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Phenotypic factor analysis

A statistical technique to investigate the dimensionality of 
correlated variables in terms of common latent variables 
(a.k.a. common factors).  

Applications in psychometrics (measurement), biometrical 
genetics, important in differential psychology (IQ, 
personality).
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Psychometric perspective (not the only one):  FA as a measurement model.

Questionnaire items are formulated to measure 
a latent – unobservable – trait, such as 

Perceptual speed
Working memory
Verbal intelligence
Depression 
Disinhibition
Extroversion

latent variables, not observable, hypothetical
latent, unobservable.... 
so how can we measure these?

measure these by considering observable variables – questionnaire items –
that are dependent on these latent variables. items as indicators.



8 depression items

1. Little interest or pleasure in doing things? 
2. Feeling down, depressed, or hopeless? 
3. Trouble falling or staying asleep, or sleeping too much?
4. Feeling tired or having little energy? 
5. Feeling bad about yourself - or that you are a failure or 

have let yourself or your family down? 
6. Trouble concentrating on things, such as reading the 

newspaper or watching television? 
7. Moving or speaking so slowly that other people could 

have noticed? 
8. Thoughts that you would be better off dead, or of 

hurting yourself in some way?
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A psychometric  analysis:

Investigate the dimensionality of the item 
responses in terms of substantive latent 
variables. 

A psychometric  causal perspective:

An implicit causal hypothesis: the latent 
variable (“depression”) causes the item 
response. 

Your theoretical point of departure!
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depression

inter-
est

resi-
dual

down

resi-
dual

sleep

resi-
dual

dead

resi-
dual

....

....

Latent variable

observed variables
(indicators)

The items share a common cause (depression):
depression is a source of shared variance in the items,
gives rise to covariance / correlation among the item scores. 

what we expect (theory) 
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depressio
n

inter-
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dual
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....

Latent variable
“depression”

correlation matrix of 8 items scores
(general pop sample N=1000).

1.00  
0.24 1.00  
0.20 0.19 1.00  
0.26 0.20 0.20 1.00  
0.25 0.18 0.15 0.26 1.00  
0.23 0.19 0.17 0.24 0.22 1.00  
0.16 0.16 0.13 0.22 0.14 0.19 1.00  
0.16 0.09 0.17 0.16 0.18 0.18 0.16 1.00

Is the observed correlation matrix (right) compatible with the model (left?).

what we expect (theory) what we observe
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Single common factor model: A set of linear regression equations

F

y1

e1

y2

e2

y3

e3

y4

e4

f1

f2 f3
f4

y

e

x
b1

b1 is a regression coefficient 
(slope parameter)

yi = b0 + b1*Xi + ei 

f1 is a factor loading 
path diagram: linear 
regression.

y1i = t1 + f1*Fi + e1i

y2i = t2 + f2*Fi + e2i

y3i = t3 + f3*Fi + e3i

y4i = t4 + f4*Fi + e4i

intercepts factor loadings

intercept regression coefficients
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But how does this work if the common factor (the 
independent variable, F) is not observed? How 
can we estimates the regression coefficients 
(factor loadings)?
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y1i - t1 = f1*Fi + e1i

y2i - t2 = f2*Fi + e2i

y3i - t3 = f3*Fi + e3i

y4i - t4 = f4*Fi + e4i

F

y1

e1

y2

e2

y3

e3

y4

e4

f1

f2 f3
f4

s2
e1

s2
F

s2
e2 s2

e3 s2
e4

Consider the implied covariance matrix – the covariance 
matrix expressed in terms of the parameters in the model
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Implied covariance matrix among y1 to y4 (call it S). 

f1
2*s2

F + s2
e1

f2*f1*s2
F f2

2*s2
F + s2

e2

f3*f1*s2
F f3*f2*s2

F f3
2*s2

F + s2
e3

f4*f1*s2
F f4*f2*s2

F f4*f3*s2
F f4

2*s2
F + s2

e4

in next slides, I am going to drop “*”, e.g., f1
2*s2

F + s2
e1 = f1

2s2
F + s2

e1
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Scaling of the common factor (latent variable) –
how can be estimate variance of F, is F is not observed?

