
Model	assump,ons	&	extending	the	
twin	model	

Boulder 2018 

Matthew Keller 
Hermine Maes 
Brad Verhulst 
Lindon Eaves 



Acknowledgments	
}  John	Jinks	
} David	Fulker	
} Robert	Cloninger	
}  Lindon	Eaves	
} Nick	Mar,n	
} Andrew	Heath	
}  Sarah	Medland,	Pete	Hatemi,	Will	Coventry,	
Hermine	Maes,	Mike	Neale	

	
	
	



 
 

Third annual OpenMx HACKATHON! 
Friday morning (8 am) session 

 
 
 

n  Lucia and I will give you an .RData file of twin 
data and a specific question to test. Your job is to 
write an OpenMx script—from scratch—that gets 
the right answer! 
n  Cheating isn’t bad here—it’s encouraged! Use your old scripts 

or help from anyone in the class. 
n  You have an hour to write script and to produce and interpret 

estimates.  



Files	you	will	need	are	in	Faculty	
drive:	/maK/Assump,ons2018	

} Assump,ons_mck_2018.pdf	(PPT	presenta,on)	
} CTD.ACDE-param.indet_2018.R	(OpenMx	script)	
}  PDFs	of	papers	describing	details	of	what	we	go	
over	here	&	that	correspond	to	the	approach/
nota,on	I'm	using	here	

	
	



 
 

n  SEM is great because… 
n  Directs focus to effect sizes, not “significance”  
n  Forces consideration of causes and consequences 
n  Explicit disclosure of assumptions 

n  Potential weakness… 
n  Parameter reification: “Using the CTD we found that 50% of 

variation is due to VA and 20% to VC.”  
n  Should you believe that 50% of variation is truly additive 

genetic? 
 

Structural Equation Modeling (SEM) in BG 



True	parameters	vs.	Es,mated	parameters	
•  VA VC VD VE:  true (unknowable) values in 

the population 
•  VA’, VC’, VD’, VE’:  estimated values of  VA, VC, 

VD, VE.   
•  VA’, VC’, VD’, VE’, will differ from VA, VC, VD, VE 

due to: 
 1) sampling variability 
 2) bias (= E[θ’] - θ) 

•  This session is about deriving biases in 
estimates, how to interpret them in light of these 
biases, and how to model in ways that minimize 
bias  

 



How	to	derive	algebraic	expecta,ons	of	
variance	component	es,mates		

1)	In	an	ACE	model,	we	assume	VD=0.	So	to	get	algebraic	expecta,ons	
of	VA’	and	VC’	in	an	ACE	model,	write	down	what	CVmz	and	CVdz	are	
composed	of:	

CVmz	=					VA	+	VC	
CVdz	=				½VA	+	VC	

2)	To	get	an	es,mate	of	one	term	(e.g.,	VA)	try	to	think	of	possible	
contrasts	of	linear	transforma,ons	that	get	rid	of	one	parameter	(e.g.,	
VC)	and	isolate	the	other	(e.g.,	VA).	Thus:	

				CVmz	–	CVdz	=	½VA.	Thus	2(CVmz-CVdz)	=	VA.	Thus	an	es,mate	of	VA:		

	VA’	=	2(CVmz	–	CVdz).		
3)	Similarly	to	get	rid	of	VA	and	isolate	VC:		

	VC’	=	2CVdz	-	CVmz	
	
NOTE: I’m using VY’ rather than the usual VŶ to denote estimates of VY simply due to PPT issues!  



Prac,cal	1	–	algebraic	expecta,ons	of	ADE	
1)	Use	what	we	just	learned	to	derive	algebraic	expecta,ons	
of	the	es,mates	of	VA	and	VD	in	an	ADE	model	(where	we	
assume	VC=0).	As	a	hint,	in	this	situa,on,	we’re	assuming:	

CVmz	=					VA	+				VD	

CVdz	=				½VA	+	¼VD	
	

2)	Now	to	get	VA’,	think	of	possible	contrasts	of	linear	transforma,ons	
of	CVmz	and	CVdz	that	get	rid	of	VD	and	isolate	VA.		
					QUESTION1.1:	What	is	your	es,mate	of	VA	(VA’)	in	an	ADE	model?	

