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Phenotypic factor analysis

A statistical technique to investigate the dimensionality of
correlated variables in terms of common latent variables
(a.k.a. common factors).

Applications in psychometrics (measurement), biometrical
genetics, important in differential psychology (1Q,
personality).



Psychometric perspective (not the only one): FA as a measurement model.

Questionnaire items are formulated to measure
a latent — unobservable — trait, such as

Perceptual speed
Working memory

Verbal intelligence latent variables, not observable, hypothetical
Depression latent, unobservable....
Disinhibition so how can we measure these?

Extroversion

measure these by considering observable variables — questionnaire items —
that are dependent on these latent variables. items as indicators.



8 depression items

U b WN -

)]

. Little interest or pleasure in doing things?

. Feeling down, depressed, or hopeless?

. Trouble falling or staying asleep, or sleeping too much?
. Feeling tired or having little energy?

. Feeling bad about yourself - or that you are a failure or

have let yourself or your family down?

. Trouble concentrating on things, such as reading the

newspaper or watching television?

. Moving or speaking so slowly that other people could

have noticed?

. Thoughts that you would be better off dead, or of

hurting yourself in some way?

A psychometric analysis:

Investigate the dimensionality of the item
responses in terms of substantive latent
variables.

A psychometric causal perspective:
An implicit causal hypothesis: the latent

variable (“depression”) causes the item
response.

Your theoretical point of departure!



what we expect (theory)

depression } L atent variable

observed variables
(indicators)

resi- resi- resi- resi-

dual dual dual dual

The items share a common cause (depression):
depression is a source of shared variance in the items,
gives rise to covariance / correlation among the item scores.



what we expect (theory) what we observe

correlation matrix of 8 items scores
(general pop sample N=1000).

depressio

n Latent variable
“depression”

1.00

0.24 1.00

0.200.191.00

0.26 0.20 0.20 1.00

0.250.18 0.15 0.26 1.00
0.230.190.170.24 0.22 1.00

0.16 0.16 0.13 0.22 0.14 0.19 1.00
0.16 0.090.170.16 0.18 0.18 0.16 1.00

Is the observed correlation matrix (right) compatible with the model (left?).
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Single common factor model: A set of linear regression equations

y;=b0 +bl*X +e,

intercept  regression coefficients

yl =t1+f1*F +el A
y2. =12 + f2*F. + e2.

y3, =t3 + f3*F, + e3 ’

V4, = t4 + fA*F, + ed

intercepts factor loadings

[ ]
‘el’

s
[+ ]
©

bl is a regression coefficient
(slope parameter)

f1is a factor loading
path diagram: linear
regression.




But how does this work if the common factor (the
independent variable, F) is not observed? How
can we estimates the regression coefficients

(factor loadings)?



yl -tl="f1*

y2, - t2 = f2*
y3.-t3 =f3*
v4. - t4 = f4*

-+ el
- +e2.
-+ e3.

-+ e4.

//\\
Sbod

2
cyel

Consider the implied covariance matrix — the covariance
matrix expressed in terms of the parameters in the model
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Implied covariance matrix among y1 to y4 (call it ).
(5 2% 2 2 )

f17%0% + 0%

*f % 2 2% 2 2

f,*f,c%  f,7%0% + 0%,

*f % 2 *f % 2 2% ~2 2

f3*f, 0%  f**0%  f;% 0% + 0%

Xf k<2 Xf k<2 Xf k<2 2% <2 2
\f4f16F f,*h,*c%  f,*f3%0% fy GF+Ge4/

(uxn

in next slides, | am going to drop “*”, e.g., f,%*c%. + 02, =f,%c% + 6%,

f1 f4
f2 f3
y1 y2 y3 y4
Gzel 0292 Gzes GZE4
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Scaling of the common factor (latent variable) —
how can be estimate variance of F, is F is not observed?

1) standardize F so that 6% =1 or
2) fixed a factor loading to 1 so that the variance of F
depends directly on the scale of the indicator



Actually you already know about scaling

P11 P12 Phr1 Phr2

A, C and E are statistically latent variale: in the twin model, we do not observe
them directly ....
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//\\

f,f, 1
fof, 1

&&é

2
cYel

fafi!

