Introduction to Biometrical Genetics {in the classical twin design}

Conor Dolan et al. Vrije Universiteit

Boulder 2018 Workshop

Slide acknowledgement: Manuel Ferreira, Pak Sham, Shaun Purcell, Sarah Medland, and Sophie van der Sluis

Slides: 3-7 what's it all about? individual differences Slides: 8-15 how to quantify individual differences Slides: 16-18 genetic terminology, QTL

Slides: 19-27 ... mean & variance as function of QTL Slides: 28- 30... interpretation of variance components in regression Slides: 31- 43 ... covariance as function of QTL and IBD

Slides: 44-48 ... intro to practical (there is no practical!)

"Having 5 fingers genetically determined"

"DNA includes a blueprint to build a hand"

normal polydactyly angry dog

Behavior genetic research is concerned with relating individual differences in phenotypes to individual differences at the genetic level and individual differences in environmental influences Phenotype: continuously varying, genetically complex, e.g. (ideally) normally distributed e.g., binary (dichotomous, 0-1 coded) phenotype (based on continuous phenotype; liability threshold model).

The phenotype is a quantitative trait, a metric trait, a complex trait

Genetically complex:

Individual differences in the phenotype are subject to the effects of many genes of small effects, a.k.a. **polygenes, minor genes**. How many? Hundreds (Educational Attainment, Height) ... Thousands....?

Phenotypic individual differences are attributable to genetic individual differences in a large number of polygenes, a.k.a. **QTLs (quantitative trait loci).**

Polygenicity implies phenotypic continuous distributions (Nick Martin's intro talk)

People differ phenotypically

Q. How to quantify individual differences?

The variance: s^2 , σ^2 , σ^2_X , var(X), V_X

A T

mean (X)
$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$

variance (X) $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$

 x_i is the phenotypic value of person i (i=1,...,N)

Formula to find the mean for X

$$\mu_x = \frac{\sum_{i=1}^n x_i}{n}$$

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Formula to find the mean for Y

$$\mu_y = \frac{\sum_{i=1}^n y_i}{n}$$

Formula to find covariance of X & Y

$$cov(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \mu_x) (y_i - \mu_y)}{(n-1)}$$

We need the covariance: express the phenotypic relatedness among family members

Means, Variances and Covariances

N

$$\mu = E(X) = \sum_{i} x_{i} f(x_{i}) \qquad \mu = \frac{1}{N} \sum_{i=1}^{N} x_{i}$$

$$Var(X) = E(X - \mu)^{2}$$

$$= \sum_{i} (x_{i} - \mu)^{2} f(x_{i}) \qquad \sigma^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \mu)^{2}$$

$$Cov(X, Y) = E(X - \mu_{X})(Y - \mu_{Y})$$

$$\sum_{i} (x_{i} - \mu_{X})(y_{i} - \mu_{Y}) f(x_{i}, y_{i})$$

1,1,2,2,3,4,5,5,6,6

mean = (1+1+2+2+3+4+5+5+6+6)/10= 36/12 = 3.5

 $\mu = \frac{\sum_{i=1}^{N} x_i}{N}$

$$f(1) = 2/10 = .2$$
 $.2^{3}$ $f(2) = 2/10 = .2$ $.2^{3}$ $f(3) = 1/10 = .1$ $.1^{3}$ $f(4) = 1/10 = .1$ $.1^{3}$ $f(5) = 2/10 = .2$ $.2^{3}$ $f(6) = 2/10 = .2$ $.2^{3}$

$$.2*1 + .2*2 + .1*3 + .1*4 + .2*5 + .2*6$$

3.5

 $\mu = E(X) = \sum_{i} x_{i} f(x_{i})$

in R x=c(1,1,2,2,3,4,5,5,6,6) mean(x) 1,1,2,2,2,3,4,5,5,5,6,6

mean = 3.5

$$\mu = E(X) = \sum_{i} x_{i} f(x_{i})$$

f(1) = 2/10 = .2 f(2) = 2/10 = .2 f(3) = 1/10 = .1 f(4) = 1/10 = .1 f(5) = 2/10 = .2f(6) = 2/10 = .2

$$\begin{array}{l} .2^*(1-3.5)^2 + \\ .2^*(2-3.5)^2 + \\ .1^*(3-3.5)^2 + \\ .1^*(4-3.5)^2 + \\ .2^*(5-3.5)^2 + \\ .2^*(6-3.5)^2 \end{array}$$

$$Var(X) = E(X - \mu)^{2}$$
$$= \sum_{i} (x_{i} - \mu)^{2} f(x_{i})$$

variance = 3.45stdev = $\sqrt{variance}$ stdev = $\sqrt{3.45} = 1.857$

in R x=c(1,1,2,2,3,4,5,5,6,6) var(x)

covariance

$$Cov(X,Y) = E(X - \mu_X)(Y - \mu_Y)$$
$$\sum_i (x_i - \mu_X)(y_i - \mu_Y)f(x_i, y_i)$$

correlation

$$Cor(X,Y) = Cov(X,Y) / \sqrt{[Var(X)*var(Y)]} = = Cov(X,Y) / [stdev(X)*stdev(Y)]$$