	
3)	Now	do	the	same	to	get	VD’	

					QUESTION1.2:	What	is	your	es,mate	of	VD	(VD’)	in	an	ADE	model?	



How	to	derive	algebraic	expecta,ons	of	
bias	in	es,mates	due	to	misspecifica,on	

1)	We	want	to	know	what	happens	when	we	misspecify	the	model	(a	
parameter	that	is	non-zero	in	real	life	is	omiKed	in	the	model).	To	get	at	
this,	first	write	out	your	es,mate.	E.g.,	in	an	ACE	model,	VA’	is:	

	VA’	=	2*(CVmz	–	CVdz).		
2)	Next	consider	what	variance	components	REALLY	exist	in	your	
es,mates.	If	VD	is	actually	non-zero,	then	we	know:	

	CVmz	=		VA	+				VD	+	VC	
	CVdz	=	½VA	+	¼VD	+	VC	

3)	Finally,	just	plug	in	the	reality	to	your	es,mates.	Thus,	in	an	ACE:	
	VA’	=	2*(VA	+	VD	+	VC	–	½VA	–	¼VD	–	VC)	=	VA	+	3/2(VD)		

	IN	word:	when	VD	actually	exists	and	you	fit	an	ACE	model,	VA’	is	biased	
upwards	by	1.5	of	whatever	VD	truly	is.	

4)	Similarly,	VC’	=	VC	-	½VD.	VC’	is	biased	downward	by	half	of	VD.	
	



Prac,cal	2	–	deriving	biases	of	ADE	
1)	Use	what	we	just	learned	to	derive	the	bias	in	the	VA’	and	
VD’	in	an	ADE	model	(where	we	assume	VC=0).	Recall	that:	

VA’	=					4CVdz	–	CVmz	
VD’	=				2CVmz	–	4CVdz	

CVdz	=					½VA	+	¼VD	
	

2)	Now	just	plug	in	the	cons,tuent	variance	components	into	CVmz	and	
CVdz	and	see	how	our	es,mates	are	biased.	

	QUESTION2.1:	How	is	VA’	biased	in	an	ADE	model	when	VC	is,	
contrary	to	our	assump,on,	non-zero?	

		
	QUESTION2.2:	How	is	VD’	biased	in	an	ADE	model	when	VC	is,	

contrary	to	our	assump,on,	non-zero?	



Quiz	Ques,on	1	
1)	We	must	fix	to	zero	(and	not	es,mate)	either	VC’	or	
VD’	in	an	iden,fied	classical	twin	model	because:	
[exactly	two	answers	are	correct]	
a)	these	es,mates	are	too	highly	correlated	

(mul,colinearity	problems)	
b)	you	can	es,mate	VC’	and	VD’	simultaneously	-	you	

just	have	to	fix	VA’	to	some	specific	value	
c)	you	can	es,mate	VC’	and	VD’	simultaneously	-	you	

just	have	to	allow	them	to	go	nega,ve	(not	use	path	
coefficient	approach)	

d)	there	are	fewer	informa,ve	sta,s,cs	(2)	than	
parameters	to	be	es,mated	(3),	thus	the	full	ADCE	
model	is	uniden,fied.	



The Classical Twin Design 

Tw1 Tw2 

E C D A E C D A 
VA / .5VA 

VD / .25VD 

VC 



}  Solve the following two equations for VA’, VC’, & VD’: 
CVmz =     VA +      VD + VC 
CVdz =  ½ VA +  ¼ VD + VC 
 
}  3 unknowns, 2 informative equations. It can't be done. There 

are no unique solutions. The model is “unidentified”.  
 
