Path Analysis, SEM and the Classical Twin Model

Michael Neale¹ & Frühling Rijsdijk²

Virginia Institute for Psychiatric and Behavioral Genetics Virginia Commonwealth University

2 MRC SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London

Aims of Session

- 1. Introduction to SEM
- 2. Path Coefficient ACE Model
- 3. Variance Components ACE Model
- 4. ADE Model
- 5. RAM Algebra

Path Analysis and SEM

- Sewall Wright (1921) PNAS, 6, 320–332
- Causal and correlational relationships between variables in path diagrams
- One-to-one mathematical equivalence with simple matrix algebra expression
- Structural equation modelling (SEM) is a unified platform for path analysis, regression, factor and variance components models

Path Analysis and SEM

OpenMx Software

R package

Open Source

Since 1990

Path Diagram Conventions

Observed Variables

Latent Variables

Causal Paths

Covariance Paths

Tracing Rules of Path Analysis

- 1 Find All Distinct Chains between Variables:
 - a Go backwards along zero or more single-headed arrows
 - b Change direction at *one and only one* Double-headed arrow
 - c Trace forwards along zero or more Single-headed arrows
- 2 Multiply path coefficients in a chain
- 3 Sum the results of step 2.

For covariance of a variable with itself (Variance), chains are distinct if they have different paths *or* a different order

Chain Examples I

Thou shalt not pass through adjacent arrowheads

Chain Examples II

Variance: Chains in Different Order Count

Path Diagrams for the Classical Twin Model

Part 1: Path Coefficients

Path Model for an MZ Pair

Latent variables A1 C1 and E1 have variance 1, and cause phenotype T1 via path coefficients a, c and e. Same model for T2. $Cov(A_1,A_2)=1$

Path Model for a DZ Pair

Latent variables A1 C1 and E1 have variance 1, and cause phenotype T1 via regression paths a, c and e.

Same model for T2. Cov(A1,A2) = .5

What Chains?

a*1

$$a*1*a = a^2$$

Total Variance = $a^2 + ...$

$$a*1*a = a^{2}$$
+
 $c*1*c = c^{2}$
+

$$a*1*a = a^{2}$$
+
 $c*1*c = c^{2}$
+
 $e*1*e = e^{2}$

Covariance of Twin 1 AND Twin 2 (for DZ pairs)

a*.5*a =.5a²

Covariance = $.5a^2 + ...$

Covariance of Twin 1 AND Twin 2 (for DZ pairs)

$$a^*.5^*a = .5a^2 + c^* 1^*c = c^2$$

Total Covariance = .5a² + c²

Predicted Variance-Covariance Matrices ACE Path Model

Tw1

Tw2

Cov MZ

Tw1

a²+c²+e²

 a^2+c^2

Tw2

a²+c²

 $a^2+c^2+e^2$

Cov DZ

Tw1

Tw2

Tw1

 $a^{2}+c^{2}+e^{2}$ $\frac{1}{2}a^{2}+c^{2}$

Tw2

 $\frac{1}{2}a^2 + c^2$

 $a^2+c^2+e^2$

Path Diagrams for the Classical Twin Model

Part 2: Variance Components

Variance Component Model: MZ

Latent variables A1 C1 and E1 have variances VA, VC and VE, and cause phenotype T1 via regression paths 1. Same model for T2

Variance Component Model: DZ

Latent variables A1 C1 and E1 have variances VA, VC and VE, and cause phenotype T1 via regression paths 1. Same model for T2

Predicted Variance-Covariance Matrices ACE VC Model

Cov MZ

Tw1

VA+VC+VE VA+VC

Tw2

 V_A+V_C $V_A+V_C+V_E$

Cov DZ

Tw1

Tw1

Tw2

Tw2

 $\begin{pmatrix}
V_A + V_C + V_E & .5V_A + V_C \\
.5V_A + V_C & V_A + V_C + V_E
\end{pmatrix}$

What's the Difference?

- Path: Implicit Boundary Constraint
 - Estimate a but a² never negative
- Variance Component: Unbounded
 - Estimates VA, VC and VE can be positive or negative
- Variance Component may fit better
 - No bias from implicit boundary
- Negative Variances? Model wrong?

ADE Path Coefficient Model DZ pairs

MZ Covariance = $a^2 + d^2$ DZ Covariance = $.5a^2 + .25d^2$ Total Variance = $a^2 + d^2 + e^2$

Predicted Var-Cov Matrices ADE Model

Tw1

Tw2

Cov MZ

Tw1

 $a^2+d^2+e^2$

 a^2+d^2

Tw2

 a^2+d^2

 $a^2+d^2+e^2$

Cov DZ

Tw1

Tw1

Tw2

Tw2

 $\frac{1}{2}a^2 + \frac{1}{4}d^2$

 $a^{2}+d^{2}+e^{2}$ $\frac{1}{2}a^{2}+\frac{1}{4}d^{2}$ $\frac{1}{2}a^{2}+\frac{1}{4}d^{2}$ $a^{2}+d^{2}+e^{2}$

ADE Variance Component Model DZ pairs

MZ Covariance = VA + VD DZ Covariance = .5VA + .25VD Total Variance = VA + VD + VE

Predicted Variance-Covariance Matrices ADE VC Model

Tw1

Tw2

Cov MZ

Tw1

 $V_A+V_D+V_E$ V_A+V_D

Tw2

 V_A+V_D $V_A+V_D+V_E$

Tw1

Tw1

Tw2

Cov DZ

Tw2

 $V_A+V_D+V_E$.5 $V_A+.25V_D$

 $.5V_A + .25V_D V_A + V_D + V_E$

One-to-one Translation to Matrices

RAM Algebra: Standardized Univariate Regression

Asymmetric Arrows
$$\mathbf{A} = \mathbf{y} \begin{bmatrix} \mathbf{x} & \mathbf{y} & \mathbf{e} \\ 0 & 0 & 0 \\ b & 0 & 1 \\ \mathbf{e} \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$$

Symmetric Slings
$$\mathbf{S} = \mathbf{Y} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & V_e \end{bmatrix}$$

$$\mathbf{F} = \frac{\mathbf{X}}{\mathbf{y}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

One-to-one Translation to Matrices

Completely General RAM Algebra Expected Covariance Matrix

$$F * (I - A)^{-1} * S * (I - A)^{-1} * F'$$

Thank you:
Jack McArdle & Steve Boker
Workshop Faculty & Students & NIH
Also see: http://onyx.brandmaier.de for path model drawing software