MASTER＇S DEGREE PROGRAMMES

GENES IN BEHAVIOUR AND HEALTH：RESEARCH MASTER

Exploring gene－environment interplay across our life－ span

MASTER＇S DAY
SATURDAY 10 MARCH

Phenotypic factor analysis

Conor V. Dolan \& Michel Nivard
VU, Amsterdam

Boulder Workshop - March 2018

Phenotypic factor analysis

A statistical technique to investigate the dimensionality of correlated variables in terms of common latent variables (a.k.a. common factors).

Applications in psychometrics (measurement), biometrical genetics, important in differential psychology (IQ, personality).

Psychometric perspective (not the only one): FA as a measurement model.

Questionnaire items are formulated to measure a latent - unobservable - trait, such as

Perceptual speed
Working memory Verbal intelligence Depression
Disinhibition
latent variables, not observable, hypothetical latent, unobservable....
so how can we measure these?

Extroversion
measure these by considering observable variables - questionnaire items that are dependent on these latent variables. items as indicators.

8 depression items

1. Little interest or pleasure in doing things?
2. Feeling down, depressed, or hopeless?
3. Trouble falling or staying asleep, or sleeping too much?
4. Feeling tired or having little energy?
5. Feeling bad about yourself - or that you are a failure or have let yourself or your family down?
6. Trouble concentrating on things, such as reading the newspaper or watching television?
7. Moving or speaking so slowly that other people could have noticed?
8. Thoughts that you would be better off dead, or of hurting yourself in some way?

A psychometric analysis:

Investigate the dimensionality of the item responses in terms of substantive latent variables.

A psychometric causal perspective:

An implicit causal hypothesis: the latent variable ("depression") causes the item response.

Your theoretical point of departure!

what we expect (theory)

The items share a common cause (depression): depression is a source of shared variance in the items, gives rise to covariance / correlation among the item scores.
what we expect (theory)

what we observe correlation matrix of 8 items scores (general pop sample $N=1000$).

```
1.00
0.241.00
0 . 2 0 0 . 1 9 1 . 0 0
0.260.200.20 1.00
0.250.180.150.26 1.00
0.230.190.170.240.22 1.00
0.160.160.130.220.140.19 1.00
0.160.09 0.170.16 0.18 0.18 0.16 1.00
```

Is the observed correlation matrix (right) compatible with the model (left?).

Single common factor model: A set of linear regression equations

$$
y_{i}=b 0+b 1^{*} X_{i}+e_{i}
$$

intercept regression coefficients

$$
\begin{aligned}
& y 1_{i}=t 1+f 1^{*} F_{i}+e 1_{i} \\
& y 2_{i}=t 2+f 2 * F_{i}+e 2_{i} \\
& y 3_{i}=t 3+f 3 * F_{i}+e 3_{i} \\
& y 4_{i}=t 4+f 4 * F_{i}+e 4_{i}
\end{aligned}
$$

intercepts factor loadings

b1 is a regression coefficient (slope parameter)
f1 is a factor loading path diagram: linear regression.

But how does this work if the common factor (the independent variable, F) is not observed? How can we estimates the regression coefficients (factor loadings)?

$$
\begin{aligned}
& y 1_{i}-t 1=f 1^{*} F_{i}+e 1_{i} \\
& y 2_{i}-t 2=f 2 * F_{i}+e 2_{i} \\
& y 3_{i}-t 3=f 3^{*} F_{i}+e 3_{i} \\
& y 4_{i}-t 4=f 4^{*} F_{i}+e 4_{i}
\end{aligned}
$$

Consider the implied covariance matrix - the covariance matrix expressed in terms of the parameters in the model

Implied covariance matrix among y1 to y4 (call it Σ).