(f2+02,

f,fs
f5f)

&

/flzl + G2,

2 2
f,21 + o4,

fif, 1
f,f,1

2, 2
f,*+ 0%,

f3f2
f,f

2 2
f3el + o4 3

f)fyl

2, 2
f3= + 0%;

f)fs

f,°1 + o2

e4 /
\
fa? + 0%, Y

Latent variance scaled by fixed its variance to 1 (standardization)



2

//\\

f,1c%;
fylo?

B

2
G el e2 e3 e4

\f4162F
ot v
f,o%

2
fio°r

\f4GZF

/22 2
1GF+Ge1

2 2 2
f,*0% + 0%,

fif,0%:
f,f,07%

2 2 )
f3°0% + %3

f,fi0%

2 2 2
f,*0% + 0%,

fif,o%:
f,f,0%

2 ~2 2
f°c’c+o

2 2 2
f3°0% + 0%;

f,fi0%

2 ~2 2
f‘c’c+ o

Latent variance scaled by fixing f, = 1 (or fix f,, f3, or f, to 1).

e4/

\

e4/
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Observed covariance matrix (N=361) 1 (fixed: scaling!)

35.278
15.763 18.109 R? = (f;2 * o2y ) | (f2 * 6%\ + 02%,)

3.76 =D. . =>0.
18.97011.622 4.262 21.709 310/ | o rel(n1) = 5.062*1 / 35.27 = .725
Expected covariance matrix (X) (R2in regression of y1 on N)

35.278

yl y2 y3 y4
15.682 18.109 1 T :
5.085 3.115 16.594 C[D é} é Cl‘D
19.011 11.649 3.777 21.709

9.68 8.50 15.5 7.58

how do we get 2 ? see previous slides!




Matrix algebraic representation of the model for 2,
given p observed variables, and m latent variables

S = L*E KL+ T,

2 is the pxp symmetric expected covariance matrix

L;is the pxm matrix of factor loading
2. is the mxm covariance (correlation) matrix of the common factors

2. is the pxp covariance matrix of the residuals.



given p observed variables, and m latent variables

—_ k b S t 2
Given P=4, m=1
L= [f1)
e 4xl // \\
f3
f4

o 1x4
L= (1213 f4) ‘ ‘ ‘

5, - GZF] 1x1

2
G el e2 e3 e4

IRE Cszel 0 0 0 A
0 o, O 0 4x 4
0 0 c?; O
\0 0 0 ’es



Multiple common factors: Confirmatory vs. Exploratory Factor Analysis (CFA
vs EFA). EFA Aim: determine dimensionality and derive meaning of factors
from factor loadings

Exploratory approach: How many common factor? What is the pattern of
factor loadings? Can we derive the meaning of the common factor from the
pattern of factor loadings (L;)? Low on prior theory, but still involves choices.
How many common factors: Screeplot, Eigenvalue > 1 rule, Goodness of fit
measures (RMSEA, NNFI), info criteria (BIC, AlIC).
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EFA (two) factor model as it is fitted in standard programs:
all indicators (p=6) load on all common factors (m=2). Note: scaling (¢%-,=1, 62.,=1)




vi=f Fi+f,F +e, expected covariance matrix:
Y,=fuFi+fpF+e,

Y3 =f3 Fy+ 15, F + e 2 = L * Z* L+ 20
Vo= Fi+f,F+ey (P X p) (P x m) (pxp) (p x M) (P X p)
Ys =fg Fy+fs, Fy + e

Yo =fer Fit+ TPy + &g

L (6x2)= fiq f1

-

2 (2x2) = 1
r 1

f |
>l >2 2. (6x6)=diag(c?,, ©?%,, 0%, ©%,, G’.: G%,)



EFA as fitted (r=0): 4 r=0

L; (6x2) is not necessarily interpretable and r=0 is not necessarily desirable.
not 6x2 = 12 free loadings, actually 12 — 1 loadings (indetification)



example

N=300 (o1, 02, 03, 04 openness to experience; al, a2, a4, a5 agreeableness)

Correlation Matrix

o1 02 o3 o4 al a2 a4 ad
Correlation o1 1.000 258 325 130 .095 .062 .096 .051
02 258 1.000 503 246 .093 138 -.037 .063
03 .325 503 1.000 202 211 189 -.010 109
o4 130 246 202 1.000 .108 102 .080 .059
af .095 .093 211 108 1.000 441 427 .281
a2 .062 138 189 102 441 1.000 415 473
a4 .096 -.037 -.010 .080 427 415 1.000 431
ab .051 .063 109 .059 .281 473 431 1.000




L (6x2)

o1
02
03
04
at
a2
a4
ad

Factor Matrix 2

Factor

1 2

295 .268
415 514
539 557
254 169
.564 -.214
.643 -.280
505 -.471
525 -.323

e (2x2)= 1 0
0 1

S =L*Z FL +3,

Unrotated factor loading matrix:
not necessarily interpretable.
Transform L¢ by “factor rotation” to
increase interpretability



not interpretable interpretable ...?  interpretable ...?

