
beyond the new minimum established by the reform.
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Association Between Autozygosity and Major Depression:
Stratification Due to Religious Assortment

Abdel Abdellaoui + Jouke-Jan Hottenga - Xiangjun Xiao + Paul Scheet -

Erik A. Ehli - Gareth E. Davies - James J. Hudziak - Dirk J. A. Smit -

Meike Bartels - Gonneke Willemsen + Andrew Brooks - Patrick F. Sullivan -
Johannes H. Smit - Eco J. de Geus - Brenda W. J. H. Penninx - Dorret I. Boomsma




Lower
Below average educated
migration distance fathers

educated
fathers

Above average
migration distance

Higher '/

>
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* Educational attainment was significantly associated with F_, (inbreeding)
* But parental education was much more significantly associated with F_,

e Why?

* Higher educated parents migrated significantly more often and greater distances

* There is strong assortative mating for educational attainment

Educational Attainment Influences Levels of
Homozygosity through Migration and
Assortative Mating

Abdel Abdellaoui’?*, Jouke-Jan Hottenga', Gonneke Willemsen'?, Meike Bartels'*?,
Toos van Beijsterveldt', Erik A. Ehli*, Gareth E. Davies®, Andrew Brooks®, Patrick
F. Sullivan®, Brenda W. J. H. Penninx®>7, Eco J. de Geus'*?, Dorret |. Boomsma'?*




Correlation between offspring ancestry and geography
significantly decreased as parental education increased
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Educational Attainment Influences Levels of
Homozygosity through Migration and
Assortative Mating

Abdel Abdellaoui’?*, Jouke-Jan Hottenga', Gonneke Willemsen'?, Meike Bartels'*?,
Toos van Beijsterveldt’, Erik A. Ehli%, Gareth E. Davies*, Andrew Brooks®, Patrick
F. Sullivan®, Brenda W. J. H. Penninx®>7, Eco J. de Geus'*?, Dorret |. Boomsma'?*




Assortative mating for educational attainment is
measurable at the genetic level (with polygenic scores)
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Polygenic scores, before and after regressing out 100 PCs

Schizophrenia Bipolar MDD ADHD Alcohol Use
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GENETIC CONSEQUENCES OF SOCIAL STRATIFICATION IN GREAT BRITAIN
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of Type 2 Diabetes
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Prevalence of Impaired Glucose Tolerance or
T2D in 64 year old men in the UK
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Fetal GWAS in ® Novel loci
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Disentangling Mother and Child Effects on
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Maternal and Offspring Genetic Effects Power Calculator

Power to detect maternal genetic effect (1 df test):

Abstract
Offspring outcomes are 8 function of maternal genetics operating on the intrauterine and postmatal environment, offspring
penatics and environmental factors. Partitioning genetic effects into maternal and offspring components requires genotyped

Number of genotyped individuals with their own and mother—offspring pairs or genotyped individuals with phenotypic information on themselves and their offspring. We per-

their offspring's phenotype (0-10000000): Bes327eS formed asymptotic power calculations and data simulations to estimate power to detect maternal and offspring genetic effects
under arange of different study designs and models. We also developed the “Maternal and offspring Genetic effects Power

10000 Power to detect offspring genetic effect (1 df test): Calculator™ (M-GPC), an online utility which allows users to estimate the power to detect maternz] and offspring genetic
effiects in their own studies. We find that spproximately 50000 genotyped mother—offspring pairs will be required to detect

9.7832705 realistically sized maternal or offspring genetic effects (- 0.1% variance explained) with appreciable power (power:> 20%,

a="5x 10-%, twa degree of freedom test), whereas greater than 10,000 pairs will be required to determine whather known
penetic loci have maternal andfor offspring genetic effects (power > TR%, a=0.03). The structural equation modelling frame-
work espoused in this manuscript provides a natural method of combining different data stractures including those present
im large scale biohanks in order to maximire power to detect maternal and offspring genetic effects. We conclude that the
sample sines equired io detect maternal or offspring genetic effects that explain realistic proportions of the trait variance
with apprecizhle power are achievable and within the range of cument research consortia.

Number of genotyped individuals with their own

phenotype only (0-10000000): Power to detect either maternal or offspring genetic effect (2 df test):

0 ©.9992226

Numb_er Gl g pet] T BT i Gl Keywords Cenetic association - GWAS - Maternal effects - Offspring effects - Fetal e ffects - Fower
offspring's phenotype only (0-10000000):

Alpha level is the type 1 error rate for the genetic association study.

0 - : . . ) . . . | duction
Maternal genetic effect is the proportion of variance in the trait explained by maternal genetic effects at the locus. Edited by Tinc Polderman.

Offspring genetic effect is the proportion of variance in the trait explained by offspring genetic effects at the locus.