1) standardize F so that s2
F = 1 or

2) fixed a factor loading to 1 so that the variance of F 
depends directly on the scale of the indicator
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Actually you already know about scaling

A, C and E are statistically latent variale: in the twin model, we do not observe 
them directly ....
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F
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e1

N2

e2

N3

e3

N4

e4

f1

f2 f3
f4

s2
e1

1

s2
e2 s2

e3 s2
e4

f1
21 + s2

e1

f2f11 f2
21 + s2

e2

f3f11 f3f21 f3
21 + s2

e3

f4f11 f4f21 f4f31 f4
21 + s2

e4

f1
2 + s2

e1

f2f1 f2
2 + s2

e2

f3f1 f3f2 f3
2 + s2

e3

f4f1 f4f2 f4f3 f4
2 + s2

e4

=

Latent variance scaled by fixed its variance to 1 (standardization)
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F

N1

e1

N2

e2

N3

e3

N4

e4

1

f2 f3
f4

s2
e1

s2
F

s2
e2 s2

e3 s2
e4

12s2
F + s2

e1

f21s2
F f2

2s2
F + s2

e2

f31s2
F f3f2s

2
F f3

2s2
F + s2

e3

f41s2
F f4f2s

2
F f4f3s

2
F f4

2s2
F + s2

e4

s2
F + s2

e1

f2s
2

F f2
2s2

F + s2
e2

f3s
2

F f3f2s
2

F f3
2s2

F + s2
e3

f4s
2

F f4f2s
2

F f4f3s
2

F f4
2s2

F + s2
e4

Latent variance scaled by fixing f1 = 1 (or fix f2, f3, or f4 to 1).
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Observed covariance matrix (N=361)
35.278
15.763 18.109
4.942  2.661 16.594
18.970 11.622 4.262 21.709

Expected covariance matrix (S)
35.278  
15.682 18.109  
5.085  3.115 16.594   
19.011 11.649  3.777 21.709

N

y1

e1

y2

e2

y3

e3

y4

e4

5.06

3.10
1.01

3.76

1 1 1 1

1 (fixed: scaling!)

9.68 8.50 15.5 7.58

var(n1) = 5.062*1 + 9.68 =35.27
rel(n1) = 5.062*1 / 35.27 = .725
(R2 in regression of y1 on N)

R2 = (f1
2 * s2

N ) / (f1
2 * s2

N + s2
e1)

how do we get S ?  see previous slides!
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Matrix algebraic representation of the model for S, 
given p observed variables, and m latent variables

S =  Lf * SF * Lf
t + SR

S is the pxp symmetric expected covariance matrix  
Lf is the pxm matrix of factor loading
SF is the mxm covariance (correlation) matrix of the common factors
SR is the pxp covariance matrix of the residuals. 
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given p observed variables, and m latent variables

S =  Lf * SF * Lf
t + SR

Given P=4, m=1

Lf = f1
f2
f3
f4

Lf
t = f1  f2  f3  f4

SF =  s2
F

SR = s2
e1 0 0 0

0 s2
e2 0 0

0 0 s2
e3 0

0 0 0 s2
e4

F

N1

e1

N2

e2

N3

e3

N4

e4

f1

f2 f3
f4

s2
e1

SF

s2
e2 s2

e3 s2
e4

SR

Lf4 x 1

1 x 4

1 x 1

4 x 4

s2
F



Multiple common factors: Confirmatory vs. Exploratory Factor Analysis (CFA 
vs EFA). EFA Aim: determine dimensionality and derive meaning of factors 
from factor loadings

Exploratory approach: How many common factor? What is the pattern of 
factor loadings? Can we derive the meaning of the common factor from the 
pattern of factor loadings (Lf)? Low on prior theory, but still involves choices.
How many common factors: Screeplot, Eigenvalue > 1 rule, Goodness of fit 
measures (RMSEA, NNFI), info criteria (BIC, AIC).
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EFA (two) factor model as it is fitted in standard programs:
all indicators (p=6) load on all common factors (m=2).  Note: scaling (s2