$$
\begin{aligned}
& \mathrm{f}_{1}{ }^{2 *} \sigma_{\mathrm{F}}^{2}+\sigma_{\mathrm{e} 1}^{2} \\
& \mathrm{f}_{2}{ }^{*} \mathrm{f}_{1}{ }^{*} \sigma_{\mathrm{F}}^{2} \quad \mathrm{f}_{2}{ }^{2 *} \sigma_{\mathrm{F}}^{2}+\sigma_{\mathrm{e} 2}^{2} \\
& \mathrm{f}_{3}{ }^{*} \mathrm{f}_{1}{ }^{*} \sigma_{\mathrm{F}}^{2} \quad \mathrm{f}_{3}{ }^{*} \mathrm{f}_{2}{ }^{*} \sigma_{\mathrm{F}}^{2} \quad \mathrm{f}_{3}{ }^{2 *} \sigma_{\mathrm{F}}^{2}+\sigma_{\mathrm{e} 3}^{2} \\
& \mathrm{f}_{4}{ }^{*} \mathrm{f}_{1}{ }^{*} \sigma_{\mathrm{F}}^{2} \quad \mathrm{f}_{4}{ }^{*} \mathrm{f}_{2}{ }^{*} \sigma_{\mathrm{F}}^{2} \quad \mathrm{f}_{4}{ }^{*} \mathrm{f}_{3}{ }^{*} \sigma_{\mathrm{F}}^{2} \\
& \mathrm{f}_{4}{ }^{2 *} \sigma_{\mathrm{F}}^{2}+\sigma_{\mathrm{e}}^{2}
\end{aligned}
$$

in next slides, I am going to drop "*", e.g., $f_{1}{ }^{2 *} \sigma_{F}^{2}+\sigma_{e 1}^{2}=f_{1}{ }^{2} \sigma_{F}^{2}+\sigma_{e 1}^{2}$

Scaling of the common factor (latent variable) how can be estimate variance of F, is F is not observed?

1) standardize F so that $\sigma_{F}^{2}=1$ or
2) fixed a factor loading to 1 so that the variance of F depends directly on the scale of the indicator

Actually you already know about scaling

A, C and E are statistically latent variale: in the twin model, we do not observe them directly

Latent variance scaled by fixed its variance to 1 (standardization)

Latent variance scaled by fixing $f_{1}=1$ (or fix f_{2}, f_{3}, or f_{4} to 1$)$.

how do we get Σ ? see previous slides!

Matrix algebraic representation of the model for Σ, given p observed variables, and m latent variables

$$
\Sigma=\mathrm{L}_{\mathrm{f}} * \Sigma_{\mathrm{F}} * \mathrm{~L}_{\mathrm{f}}^{\mathrm{t}}+\Sigma_{\mathrm{R}}
$$

Σ is the pxp symmetric expected covariance matrix
L_{f} is the pxm matrix of factor loading
Σ_{F} is the mxm covariance (correlation) matrix of the common factors
Σ_{R} is the pxp covariance matrix of the residuals.
given p observed variables, and m latent variables

$$
\Sigma=L_{f} * \Sigma_{F} * L_{f}^{t}+\Sigma_{R}
$$

Given $P=4, m=1$

$$
L_{f}=\left(\begin{array}{l}
f 1 \\
f 2 \\
f 3 \\
f 4
\end{array}\right] \quad 4 \times 1
$$

$L_{f}{ }^{t}=(\mathrm{f} 1 \mathrm{f} 2 \mathrm{f} 3 \mathrm{f} 4$) 1×4
$\Sigma_{\mathrm{F}}=\left(\sigma_{\mathrm{F}}^{2}\right] \quad 1 \times 1$
$\Sigma_{R}=\left(\begin{array}{llll}\sigma^{2}{ }_{e 1} & 0 & 0 & 0 \\ 0 & \sigma_{e 2}^{2} & 0 & 0 \\ 0 & 0 & \sigma^{2} & 0 \\ 0 & 0 & 0 & \sigma^{2}{ }_{e 4}\end{array}\right) 4 \times 4$

Multiple common factors: Confirmatory vs. Exploratory Factor Analysis (CFA vs EFA). EFA Aim: determine dimensionality and derive meaning of factors from factor loadings

Exploratory approach: How many common factor? What is the pattern of factor loadings? Can we derive the meaning of the common factor from the pattern of factor loadings (L_{f}) Low on prior theory, but still involves choices. How many common factors: Screeplot, Eigenvalue > 1 rule, Goodness of fit measures (RMSEA, NNFI), info criteria (BIC, AIC).