Offspring phenotypes, incleding perinatal outcomes such as

Nicale M Warringion and David M Evans joint senior suthors. birthweight, kength at hirth and other anthropomeatric meas-

Number of genotyped mother-offspring pairs with

offspring phenotype (0-10000000):

0

Number of genotyped mother-offspring pairs with

both maternal and offspring phenotype
(0-10000000):

0

H O Type here to search

If you have an effect size estimate and allele frequency for the genetic variant of interest, you can calculate the proportion of

variance in the trait explained as
(2*P*(1-P)*b"2)/VAR(trait), where P=allele frequency, b=effect size estimate.

Residual correlation between maternal and offspring phenotype refers to the residual correlation
between the phenotypes after the effect of the locus has been removed. This is likely to be close

to the phenotypic correlation between maternal and offspring phenotypes as the majority of loci will have a small effect.
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wrements, are thought to be a product of maternal penetics,
offspring penetics and environmentzl factors. In this manu-
scTipt, we define maternal genetic effects as the causal infle-
ence of the maternal genotype on the offspring phenotype
(Wolf and Wade 2009). Maternal genetic effects arise when
the mother makes & contribution to the phenotype of her
progeny «ver and above that which resulis from the genes
she comtributes to the zygote (Mather and Jinks 1982). Thus,
oar definition focuses on the effect of the maternal genome
and is distinct from mitochondrial inheritance and genetic
effects due to imprinting. In contrast, we define offspring
penetic effects as those genetic effects on the offspring™s phe-
notype that are directly mediated by the offspring’s penome,
which is comprised of 50% of alleles inherited from their
mother and 50%: from their father.

£ Springer
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Abstract

Background: To date, 60 genetic variants have been robustly associated with
birthweight. It is unclear whether these associations represent the effect of an
individual's own genotype on their birthweight, their mother's genotype, or bath.
Methods: We demonstrate how structural equation modelling (SEM) can be used to
estimate both maternal and fetal effects when phenotype information is present for
indiwviduals in two generations and genotype information is available on the older individ-
ual. We conduct an extensive simulation study to assess the bias, power and type 1error
rates of the SEM and also apply the SEM to birt hweig bt data in the UK Biobank study.
Results: Unlike simple regression models, our approach is unblased when there is both a
maternal and a fetal effect. The method can be used when either the individual's own
phenotype or the phenotype of their offspring is not available, and allows the inclusion
of summary statistics from additional cohorts where raw data cannot be shared. We
show that the type 1 error rate of the method is appropriate, and that there is substantial
statistical power to detect a genetic variant that has a moderate effect on the phenotype
and reasonable power to detect whether it is a fetal andjor a maternal effect. We also
identify a subset of birthweight-associated single nucleotide polymorphisms (SN Ps) that
have opposing matarnal and fetal effects in the UK Biobank.

Conclusions: Our results show that SEM can be used to estimate parameters that would
be difficult to guantify using simple statistical methods alone.

& Tha Auhanis ) 2018 Publshad by Oxdord Unwarsizy Pras s on behalf of e insemational Epidamiciegical Assccmam.

irth Weight

By

This is an Opan Arcas amich dembated mdar e twms of e Crassve Cammons Asibuton Liemsas (epofemasvas nmons smficans s Rl which pammiss

ST R, ST EEEN, 300 MERKIE N A MRdum, EEwdal T angnal werk & BraEaty Stad.



Smoking

£

Related

————

Anthropometry

o WLM-Adjusted Fetal Effect
A WLM-Adjusted Maternal Effect
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SNP, —— SBP ——— BW

/N

SNP_—— SBP —— BW

(3) (i) SNP,,—> SBP

(2)

v

(ii) SNP_ BW

v

SNP; BW

Estimating Causal Effects of Maternal SBP on

Offspring Birthweight

Maternal
Exposure Number of
phenotype Outcome SNPs
Systolic blood Maternal effect on BW
pressure (unconditional) 68
Fetal effect on BW
(mmHg) (unconditional) 68
Maternal effect on BW
(adjusted) 68
Fetal effect on BW
(adjusted) 68

Beta

-0.0158

-0.0082

-0.0148

-0.0008

SE P-value

0.0022 6.13E-10

0.0020 1.43E-04

0.0021 1.98E-09

0.0019 6.70E-01

* No confounding from offspring genotype

* Very large sample sizes



Using Maternal Effects to Investigate the Effect of Birth Weight on Later Life Outcomes

Intrauterine

Maternal

effects that

(B)

BW SNPs reduce fetal
* / growth
Offspring | Offspring Offspring
BW SNPs BW SBP
e .

Maternal
BW SNPs \
Offspring | Offspring Offspring
BW SNPs | BW | SBP
| ?