Factor Matrix 2 Rotated Factor Matrix 2 Pattern Matrix 2
Factor Factor Factor
1 2 1 2 1 2
o1 295 268 of ' 065 394 o1 016 395
02 415 514 02 007 661 02 -079 B76
03 234 207 03 076 177 03 -022 780
04 224 169 04 094 291 o4 059 285
al 564 _214 al 575 182 al 565 112
a2 543 _280 a2 678 179 a2 671 096
a4 505 471 ad 688 056 ad 713 147
as 225 -323 ad 612 073 ad 618 - 005
not rotated r=0 varimax r=0 oblimin r=.25

There is not statistical test here of r=0!



Determining the number of common factors in a EFA. Prior theory, or rules of thumb.
Eigenvalues > 1 rule (number of eigenvalues > 1 =~ number of factors)

Elbow joint in the plot of the Eigenvalue (number of Eigenvalues before the elbow joint =~
number of factors)

Scree Plot Scree Plot

2.5 25—

20- 2EVs>1 7 2 EVs before the joint

1.5

Eigenvalue
Eigenvalue

1.0

0.0 0.0

Factor Number Factor Number



Confirmatory factor model: impose a pattern of loadings based on theory,
define the common factors based on prior knowledge .

r

yl y2 y3 y4 y5 y6




y,=f, F,+0F, + e,
y,=f,,F,+0F, +e,
ys=f3, F,+0F, + e,
y,=0F +f,,F, +e,
ye =0F +f,F, +ec
Ve =0F +f,F,+e,

L (6x2)= f, O

expected covariance matrix:

Y = L * Xc* LY + 2n
(P X p) (P xm) (pxp) (p X M) (P X p)
> (2x2) = 1 r

r 1

2 2 2

2. (6x6)=diag(c?,, ©°%,, 0%.; G*,, G%.c O

)



CFA
0,=.416F,+0F, +e,

0,=.663F,+0F, +e,
0;=.756F;+0F, + e,
o,=.756F,+0F, +e,

a; =0F;+.594F, + e
a,=0F,+.726F, + e,
a,=0F,+.630F, + e,
ac=0F;+.617F, +e¢,

> (2x2)= 1 .24
24 1

Statistical test of r=0 can be done
in CFA

EFA

Pattern Matrix 2

Factor
1 2

01 016 395 -

02 _079 676 =

03 022 780 3-

04 059 285 g%

at 565 112 o
-

a2 671 096

a4 713 147

a5 618 005

> (2x2) = 1 .25

25 1
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Suppose 3 indicators at 2 time points

r

Vel Vez Ve3
el e2 e3

Ve 14

e4

Ve5

e5

Ve6

eb




Suppose 3 indicators at 2 time points

r

Dolan & Abdellaoui Boulder workshop 2016
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Suppose 3 indicators at 2 time points

r

Dolan & Abdellaoui Boulder workshop 2016
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CFA applied alot to cognitive ability test scores. WAIS (Wechsler)

— correlated common factors

memory visual —

_ factor loadings

. o o block : symb
voca simil - compre digit coding matrices y

bulary arities span design search

° °

Dolan & Abdellaoui Boulder workshop 2016 33

residuals




verbal

simil-
arities

®

VvVOCa-

bulary inform

memory

Sl matrices symb

coding design search

Dolan & Abdellaoui Boulder workshop 2016

first order factors
and second order factor
(g = general intelligence)

~ factor loadings

object

residuals
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Bifactor model: alternative. Includes 1st order general factor.

common common common
res3

common

_J

object

Dolan & Abdellaoui Boulder workshop 2016

_ factor loadings

} residuals
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Caveat: A factor model implies phenotypic correlation, but phenotypic
correlations do not necessarily imply a factor model