EFA (two) factor model as it is fitted in standard programs:
all indicators $(p=6)$ load on all common factors ($\mathrm{m}=2$). Note: scaling $\left(\sigma_{\mathrm{F}_{1}}^{2}=1, \sigma_{\mathrm{F}_{2}}^{2}=1\right)$

$$
\begin{aligned}
& y_{1}=f_{11} F_{1}+f_{12} F_{2}+e_{1} \\
& y_{2}=f_{21} F_{1}+f_{22} F_{2}+e_{2} \\
& y_{3}=f_{31} F_{1}+f_{32} F_{2}+e_{3} \\
& y_{4}=f_{41} F_{1}+f_{42} F_{2}+e_{4} \\
& y_{5}=f_{51} F_{1}+f_{52} F_{2}+e_{5} \\
& y_{6}=f_{61} F_{1}+f_{62} F_{2}+e_{6} \\
& L_{4}(6 \times 2)=\quad f_{11} \\
& \\
& \\
& f_{21} \\
& f_{21} \\
& \ldots \\
& f_{22} \\
& f_{51} \\
& f_{52} \\
& f_{61}
\end{aligned} f_{62} .
$$

expected covariance matrix:

$$
\Sigma_{\mathrm{R}}(6 \times 6)=\operatorname{diag}\left(\sigma_{\mathrm{e} 1}^{2} \quad \sigma_{\mathrm{e} 2}^{2} \quad \sigma_{\mathrm{e} 3}^{2} \quad \sigma_{\mathrm{e} 4}^{2} \quad \sigma_{\mathrm{e} 5}^{2} \quad \sigma_{\mathrm{e} 6}^{2}\right)
$$

$$
\begin{aligned}
& \begin{array}{ll}
\boldsymbol{\Sigma}= & L_{f}{ }^{*} \boldsymbol{\Sigma}_{F}{ }^{*} \mathrm{~L}_{f}^{\mathrm{t}}+ \\
(\mathrm{p} \times \mathrm{p}) & \boldsymbol{\Sigma}_{\mathrm{R}} \\
(\mathrm{p} \times \mathrm{m})(\mathrm{p} \times \mathrm{p})(\mathrm{p} \times \mathrm{m}) & (\mathrm{p} \times \mathrm{p})
\end{array} \\
& \Sigma_{\mathrm{F}}(2 \times 2)=\begin{array}{ll}
1 & r \\
r & 1
\end{array}
\end{aligned}
$$

EFA as fitted ($r=0$):

$L_{f}(6 \times 2)$ is not necessarily interpretable and $r=0$ is not necessarily desirable. not $6 \times 2=12$ free loadings, actually $12-1$ loadings (indetification)

example

$\mathrm{N}=300$ (o1, o2, o3, o4 openness to experience; a1, a2, a4, a5 agreeableness)

Correlation Matrix

		01	o2	o3	04	a1	a2	a4	a5
Correlation	-1	1.000	. 258	. 325	. 130	. 095	. 062	. 096	. 051
	o2	. 258	1.000	. 503	. 246	. 093	. 138	-. 037	. 063
	o3	. 325	. 503	1.000	. 202	. 211	. 189	-. 010	. 109
	O4	. 130	. 246	. 202	1.000	. 108	. 102	. 080	. 059
	a1	. 095	. 093	. 211	. 108	1.000	. 441	. 427	. 281
	a2	. 062	. 138	. 189	. 102	. 441	1.000	. 415	. 473
	a4	. 096	-. 037	-. 010	. 080	. 427	. 415	1.000	. 431
	a5	. 051	. 063	. 109	. 059	. 281	. 473	. 431	1.000

$L_{f}(6 \times 2)$			Factor Matrix ${ }^{a}$
		Factor	
	01	.295	.268
02	.415	.514	
o3	.539	.557	
04	.254	.169	
a1	.564	-.214	
a2	.643	-.280	
a4	.505	-.471	
a5	.525	-.323	

$$
\begin{aligned}
& \Sigma_{\mathrm{F}}(2 \times 2)=\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \\
& \Sigma=\mathrm{L}_{\mathrm{f}} * \Sigma_{\mathrm{F}} * \mathrm{~L}_{\mathrm{f}}^{\mathrm{t}}+\Sigma_{\mathrm{R}}
\end{aligned}
$$

Unrotated factor loading matrix: not necessarily interpretable. Transform L_{f} by 'factor rotation" to increase interpretability
not interpretable
Factor Matrix ${ }^{\text {a }}$

	Factor	
	1	2
o1	.295	.268
o3	.415	.514
o4	.539	.557
a1	.254	.169
a2	.564	-.214
a4	.643	-.280
a5	.505	-.471

not rotated $r=0$
interpretable ...?