}  In practice, you can detect non-identification by noting that 

(a) model estimates depend on starting values AND (b) all 
final models have identical likelihoods 

 
 

Why  can’t we estimate VC’ & VD’ at same 
time using twins only? 



}  Open CTD.ACDE-param.indet_2018.R in R 
}  Run practical 3A to simulate data where truth is VA=.4, VD=.2, 

VC=.05 (and thus CVmz=.65; CVdz=.3). Pause for discussion. 
}  Run practical 3B for ADE model on this data. Pause for 

discussion. 
}  Run practical 3C for ACE model (which we normally wouldn’t 

do) on same data. Pause for discussion. 
}  Run practical 3D for ADCE model (which we definitely 

wouldn’t normally do). Pause for discussion: 
}  Write down your -2LL and your estimates of VA, VC, and VD 
}  Compare these to your neighbor’s 
}  WHY are -2LL the same despite different VA’, VC’, and VD’ (that depend on 

arbitrary start values) 

}  Do not close CTD.ACDE-param.indet_2018.R in R 
 

Nonidentification: Practical 3 (using R) 



The CTD: Two statistics give info about 
within-family resemblance 
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ACE Model 
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ADE Model 
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The CTD: Just because we cannot fit VD & 
VC simultaneously doesn’t mean they’re 
not there! 

•  However, when we TRY to fit an ADCE model with just twins, 
there are an infinite number of combinations of VA’, VD’, and 
VC’ that fit the data equally well = parameter indeterminacy due 
to model non-identification.  

•  Thus, we just have to fit either an ADE or ACE model and live 
with potentially biased estimates. 

•  But it’s good to quantify this bias to help in interpreting those 
estimates. 



Quiz	Ques,on	1	again	–	what	do	you	think	now?	
1)	We	must	fix	to	zero	(and	not	es,mate)	either	VC’	or	
VD’	in	an	iden,fied	classical	twin	model	because:	
[exactly	two	answers	are	correct]	
a)	these	es,mates	are	too	highly	correlated	

(mul,colinearity	problems)	
b)	you	can	es,mate	VC’	and	VD’	simultaneously	-	you	

just	have	to	fix	VA’	to	some	specific	value	
c)	you	can	es,mate	VC’	and	VD’	simultaneously	-	you	

just	have	to	allow	them	to	go	nega,ve	(not	use	path	
coefficient	approach)	

d)	there	are	fewer	informa,ve	sta,s,cs	(2)	than	
parameters	to	be	es,mated	(3),	thus	the	full	ADCE	
model	is	uniden,fied.	



So what is the advantage of estimating 
variances directly (without a bound) if it doesn’t 
solve bias due to model misspecification? 

•  Foremost: valid p-values. If we bound estimates, the distribution 
of -2LL differences under null is not χ2 (it’s 50% χ2 & 50% with 
point mass at lower bound; e.g., 0). Thus inflated type-II errors. 

•  Second: eliminates a source of bias due to sampling variability.  
•  If we think about estimates being random values under repeated 

draws of data, whenever the estimate hits a zero bound, it creates 
biases in it’s own estimate (up) and in other estimates (up or down). 

•  This is a separate (and probably smaller) source of bias from that due 
to model misspecification.  

•  Note – when you directly estimate variances, it’s easy to 
transform between VC’ and VD’: 

•  In ADE model, VC’ you would have gotten in ACE = - ½VD’ 
•  In ACE model, VD’ you would have gotten in ADE = -2VC’ 



Quiz	Ques,on	2	
2)	If	the	assump,ons	of	the	CTD	model	that	either	VD	
or	VC	is	zero	is	violated	(i.e.,	VA,	VC,	and	VD	
simultaneously	affect	the	phenotype)...	[choose	all	
that	apply]	

a)	the	interpreta,on	of	the	es,mated	parameters	
should	be	altered;	e.g.,	VA’	should	be	considered	an	
amalgam	of	VA	&	VD	(in	ACE	model)	or	of	VA	&	VC	
(in	ADE	model)		

b)	there	is	no	point	in	doing	the	analysis	
c)	the	point	es,mates	of	the	es,mated	parameters	
will	be	biased	