Apgar Scoring System

Activit el o .
o W Absent Flexed arms Active
(muscle tone) and legs
Pulse Absent Below 100 bpm Over 100 bpm
Grimace : Minimal response Prompt response
Floppy

(reflex irritability)

to stimulation

to sttmulation

Appearance

(skin color)

Blue; pale

Pink body,

Blue extremities

Pink

~ > Q[T

Respiration

Absent

Slow and
irregular

Vigorous cry

36



APGAR :

— |Index of neonatal health

- based on
5 formative indicators

ltems are formative: itemscores form the APGAR score

Index variable = defined by formative items. The APGAR is dependent on the
formative items. APGAR does not determine or cause the scores on the APGAR
items

37



Activity Respiration

They could be a network of mutualistic direct causal effect....gives rise
to correlations, which is consistent with factor model, but the
generating model is a network model, not the factor model

The APGAR score is useful in diagnosis and prediction
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The Centrality of DSM and non-DSM Depressive Symptoms in Han Chinese Women with
Major Depression (2017). Kendler, K. S., et al. Journal of Affective Disorders.

Psychometric:
Depression symptoms are correlated @ @

because indicators of latent variable @ @
depression ....

DSM Symptoms

: sad mood

: | interest

: A wt/app

: A sleep

: motor As

: fatigue

: worthless

. diff conc
suicide

Network: o @ :
Depression symptoms are correlation \0: ilotiaer

. 11: ,'co_nfidence.
because they are directly 12: distinct quality
interdependent

13: worse in AM
in a network

© 00 00O0O0OOU O
VONOTUVAEWN =

14: | libido

: unreactive mood
16: irritability/angry
17: hopeless

18: crying

19: helpless

20: nervous

00 000O0O0OO0OO0O0OO0
-
w
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What if | want to carry out a phenotypic factor analysis given twin data?
N pairs, but N*2 individual...

1) Ignore family relatedness treat N twin pairs as 2*N individuals ? OK does not effect
estimate of the covariance matrix, but renders statistical tests invalid (eigenvalues and
scree plots are ok)

2) Ignore family relatedness treat N twin pairs as 2*N individuals use a correction for family
clustering. OK and convenient. Requires suitable software

3) Do the factor analysis in N twins and replicate the model in the other N twins? Ok, but not
true replication (call it pseudo replication)

4) Do the factor analysis in twins separately and simultaneously, but include the twin 1 —
twin 2 phenotypic covariances. Ok, but possibly unwieldy (especially is you have extended
pedigrees).



Relevance of factor analysis to twin studies genetic studies (GWAS)
1) understanding phenotypic covariance in terms of sources of A,
C (D), E covariance

Decomposition of a 12x12 phenotypic covariance matrix
into 12x12 A, C, and E covariance matrices

2o = 2at Lot 2

Subsequent factor modelling of 2, , X, 2. to understand the
covariance structures, get a parsimonious representation



Rijsdijk FV, Vernon PA, Boomsma DI. . Behavior Genetics, 32, 199-210, 2002

12 cognitive ability test
(raven + WAIS)

2., factor model (4 factors)

2, ho common factor

> ,factor model (1 factor)
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Relevance of factor analysis to twin studies genetic studies (GWAS)

2) understanding phenotypic covariance in terms of A, C (D), E covariance
Independent pathway model vs common pathway model

common refs: Kendler et al., 1987, McArdle and Goldsmith, 1990.
However, Martin and Eaves presented the CP model in 1977

https://genepi.qimr.edu.au/staff/classicpapers/

This is were twin modeling meet psychometrics



AN

nl n2 n3 n4
Reflective indicators: They

reflect the causal action of the
latent variable N

A substantive aspect of the common factor
model: interpretation (that you bring to the
model!)

Strong realistic view of the latent variable N:

N is a real, causal, unidimensional source of
individual differences. It exists beyond the realm
of the indicator set, and is not dependent on any
given indicator set.

Causal - part |: The position of N determines
causally the response to the items. N is the only
direct cause of systematic variation in the items.



%

(%)
AN
Ty

Causal part Il: The relationship between any external
variable (latent or observed) and the indicators is
mediated by the common factor N: essence of
“measurement invariance” and

“differential item functioning”.