Rotated Factor Matrix a

	Factor	
	1	2
o1	.065	.394
o3	.007	.661
o4	.076	.771
a1	.094	.291
a2	.575	.182
a4	.678	.179
a5	.688	-.056
	.612	.073

varimax $\mathrm{r}=0$
interpretable ...?

Pattern Matrix ${ }^{\mathbf{a}}$

	Factor	
	1	2
o1	.016	.395
o3	-.079	.676
o4	-.022	.780
a1	.059	.285
a2	.565	.112
a4	.671	.096
a5	.713	-.147

oblimin $r=.25$
There is not statistical test here of $r=0$!

Determining the number of common factors in a EFA. Prior theory, or rules of thumb. Eigenvalues > 1 rule (number of eigenvalues > $1=\sim$ number of factors) Elbow joint in the plot of the Eigenvalue (number of Eigenvalues before the elbow joint $=\sim$ number of factors)

Confirmatory factor model: impose a pattern of loadings based on theory, define the common factors based on prior knowledge .

$$
\begin{aligned}
& y_{1}=f_{11} F_{1}+0 F_{2}+e_{1} \\
& y_{2}=f_{21} F_{1}+0 F_{2}+e_{2} \\
& y_{3}=f_{31} F_{1}+0 F_{2}+e_{3} \\
& y_{4}=0 F_{1}+f_{42} F_{2}+e_{4} \\
& y_{5}=0 F_{1}+f_{52} F_{2}+e_{5} \\
& y_{6}=0 F_{1}+f_{62} F_{2}+e_{6} \\
& L_{f}(6 \times 2)=\begin{array}{ll}
f_{11} & 0 \\
f_{21} & 0
\end{array} \\
& \begin{array}{cc}
\cdots & \cdots \\
0 & \mathrm{f}_{52} \\
0 & \mathrm{f}_{62}
\end{array} \\
& \text { expected covariance matrix: }
\end{aligned}
$$

$\Sigma_{\mathrm{F}}(2 \times 2)=\begin{array}{ll}1 & r \\ r & 1\end{array}$
$\boldsymbol{\Sigma}_{\mathrm{R}}(6 \mathrm{x} 6)=\operatorname{diag}\left(\sigma^{2}{ }_{\mathrm{e} 1} \quad \sigma_{\mathrm{e} 2}^{2} \quad \sigma_{\mathrm{e} 3}^{2} \quad \sigma_{\mathrm{e} 4}^{2} \quad \sigma_{\mathrm{e} 5}^{2} \quad \sigma_{\mathrm{e} 6}^{2}\right)$

CFA

$$
\begin{aligned}
& \mathrm{o}_{1}=.416 \mathrm{~F}_{1}+0 \mathrm{~F}_{2}+\mathrm{e}_{1} \\
& \mathrm{o}_{2}=.663 \mathrm{~F}_{1}+0 \mathrm{~F}_{2}+\mathrm{e}_{2} \\
& \mathrm{o}_{3}=.756 \mathrm{~F}_{1}+0 \mathrm{~F}_{2}+\mathrm{e}_{3} \\
& \mathrm{o}_{4}=.756 \mathrm{~F}_{1}+0 \mathrm{~F}_{2}+\mathrm{e}_{4} \\
& \mathrm{a}_{1}=0 \mathrm{~F}_{1}+.594 \mathrm{~F}_{2}+\mathrm{e}_{5} \\
& \mathrm{a}_{2}=0 \mathrm{~F}_{1}+.726 \mathrm{~F}_{2}+\mathrm{e}_{6} \\
& \mathrm{a}_{4}=0 \mathrm{~F}_{1}+.630 \mathrm{~F}_{2}+\mathrm{e}_{6} \\
& \mathrm{a}_{5}=0 \mathrm{~F}_{1}+.617 \mathrm{~F}_{2}+\mathrm{e}_{4} \\
& \Sigma_{\mathrm{F}}(2 \times 2)=\quad 1 \\
& .24
\end{aligned}
$$

Statistical test of $\mathrm{r}=0$ can be done in CFA

Suppose 3 indicators at 2 time points

Suppose 3 indicators at 2 time points

Suppose 3 indicators at 2 time points

CFA applied alot to cognitive ability test scores. WAIS (Wechsler)

Bifactor model: alternative. Includes 1st order general factor.