F1=1,  s2
F2=1)

20

y1 y2 y3 y4 y5 y6

F1 F2

e6e5e4e3e2e1

f11

f61 f21
f62

11

s2
e1

s2
e6

r



y1 = f11 F1 + f12 F2 + e1

y2 = f21 F1 + f22 F2 + e2

y3 = f31 F1 + f32 F2 + e3

y4 = f41 F1 + f42 F2 + e4

y5 = f51 F1 + f52 F2 + e5

y6 = f61 F1 + f62 F2 + e6

Lf (6x2)= f11 f12

f21 f22

… …
f51 f52

f61 f62

expected covariance matrix:

S =  Lf * SF * Lf
t    + SR

(p x p) (p x m) (pxp) (p x m) (p x p)

21

SF (2x2) =  1 r

r 1

SR (6x6)= diag(s2
e1 s2

e2 s2
e3 s2

e4 s2
e5 s2

e6)
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y1 y2 y3 y4 y5 y6

F1 F2

e6e5e4e3e2e1

f11

f61 f21
f62

1
1

s2
e1

s2
e6

r=0EFA as fitted (r=0):

Lf (6x2) is not necessarily interpretable and r=0 is not necessarily desirable.
not 6x2 = 12 free loadings, actually 12 – 1 loadings (indetification) 
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N=300 (o1, o2, o3, o4 openness to experience; a1, a2, a4, a5 agreeableness)

example
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Lf (6x2) SF (2x2) =  1 0

0 1

Unrotated factor loading matrix: 
not necessarily interpretable. 
Transform Lf by ‘factor rotation” to 
increase interpretability

S =  Lf * SF * Lf
t    + SR



25

r=0 r=0 r=.25

interpretable ...? interpretable ...? not interpretable  

not rotated varimax oblimin

There is not statistical test here of r=0! 
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Determining the number of common factors in a EFA. Prior theory, or rules of thumb. 
Eigenvalues > 1 rule (number of eigenvalues > 1 = ~ number of factors)
Elbow joint in the plot of the Eigenvalue (number of Eigenvalues before the elbow joint = ~ 
number of factors)

joint

2 EVs > 1 2 EVs before the joint



Confirmatory factor model: impose a pattern of loadings based on theory ,
define the common factors based on prior knowledge . 

y1 y2 y3 y4 y5 y6

F1 F2

r

e6e5e4e3e2e1
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y1 = f11 F1 + 0 F2 + e1

y2 = f21 F1 + 0 F2 + e2

y3 = f31 F1 + 0 F2 + e3

y4 = 0 F1 + f42 F2 + e4

y5 = 0 F1 + f52 F2 + e5

y6 = 0 F1 + f62 F2 + e6

Lf (6x2)= f11 0
f21 0
… …

0 f52

0 f62

expected covariance matrix:

S =  Lf * SF * Lf
t    + SR

(p x p) (p x m) (pxp) (p x m) (p x p)
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SF (2x2) =  1 r

r 1

SR (6x6)= diag(s2
e1 s2

e2 s2
e3 s2

e4 s2
e5 s2

e6)
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o1 = .416 F1 + 0 F2 + e1

o2 = .663 F1 + 0 F2 + e2

o3 = .756 F1 + 0 F2 + e3

o4 = .756 F1 + 0 F2 + e4

a1 = 0 F1 + .594 F2 + e5

a2 = 0 F1 + .726 F2 + e6

a4 = 0 F1 + .630 F2 + e6

a5 = 0 F1 + .617 F2 + e4

SF (2x2) =  1 .24

.24 1
SF (2x2) =  1 .25

.25 1

CFA
EFA

o
b

lim
in

 ro
tatio

n

Statistical test of r=0 can be done
in CFA 



y1 y2 y3 y4 y5 y6

f1 f2

r

e1

Suppose 3 indicators at 2 time points

1 1

a

b

c

d

v1 v2

e2 e3 e4 e5 e6

ve1 ve2 ve3
ve14 ve5 ve6
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f1 f2

r
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Suppose 3 indicators at 2 time points