If correct, the (weighted) sum of the items scores
provide a proxy for N.

ACE modeling of (weighted) sum of items.
GWAS of (weighted) sum of items



RN T T I A
A C E
N T N N N e B

Common pathway model
Psychometric model

Phenotypic unidimensionality N
mediates all external sources of
individual differences

Independent pathway model or
Biometric model. Implies phenotypic
multidimensionality..... What about N in

the phenotypic analysis? The phenotypic
(1 factor) model was incorrect?
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If CP model holds, but you fit the IP, you will find that the A, C, and E
factor loadings are approx. proportional (collinear): The plot the E and
A loadings is a straight line (C, A; or C, E). IP model fits but CP more
parsimonious option.

As noted by Martin and Eaves in 1977 (!)

of Xparz. It is quite likely that we shall want to test the hypothesis that
the genetical loadings (for example) are simply scaled versions of the environ-
mental loadings. This would imply that the genetical and environmental
structures are identical, apart from specific factors, and that genetlca.l and
environmental factors are affecting the same aspects of the organism in a
consistent manner. Thus, to incorporate such a constraint in our model

Martin and Eaves 1977 (p 86)
https://genepi.gimr.edu.au/staff/classicpapers/



If IP model holds, but you fit the CP, you will find that the CP model does not fit.
This implies that the phenotypic factor model cannot be unidimensional.
This happens a lot.... why?

CP model is often based on a phenotypic factor model. Say single factor model...

If CP is rejected, we may conclude 1) there is not “psychometric” latent variable
or 2) Mike Neale: the psychometric single factor was incorrect.

O @
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Psychalagical Methods @ 2013 American Peychological Association
IDE2- ORGS0 DOE 10103003 TSE

Can Genetics Help Psychometrics? Improving Dimensionality Assessment
Through Genetic Factor Modeling

Sanja Franic¢ Conor V. Dolan and Denny Borsboom

Wrije Universiteil Amsierdam University of Amsterdam A p p I i Cat i O n S
James J. Hudziak Catherina E. M. van Beijsterveldt and
University of Vermont Dorret 1. Boomsma

Wrije Universiteil Amsierdam

- Common pathway vs
g::rhldin'.s:r:;mnsmnjz-%zm In d epen d ent
ORIGINAL RESEARCH
pathway model.

Three-and-a-Half-Factor Model? The Genetic and Environmental
Structure of the CBCL/6-18 Internalizing Grouping

Sanja Frani¢ - Conor V. Dolan - Denny Borsboom -
Catherina E. M. van Beijsterveldt -

Dorret 1. Boomsma
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nature |

COMMUNICATIONS

ARTICLE
OPEN

ltem-level analyses reveal genetic heterogeneity in
neuroticism

Mats Nagel!, Kyoko Watanabe?, Sven Stringer® 2, Danielle Posthuma® "2 & Sophie van der Sluis’
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Practical:

Phenotypic factor analysis.



correlated data

the correlation is about .60
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d[, 2]

Blue: 1st princpal compoent

the blue line draw through the ellips is
special

why?
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d[, 2]

if you know the coordinates of the blue dot
(the X and Y values on the green dimensions)

you can calculate the value on the blue dimension.
“project on to the blue dimension”

the variance of the projected values: var(p)
the blue line is chosen such that var(p) is maximal

you can project on the orange line, but the variance of
the projected values will be smaller.

var(p) = the 1st eigenvalue
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d[, 2]

second line purple is perpendicular to the blue line
variance of the projections on the purple line
is the 2nd eigenvalue.

The eigenvalues of a covariance matrix should be
positive. If so the matrix is called positive definite.

The eigen values of a 2x2 correlation matrix (r=.6) in R
R1=matrix(.6,2,2)
diag(R1)=1

evals=eigen(R!)Svalues
print(evals)
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The eigen values of a 2x2 correlation matrix (r=.6) in R

Hstart
R1=matrix(.6,2,2)
diag(R1)=1
evals=eigen(R1)Svalues
print(evals)

# end

[1]1.60.4

Both positive, the matrix is positive definite!
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What about this correlation matrix

0.75 1 0.75
0.10 0.75 1

R1=matrix(c(1,.75,.1,.75,1,.75,.1,.75,1),3,3,byrow=T)
evals=eigen(R1)Svalues

the matrix is not positive definite!
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