Caveat: A factor model implies phenotypic correlation, but phenotypic correlations do not necessarily imply a factor model

Apgar Scoring System

Indicator		0 Points		2 Points
A	Activity (muscle tone)	Absent	Flexed arms and legs	Active
P	Pulse	Absent	Below 100 bpm	Over 100 bpm
G	Grimace (reflex irritability)	Floppy	Minimal response to stimulation	Prompt response to stimulation
A	Appearance (skin color)	Blue; pale	Pink body, Blue extremities	Pink
R	Respiration	Absent	Slow and irregular	Vigorous cry

Items are formative: itemscores form the APGAR score Index variable = defined by formative items. The APGAR is dependent on the formative items. APGAR does not determine or cause the scores on the APGAR items

They could be a network of mutualistic direct causal effect....gives rise to correlations, which is consistent with factor model, but the generating model is a network model, not the factor model

The APGAR score is useful in diagnosis and prediction

The Centrality of DSM and non-DSM Depressive Symptoms in Han Chinese Women with Major Depression (2017). Kendler, K. S., et al. Journal of Affective Disorders.

Psychometric:

Depression symptoms are correlated because indicators of latent variable depression

Network:

Depression symptoms are correlation because they are directly interdependent in a network

DSM Symptoms

What if I want to carry out a phenotypic factor analysis given twin data? N pairs, but $\mathrm{N}^{*} 2$ individual...

1) Ignore family relatedness treat N twin pairs as $2^{*} N$ individuals? OK does not effect estimate of the covariance matrix, but renders statistical tests invalid (eigenvalues and scree plots are ok)
2) Ignore family relatedness treat N twin pairs as $2 * N$ individuals use a correction for family clustering. OK and convenient. Requires suitable software
3) Do the factor analysis in N twins and replicate the model in the other N twins? Ok, but not true replication (call it pseudo replication)
4) Do the factor analysis in twins separately and simultaneously, but include the twin 1 twin 2 phenotypic covariances. Ok, but possibly unwieldy (especially is you have extended pedigrees).

Relevance of factor analysis to twin studies genetic studies (GWAS) 1) understanding phenotypic covariance in terms of sources of A, C (D), E covariance

Decomposition of a 12×12 phenotypic covariance matrix into $12 \times 12 \mathrm{~A}, \mathrm{C}$, and E covariance matrices

$$
\Sigma_{\mathrm{ph}}=\Sigma_{\mathrm{A}}+\Sigma_{\mathrm{C}}+\Sigma_{\mathrm{E}}
$$

Subsequent factor modelling of $\Sigma_{A}, \Sigma_{C}, \Sigma_{E}$ to understand the covariance structures, get a parsimonious representation

Rijsdijk FV, Vernon PA, Boomsma DI. . Behavior Genetics, 32, 199-210, 2002

12 cognitive ability test (raven + WAIS)

Σ_{A} factor model (4 factors)
Σ_{E}, no common factor
Σ_{C}, factor model (1 factor)

Relevance of factor analysis to twin studies genetic studies (GWAS)
2) understanding phenotypic covariance in terms of $A, C(D), E$ covariance Independent pathway model vs common pathway model
common refs: Kendler et al., 1987, McArdle and Goldsmith, 1990. However, Martin and Eaves presented the CP model in 1977
https://genepi.qimr.edu.au/staff/classicpapers/

This is were twin modeling meet psychometrics

Reflective indicators: They reflect the causal action of the latent variable N

A substantive aspect of the common factor model: interpretation (that you bring to the model!)

Strong realistic view of the latent variable N :

N is a real, causal, unidimensional source of individual differences. It exists beyond the realm of the indicator set, and is not dependent on any given indicator set.

Causal - part I: The position of \mathbf{N} determines causally the response to the items. \mathbf{N} is the only direct cause of systematic variation in the items.

Causal part II: The relationship between any external variable (latent or observed) and the indicators is mediated by the common factor \mathbf{N} : essence of "measurement invariance" and "differential item functioning".