Maternal BW SNP — Offspring SBP association? Yes
Offspring BW SNP — Offspring SBP association? Maybe

Maternal BW SNP — Offspring SBP association? Yes
Offspring BW SNP — Offspring SBP association? Yes

(D)

(C)
Maternal
BW SNPs \
Offspring | Offspring Offspring
BW SNPs BW SBP

Maternal
BW SNPs \
Offspring | Offspring Offspring
BW SNPs BW SBP
| 2

Maternal BW SNP — Offspring SBP association? No
Offspring BW SNP — Offspring SBP association? Yes

Maternal BW SNP — Offspring SBP association? Yes

Offspring BW SNP — Offspring SBP association? Maybe

Relationship between maternal and child
SNPs, offspring birthweight (BW) and
systolic blood pressure (SBP). Each model
provides an explanation for the negative
genetic correlation between birthweight and
SBP observed in Horikoshi et al (2016).
SNPs may exert maternal and/or fetal
genetic effects on birthweight. A red cross
indicates a blocked path due to conditioning
on offspring/maternal genotype. The dashed
black path represents the possibility of
genetic pleiotropy mediated through the fetal
genome. The dashed red path represents
possible postnatal effects of maternal SNPs.
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Abstract

Background: There is considerable interest in estimating the causal effect of a range of
maternal environmental e;q:msures on nﬂ'sprmg health-related outcomes. Previous
attempts to do this using ies have been hampered
by the paucity of epidemiological cohorts with Iarge numbers of genotyped mother—
offspring pairs.

Methods: We describe a new statistical model that we have created which can be used
to estimate the effect of maternal genotypes on offspring outcomes conditional on off-
spring genotype, using both individual-level and summary Its data, even when the
axtent of sample overlap is unknown,

Results: We describe how the estimates nhramed from our method can subsequently be
used in larg le t ple ization studies to investigate the
causal effect of maternal environmental expesures on offspring outcomes. This includes
studies that aim to assess the causal effect of in wero exposures related to fetal growth
restriction on future risk of disease in offspring. We illustrate our framework using exarmn-

ples related to offspring birthweight and cardi olic disease, although the general
principles we espouse are relevant for many other offs pring phenotypes.
We ad for the establi of large-scale international genetics

consortia that are focused on the identification of maternal genetic effects and commit-
ted to the public sharing of gannmevwde summary-results data from such efforts. ‘I'rls
information will facilitate the ap jon of powerful two-sample Mendeli i

tion studies of maternal axposures and offspring outcomes.

LETTER

16i:10.1038/ nature 19806
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Birth weight (BW) has been shown to be i by both fetal  betv dadult i discase

and maternal factors and in observational studies is reproducibly
associated with future risk of adult metabolic discases including
type 2 diabetes (T2D) and cardiovascular disease’. These life-
course assocations have often been attributed to the impact of an
Here, we cestry

wide association study (GWAS) ysis of BW in

arein part the result of shared genetic effects and identify some of the
‘pathways through which these causal genetic effects are mediated.
We combined GWAS data for BW from 153,781 individuals rep-
resenting multiple ancestries from 37 studies across three compo-
nents (Extended Data Fig. | and Supplementary Table 1}: (i) 75.891
dividuals of Ex estry from 30 studies: (i) 67,786 individuals

genome-
153,781 individuals, identifying 60 loci where fetal genotype was
associated with BW (P<< 5 10-2). Overall, approximately 15%
of variance in BW was captured by assays of fetal genctic variation.
Umnggmncmmm alone, we found strong inverse genetic

af Eurapean ancestry from the UK Biobank;and (iii) 10,104 individuals

of diverse ancestries (African American, Chinese, Filipino, Surinamese,

“Turkish and Moroccan) from six studies. Wlmmeaclmudu BW was

z- in males and females after excluding
d adjusting for gestational

systalic blood pr (Ry=—022,
P= ssxlu-"pnw —0.27, P= 1.1 % 10~) and coronary
artery disease (  10-%). Inaddition, using large -
cohort d.uuuls, we dmmm.d that genetic factors were the

where available. Genotypes were Impuled using reference panels from
the 1000 Genomes (1000G) Project” or combined 1000G and UK10K
projects* {Supplementary Table 2). We performed quality control

ibutor 1o BW and future
cardiometabolic risk. Pathway analyses indicated that the protein
prodiucts of enes withia EW-ssmclated regions were coriched for

to-confirm that the distribution of BW was consistent
across studies, irrespective of the data collection protocol, and
cm\ﬁrme\i that self reported BW in the UK Biobank showed genetic

associal stent with those seen for measured

glycozen uumms and chromatin remodelling. There was also
enrichment of associations with EW in known imprinted regions
(P=1.9 x 10~*). We demonstrate that life-course associations

BW in other stuies* (Methods).
We identified 60 loci (of which 59 were autosomal) associated with
EW at genome-wide significance (P< 5 10" in either the Furopean
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34th International Statistical Genetics Workshop — Boulder CO 2020

Intro 2 Unix & R plink & GRMs GWAS & genetic data LD score regression & Simulation
formats genetic correlation
Causes of Variation = ACE: from twins to Multivariate Models  Developmental Models Genomic SEM
GRMs
Biometrical Genetics Binary & Ordinal Data Genetic Factor Models Direction of Causation Model Assumptions &
& Measurement DOC Extended Pedigrees
OpenMx: Regression Multilevel Models GREML in OpenMx  PRS & Mendelian Statistical Power
& tools 4 SEM Randomization MR
ACE Model (full script Heterogeneity: Sex & GW-SEM Combined DOC-MR  Lightning Rounds
+ umx) GXE interaction

Thank you for participating! See you next year?!