Bias in parameter estimates for violation of 
assumption that either VD or VC is 0 

}  In ACE Models (bias induced in setting VD’ = 0): 
 VA’ =  VA + 3/2VD 
 VC’ = VC – ½VD 
 
}  In ADE Models (bias induced in setting VC’ = 0): 
  VA’ = VA + 3VC 
  VD’ = VD – 2VC 
 
 



Quiz	Ques,on	3	

3)	An	ADE	model	finds	that	VA’	=	.30	and	VD’	=	.
10.		This	implies	that	shared	environmental	
factors	do	not	influence	the	trait	in	ques,on.	

	

a)	TRUE	

b)	FALSE	



Quiz	Ques,on	4	
4)	We	run	an	ADE	model	and	find	that	VA’	=	.69	and	that			
VD’	=	.05.		If	in	truth,	VC	=	.10,	what	will	the	effect	on	
the	es,mated	parameters	be?	[choose	all	that	apply]	
	

a)	VA’	will	be	biased	(too	low)		
b)	VA’	will	be	biased	(too	high)	
c)	VD’	will	be	biased	(too	low)	
d)	VD’	will	be	biased	(too	high)	
e)	there	is	no	affect	on	the	es,mated	parameters;	
however	by	not	es,ma,ng	VC	(aka,	fixing	it	to	zero),	we	
underes,mated	VC		



PRACTICAL 4: Sensitivity analysis 

}  Sensitivity analysis: studying what the effects are on estimated 
parameters when assumptions are wrong 

}  In CTD.ACDE-param.indet_2018.R, run:  
       FROM “# START PRACTICAL 4” 

    TO  “# END PRACTICAL 4” 
}  Run one section at a time and change the value of VC from 0 

to other possible values in an ADE model. What happens to 
estimates of VA and VD depending on different assumed 
values of VC? 

 
 
 



Effects of epistasis on these biases 

}  Epistasis (across loci interactions) can increase the degree of 
the biases because it can reduce the CVdz:CVmz ratio even 
further than the expected 1:4 under dominance. 

}  However, the degree of bias rests on how strong non-additive 
genetic influences are. This is an active area of debate.  

}  Epistatic effects will generally come out in the estimates of 
VD. Thus, interpret VD’ broadly, as a rough estimate of VNA 

}  My take:  VA is almost certainly greater than VNA, and 
evidence for much VD per se is scant. But some traits may 
show high enough VNA to bias estimates of  VC and VD 
(VNA) down and VA up considerably from twin studies.  

 
 
 



Quiz	Ques,on	5	

5)	What	are	the	typical	assump,ons	of	a	classical	
twin	model?	[choose	all	that	apply]	

a)	only	gene,c	factors	cause	MZ	twins	to	be	more	
similar	to	each	other	than	DZ	twins	

b)	either	VD	or	VC	is	zero	

c)	no	epistasis	

d)	no	assorta,ve	ma,ng		

e)	no	gene-environment	interac,ons	or	correla,ons	



What	are	the	effects	of	viola,ons	of	
assump,ons	in	the	CTD?	

a) Only genetic factors cause MZ twins to be more similar to each 
other than DZ twins:  VA and VD overestimated and VC 
underestimated 

 

b) Either VD or VC is zero: VA overestimated and VD & VC 
underestimated 

 

c) No epistasis: VD or VA overestimated and VC underestimated 
 

d) No assortative mating:  VA and VD underestimated and VC 
overestimated  

e) No gene-environment interactions or correlations:  AxC: VA 
overestimated;  AxE: VE overestimated; passive Cov(A,C): VC 
overestimated 
 



Assorta,ve	ma,ng	consequence	on	VA	
}  AM: phenotypic correlation between mating partners 
}  Many examples (e.g., height ~.2; IQ ~ .3; Social attitudes ~ .5) 
}  If AM leads to genetic similarity in partners (as it does if due 

to choice for similarity), there are genetic consequences: 
}  Height VA increases in the population because 

‘tall’ (‘short’) alleles are more concentrated in individuals 
than expected. 