If correct, the (weighted) sum of the items scores provide a proxy for N .

ACE modeling of (weighted) sum of items. GWAS of (weighted) sum of items

Common pathway model Psychometric model
Phenotypic unidimensionality N mediates all external sources of individual differences

Independent pathway model or Biometric model. Implies phenotypic multidimensionality..... What about N in the phenotypic analysis? The phenotypic (1 factor) model was incorrect?

If CP model holds, but you fit the IP, you will find that the A, C, and E factor loadings are approx. proportional (collinear): The plot the E and A loadings is a straight line (C, A; or C, E). IP model fits but CP more parsimonious option.

As noted by Martin and Eaves in 1977 (!)
of $\Sigma_{W M Z}^{-}$. It is quite likely that we shall want to test the hypothesis that the genetical loadings (for example) are simply scaled versions of the environmental loadings. This would imply that the genetical and environmental structures are identical, apart from specific factors, and that genetical and environmental factors are affecting the same aspects of the organism in a consistent manner. Thus, to incorporate such a constraint in our model

[^0]If IP model holds, but you fit the CP, you will find that the CP model does not fit. This implies that the phenotypic factor model cannot be unidimensional. This happens a lot.... why?

CP model is often based on a phenotypic factor model. Say single factor model... If CP is rejected, we may conclude 1) there is not "psychometric" latent variable or 2) Mike Neale: the psychometric single factor was incorrect.

Can Genetics Help Psychometrics? Improving Dimensionality Assessment Through Genetic Factor Modeling

Sanja Franić
Vrije Universiteit Amsterdam

James J. Hudziak
University of Vermont

Conor V. Dolan and Denny Borsboom University of Amsterdam

Catherina E. M. van Beijsterveldt and Dorret I. Boomsma
Vrije Universiteit Amsterdam

Behav Genet
DOI 10.1007/s10519-013-9628-4

ORIGINAL RESEARCH

Three-and-a-Half-Factor Model? The Genetic and Environmental Structure of the CBCL/6-18 Internalizing Grouping

Sanja Franić - Conor V. Dolan • Denny Borsboom *
Catherina E. M. van Beijsterveldt -
Dorret I. Boomsma

Applications

Common pathway vs Independent pathway model.

ARTICLE

Item-level analyses reveal genetic heterogeneity in neuroticism

Mats Nagel ${ }^{1}$, Kyoko Watanabe ${ }^{2}$, Sven Stringer © ${ }^{2}$, Danielle Posthuma© ${ }^{1,2}$ \& Sophie van der Sluis ${ }^{1}$

Practical:

Phenotypic factor analysis.

correlated data
the correlation is about . 60

Blue: 1st princpal compoent
the blue line draw through the ellips is special
why?

if you know the coordinates of the blue dot (the X and Y values on the green dimensions)
you can calculate the value on the blue dimension. "project on to the blue dimension"
the variance of the projected values: $\operatorname{var}(\mathrm{p})$
the blue line is chosen such that var(p) is maximal
you can project on the orange line, but the variance of the projected values will be smaller.
$\operatorname{var}(\mathrm{p})=$ the 1st eigenvalue

second line purple is perpendicular to the blue line variance of the projections on the purple line is the 2 nd eigenvalue.

The eigenvalues of a covariance matrix should be positive. If so the matrix is called positive definite.

The eigen values of a 2×2 correlation matrix ($r=.6$) in R
R1=matrix(. $6,2,2$)
$\operatorname{diag}($ R1 $)=1$
evals=eigen(R!)\$values
print(evals)

The eigen values of a 2×2 correlation matrix ($r=.6$) in R

```
#start
R1=matrix(.6,2,2)
diag(R1)=1
evals=eigen(R1)$values
print(evals)
# end
```

	x	y
x	1	.6
y	.6	1

[1] 1.60 .4
Both positive, the matrix is positive definite!

What about this correlation matrix

1	0.75	0.10
0.75	1	0.75
0.10	0.75	1

```
R1=matrix(c(1,.75,.1,.75,1,.75,.1,.75,1),3,3,byrow=T)
``` evals=eigen(R1)\$values
the matrix is not positive definite!```

[^0]: Martin and Eaves 1977 (p 86)
 https://genepi.qimr.edu.au/staff/classicpapers/