1
1

a=c
b=d

a=c

b=d

v1 v2

e2 e3 e4 e5 e6
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y1 y2 y3 y4 y5 y6

f1 f2

r

e1

Suppose 3 indicators at 2 time points

1
1

a=c
b=d

a=c

b=d

v1 v2

e2 e3 e4 e5 e6

ve1 ve2 ve3
ve14 ve5 ve6
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voca-
bulary

simil-
arities

digit 
span

inform compre let_num
pic-

comp
coding

block
design

matrices
symb 

search
object

verbal memory visual

correlated common factors

factor loadings

residuals

CFA applied alot to cognitive ability test scores. WAIS (Wechsler) 
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pic-

comp
coding

block
design
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symb 

search
object

verbal memory visual

factor loadings

residuals

g
first order factors 
and second order factor
(g = general intelligence)
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coding
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symb 
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object

factor loadings

residuals

common
common 

res1
common 

res2

common 
res3

Bifactor model: alternative. Includes 1st order general factor. 
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Caveat: A factor model implies phenotypic correlation, but phenotypic 
correlations do not necessarily imply a factor model



APGAR

item2item1 Pulse
Appear-

ance
Grimace

Items are formative: itemscores form the APGAR score 
Index variable = defined by formative items. The APGAR is dependent on the 
formative items. APGAR does not determine or cause the scores on the APGAR 
items

Activity Respiration

APGAR Index of neonatal health

based on 
5 formative indicators 
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item2item1 Pulse
Appear-

ance
Grimace Activity Respiration

They could be a network of mutualistic direct causal effect....gives rise 
to correlations, which is consistent with factor model, but  the 
generating model is a network model, not the factor model 

The APGAR score is useful in diagnosis and prediction
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The Centrality of DSM and non-DSM Depressive Symptoms in Han Chinese Women with 
Major Depression (2017). Kendler, K. S., et al. Journal of Affective Disorders.

Psychometric:
Depression symptoms are correlated 
because indicators of latent variable 
depression .... 

Network: 
Depression symptoms are correlation 
because they are directly 
interdependent
in a network
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What if I want to carry out a phenotypic factor analysis given twin data?
N pairs, but N*2 individual... 

1) Ignore family relatedness treat N twin pairs as 2*N individuals ? OK does not effect 
estimate of the covariance matrix, but renders statistical tests invalid (eigenvalues and 
scree plots are ok)

2) Ignore family relatedness treat N twin pairs as 2*N individuals use a correction for family 
clustering. OK and convenient. Requires suitable software

3) Do the factor analysis in N twins and replicate the model in the other N twins? Ok, but not 
true replication (call it pseudo replication)

4) Do the factor analysis in twins separately and simultaneously, but include the twin 1 –
twin 2 phenotypic covariances. Ok, but possibly unwieldy (especially is you have extended 
pedigrees).
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Relevance of factor analysis to twin studies genetic studies (GWAS)
1) understanding phenotypic covariance in terms of sources of A, 
C (D), E covariance

Decomposition of a 12x12 phenotypic covariance matrix
into 12x12 A, C, and E covariance matrices 

Sph = SA + SC + SE

Subsequent factor modelling of SA , SC , SE to understand the 
covariance structures, get a parsimonious representation
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Rijsdijk FV, Vernon PA, Boomsma DI. . Behavior Genetics, 32, 199-210, 2002

SA factor model (4 factors)

SE , no common factor 

SC ,factor model (1 factor) 

12 cognitive ability test 
(raven + WAIS)
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Relevance of factor analysis to twin studies genetic studies (GWAS)

2) understanding phenotypic covariance in terms of A, C (D), E covariance
Independent pathway model vs common pathway model

common refs: Kendler et al., 1987, McArdle and Goldsmith, 1990.
However, Martin and Eaves presented the CP model in 1977

https://genepi.qimr.edu.au/staff/classicpapers/

This is were twin modeling meet psychometrics 



N

n1

e1

n2

e2

n3

e3

n4

e4

f1

f2
f3

f4

1 1 1 1

A substantive aspect of the common factor 
model: interpretation (that you bring to the 
model!)

