Path Analysis Practice Problems. See page 2 for solutions.

Using the path diagram below, derive the following variances and covariances:

- 1) Covariance of η_1 , and η_2
- 2) Covariance of Y_3 and Y_5
- 3) Covariance of Y_1 and Y_3
- 4) Variance of Y₂
- 5) Variance of Y₄
- 6) Variance of Y₃

Using the same path diagram, construct the following:

- 7) Lambda (λ) matrix of factor loadings from η_1 , and η_2 (columns) to Y1...Y5 (rows)
- 8) Epsilon (ε) diagonal matrix of residual factor loadings
- 9) Phi (ϕ) matrix of covariances between factors η_1 , and η_2
- 10) If you like, $\lambda \phi \lambda' + \epsilon \epsilon'$

1)
$$\operatorname{Cov}(\eta_1, \eta_2) = .74 * .38$$

= .28
2) $\operatorname{Cov}(Y_3, Y_5) = .38 * 1 * .89$
= .34
3) $\operatorname{Cov}(Y_1, Y_3) = .67 * 1 * .74$
= .50
4) $\operatorname{Var}(Y_2) = (.52 * 1 * .52) + (.85 * 1 * .85)$
= .52² + .85²
= .99
5) $\operatorname{Var}(Y_4) = (.64 * 1 * .64) + (.77 * 1 * .77)$
= .64² + .77²
= 1.00
6) $\operatorname{Var}(Y_3) = (.74 * 1 * .74) + (.38 * 1 * .38) + (.55 * 1 * .55)$
= .74² + .38² + .55²
= .99
7) $\lambda = \begin{pmatrix} .67 & 0 \\ .52 & 0 \\ .74 & .38 \\ 0 & .64 \\ 0 & .89 \end{pmatrix}$
8) $\operatorname{diag}(\varepsilon) = \begin{pmatrix} .74 \\ .85 \\ .55 \\ .77 \\ .46 \end{pmatrix}$
9) Using R to save tedious math:
Lambda <- matrix(c(.67,0,.52,0,.74,.38,0,.64,0,.89),5,2,byrow=T) Phi <- \operatorname{diag}(2)
Epsilon <- $\operatorname{diag}(c(.74,.85,.55,.77,.46))$

Lambda%*%Phi%*%t(Lambda) + Epsilon%*%Epsilon Yields (see next page):

[,1] [,2] [,3] [,4] [,5] [1,] 0.9965 0.3484 0.4958 0.0000 0.0000 [2,] 0.3484 0.9929 0.3848 0.0000 0.0000 [3,] 0.4958 0.3848 0.9945 0.2432 0.3382 [4,] 0.0000 0.0000 0.2432 1.0025 0.5696 [5,] 0.0000 0.0000 0.3382 0.5696 1.0037