}  E.g., if you’re a ‘tall’ allele sitting in an egg and are waiting 
around to see what other height genes you’ll get paired 
with from that sperm swimming to you, they are more 
likely than chance to be other ‘tall’ alleles (both at the 
same locus and at others; & this just considers the effects 
on VA in 1st gen) 

}      



AM	consequence	on	rela,ve	covariance	
}  AM increases genetic covariances and correlations between 

relatives (e.g., sibs, parents, cousins, etc). 
}  While CVmz increases, it’s correlation is already 1 so it 

doesn’t increase  
}  Consider again being a ‘tall’ allele in a zygote. This time you 

are watching your co-twin’s zygote get formed. Regardless of 
whether you exist (are IBD) in your co-twin’s egg, you can 
expect more tall alleles swimming to your co-twin’s egg. 

}  Thus, you can also expect to share more ‘tall’ alleles with 
your sibling(s). 

}  The CVdz that is due to additive genetics is: 

  



Quiz	Ques,on	6	

6)	In	the	CTD,	say	that	CVmz	<	2CVdz,	so	we	fit	
an	ACE	model.	How	would	AM	tend	to	affect	
parameter	es,mates?		[choose	all	that	apply]	

a)	deflates	es,mates	of	VA	

b)	inflates	es,mates	of	VA	

c)	deflates	es,mates	of	VC	

d)	inflates	es,mates	of	VC	

	

	



Quiz	Ques,on	7	

7)	Say	we	add	parents	to	the	CTD.	That	gives	us	
2	addi,onal	rela,ve	covariance	es,mate	to	
work	with	(parent-offspring	and	spousal)	in	
addi,on	to	the	normal	CVmz	and	CVdz	and	
allows	us	to	___________	[choose	all	that	
apply]	

a)	es,mate	VA,	VC,	&	VD	simultaneously	
b)	account	for	effects	of	assorta,ve	ma,ng	
c)	account	for	passive	G-E	covariance		
d)	reduce	the	bias	in	es,mates	of	VA,	VC,	and	VD	
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Classical Twin Design (CTD) 
n  Assumption                biased up         biased down 

Either VD or VC is zero              VA’                         VC’ & VD’ 
No assortative mating                 VC’                              VD’ 
No A-C covariance                     VC’                          VD’ & VA’ 

 



Adding parents gets us around all 
these assumptions 

n  Assumption                biased up         biased down 
Either VD or VC is zero 
No assortative mating 
No A-C covariance 
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With parents, we can break “VC” up into: 

S = env. factors shared only between sibs 

F = familial env factors passed from parents to offspring 

But we can only estimate one of these (or more technically, one of VA, VS, 
VF, & VD) 
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We can model VC as either VS or VF 
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Nuclear Twin Family Design (NTFD) 

 
 

Note: m estimated 
and f fixed to 1 
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PRACTICAL 5: NTFD analysis 

}  In CTD.ACDE-param.indet_2018.R, run: 
   FROM “# START PRACTICAL 5” 

TO  “# END PRACTICAL 5” 
 
}  What are the estimated values of VA, VD, & VS? [Note: VS = 

sib environment, equivalent to VC in the CTD] 
 
 
 
 



Simulated (true) vs. CTD vs. NTFD results  

}  TRUE values       CTD estimates       NTFD estimates 
VA = .30                   VA’ = .68                  VA’ = .32  
VD = .30                  VD’ = .04                  VD’ = .29 
VS = .10                   VS’ =  0                    VS’ = .13 
 
 
 

Note: these are results from a single simulation. The estimates don’t 
equal the parameters here due to sampling variance. If we ran this a lot 
of times, NTFD estimates would be unbiased. 