Strong realistic view of the latent variable N:

N is a real, causal, unidimensional source of 
individual differences. It exists beyond the realm 
of the indicator set, and is not dependent on any 
given indicator set.

Causal - part I: The position of N determines 
causally the response to the items. N is the only 
direct cause of systematic variation in the items.

Reflective indicators: They 
reflect the causal action of the 
latent variable N

44



Causal part II: The relationship between any external 
variable (latent or observed) and the indicators is 
mediated by the common factor N: essence of 
“measurement invariance” and 
“differential item functioning”.

If correct, the (weighted) sum of the items scores
provide a proxy for N.

ACE modeling of (weighted) sum of items.
GWAS of (weighted) sum of items

N

n1

e1

n2

e2

n3

e3

n4

e4

f1

f2 f3
f4

1 1 1 1

sex

A

QTL
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N 

n4 n5 n6

EA

n7 n8 n9n1 n2 n3

C

C

n4 n5 n6

EA

n7 n8 n9n1 n2 n3

Independent pathway model or
Biometric model. Implies phenotypic 
multidimensionality….. What about N in 
the phenotypic analysis? The phenotypic 
(1 factor) model was incorrect?

Common pathway model 
Psychometric model

Phenotypic unidimensionality N 
mediates all external sources of 
individual differences
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If CP model holds, but you fit the IP, you will find that the A, C, and E 
factor loadings are approx. proportional (collinear): The plot the E and 
A loadings is a straight line (C, A; or C, E).  IP model fits but CP more 
parsimonious option.

As noted by Martin and Eaves in 1977 (!)

Martin and Eaves 1977 (p 86)      
https://genepi.qimr.edu.au/staff/classicpapers/
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If IP model holds, but you fit the CP, you will find that the CP model does not fit.
This implies that the phenotypic factor model cannot be unidimensional.
This happens a lot.... why? 

CP model is often based on a phenotypic factor model. Say single factor model...
If CP is rejected, we may conclude 1) there is not “psychometric” latent variable 
or 2) Mike Neale: the psychometric single factor was incorrect.
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Applications 

Common pathway vs 
Independent
pathway model. 
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Practical: 

Phenotypic factor analysis. 
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correlated data 

the correlation is about .60
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Blue: 1st  princpal compoent

the blue line draw through the ellips is 
special

why?
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if you know the coordinates of the blue dot  
(the X and Y values on the green dimensions)

you can calculate the value on the blue dimension.
“project on to the blue dimension”

the variance of the projected values: var(p)

the blue line is chosen such that var(p) is maximal 

you can project on the orange line, but the variance of
the projected values will be smaller.

var(p) = the 1st eigenvalue 
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second line purple is perpendicular to the blue line

variance of the projections on the purple line

is the 2nd eigenvalue.

The eigenvalues of a covariance matrix should be 
positive. If so the matrix is called positive definite.

The eigen values of a 2x2 correlation matrix (r=.6)  in R

R1=matrix(.6,2,2)
diag(R1)=1
evals=eigen(R!)$values
print(evals)



56

The eigen values of a 2x2 correlation matrix (r=.6)  in R

#start
R1=matrix(.6,2,2)
diag(R1)=1
evals=eigen(R1)$values
print(evals)
# end

[1] 1.6 0.4

x y

x 1 .6

y .6 1

Both positive, the matrix is positive definite!
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What about this correlation matrix

1 0.75 0.10

0.75 1 0.75

0.10 0.75 1

R1=matrix(c(1,.75,.1,.75,1,.75,.1,.75,1),3,3,byrow=T)
evals=eigen(R1)$values

the matrix is not positive definite!