On average across 38 traits 
CTD vs. ETFD results* 

n  VA 65% higher in CTD 
n  VD 43% lower in CTD 
n  VC 45% lower in CTD when r(spouse)~0 
n  VC 100% higher in CTD when r(spouse)>0 
 

n  ETFD results are not perfect, but theory and 
simulation suggest they are, on average, much 
more accurate than CTD results. 

o  Accuracy across all sims: CTD=.14; NTF=.07; ETFD=.045   
* Coventry & Keller, 2005 

VG 18% higher in CTD 



Nuclear Twin Family Design (NTFD) 

n  Assumptions: 
n  Only can estimate 3 of 4: VA, VD, VS, and VF (bias is variable) 
n  Assortative mating due to primary phenotypic assortment (bias is variable) 

 

Note: m estimated 
and f fixed to 1 
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Stealth 

n  Include twins and their sibs, parents, spouses, and 
offspring… 
n  Gives 17 unique covariances (MZ, DZ, Sib, P-O, Spousal, 

MZ avunc, DZ avunc, MZ cous, DZ cous, GP-GO, and 7 in-
laws)  

n  88 covariances with sex effects 

 
 



  can be estimated simultaneously  

= env. factors shared only between twins 
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Additional obs. covs with Stealth allow 
estimation of VA, VS, VD, VF, VT  
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Stealth 
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Stealth 

n  Assumption                 biased up         biased down 
Primary assortative mating     VA, VD, or VF         VA, VD, or VF 
No epistasis                                VA, VD                         VS 
No AxAge                                  VD, VS                         VA 

 



Stealth 

n  Assumption                 biased up         biased down 
Primary assortative mating     VA, VD, or VF         VA, VD, or VF 
No epistasis                                VA, VD                         VS 
No AxAge                                  VD, VS                         VA 

n  Primary AM: mates choose each other based on 
phenotypic similarity 

n  Social homogamy: mates choose each other due to 
environmental similarity (e.g., religion) 

n  Convergence: mates become more similar to each 
other (e.g., becoming more conservative when 
dating a conservative) 
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Cascade 



Simulation program: GeneEvolve 



Reality: VA=.5, VD=.2 



Reality: VA=.5, VS=.2 



Reality: VA=.4, VD=.15, VS=.15 



Reality: VA=.35, VD=.15, VF=.2, VS=.15, VT=.15, AM=.3 



VA,VD, & VF estimates are highly correlated in 
Stealth & Cascade 



Reality: VA=.45, VD=.15, VF=.25, AM=.3 (Soc Hom) 



Reality: VA=.4, VA*A=.15, VS=.15 



Reality: VA=.4, VA*Age=.15, VS=.15 



 
 

n  All models require assumptions. Generally, more 
assumptions = more biased estimates 

n  Simulations provide independent assessments of the 
NTFD, Stealth, and Cascade models 
n  These complicated models work as designed, but 

they have drawbacks 
n  In all models, but especially the CTD, be cautious of 

reifying parameter estimates! 
n  VA’ is amalgam of mostly VA but also VD & VC. 

VA’/VP’ (in ACE models) or (VA’+VD’)/VP’ (in ADE 
models) is a decent estimate of broad sense h2. 

n  VD’ & VC’ are likely to be underestimates 
 

Conclusions 



 
 

n  Are ETFDs worth the trouble? Or should we 
simply adjust our interpretations of estimates from 
simpler models? 

n  How well do methods work that rely on skewness 
to fit VA’, VD’, and VC’ simultaneously work? 

n  Should we report full or reduced parameter 
estimates? 

n  Should we fit variances of latent variables rather 
than pathways, and hence allow variance 
component estimates to go negative? 

Discussion questions 



Stealth application 
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