Cor(X,Y) is – stand-alone - interpretable

MZ covariance is 291.... uninterpretable MZ correlation is .80 interpretable

To what extent, and how, are

individual differences in genetic makeup, and *individual differences* in environmental factors, related to *phenotypic (observed) individual differences ?*

To what extent, and how, do *individual differences* in genetic makeup, and *individual differences* in environmental factors, explain *phenotypic (observed) variance?*

$$\sigma_x^2 = \frac{\sum_{i=1}^N (x_i - \mu)^2}{N - 1}.$$

$$Var(X) = E(X - \mu)^{2}$$
$$= \sum_{i} (x_{i} - \mu)^{2} f(x_{i})$$

terminology

- **QTL Quantative trait locus**: a sequence of DNA base pairs (may be a SNP: single base pair).
- Locus: the site of the specific QTL on a chromosome (22 pairs + XY). Humans are dipoid (22 pairs autosomal chromosomes + sex chromosomes XY or XX).
- Allele: an alternative form of a gene at a locus
- **Genotype**: the combination of alleles at a particular locus
- **Phenotype**: an observed characteristic, which displays individual differences (in part due to genetic differences)

chromosome 9 location 9q34.2

Mendel's law of segregration

Example of a QTL: FNBP1L gene

The FNBP1L gene has been associated with intelligence in two studies:

* "Genome-wide association studies establish that human intelligence is highly heritable and polygenic". 2011, *Mol. Psychiatry* **16** (10): 996–1005.doi:10.1038/mp.2011.85)

* "<u>Childhood intelligence is heritable, highly polygenic and associated</u> <u>with FNBP1L</u>". *Mol. Psychiatry* **19**(2): 2538. doi:10.1038/mp.2012.184. Authors include Sarah Medland & Nick Martin.

This gene is on chromosome 1 (1p22,1), and it comprises 106531 bases (106.5Kb). Within this gene the SNP rs236330 specifically is associated with intelligence.

Population level

1. Allele frequencies (QTL: diallelic autosomal; e.g., SNP rs236330)

▷ A single locus, with two alleles

- Biallelic a.k.a. diallelic
- in GWAS: Single nucleotide polymorphism, SNP

- ▷ Every individual inherits two alleles
 - A genotype is the combination of the two alleles
 - e.g. *AA*, *aa* (the homozygotes) or *Aa* (the heterozygote)genotype frequencies?

- ▷ Biallelic locus
 - Genotypes: AA, Aa, aa
 - Genotype frequencies: p², 2pq, q²

Hardy-Weinberg Equilibrium frequencies

 $P(AA) = p^{2}$ $P(Aa) = 2pq \qquad p^{2} + 2pq + q^{2} = 1$ $P(aa) = q^{2}$

Phenotype level: contribution to continuous variation

Biometric Model

take all **a** individuals and calculate their mean phenotypic value: $\mu - a$ (the phenotypic mean **conditional** on genotype **a**)

1. Contribution of the QTL to the Mean

Genotypes	AA	Aa	aa
Effect, <i>x</i>	$\mu + a$	μ + d	μ- a
Frequencies, f(x)	p ²	2 pq	q ²

$$\begin{array}{l} (\mu + a)(p^2) + (\mu + d)(2pq) + (\mu - a)(q^2) = \\ \mu + a(p^2) + d(2pq) - a(q^2) = \\ \mu + a(p-q) + 2pqd. \ (pop \ pheno \ mean) \end{array} \qquad \mu = E(X) = \sum_i x_i f(x_i)$$

contribution of the QTL to the population phenotypic mean m = a(p-q) + 2pqd

<u>2. Contribution of the QTL to the Variance (X)</u>

GenotypesAAAaaaEffect (x) $\mu + a$ $\mu + d$ $\mu - a$ Frequencies, f(x) p^2 2pq q^2

 $s_{QTL}^{2} = (a-m)^{2}p^{2} + (d-m)^{2}2pq + (-a-m)^{2}q^{2}$ $Var(X) = E(X - \mu)^{2}$ $m = a(p-q) + 2pqd = \sum_{i} (x_{i} - \mu)^{2} f(x_{i})$

$$S^{2}_{QTL} = (a-m)^{2}p^{2} + (d-m)^{2}2pq + (-a-m)^{2}q^{2}$$

$$= \frac{2pq[a+(q-p)d]^{2}}{s^{2}} + \frac{(2pqd)^{2}}{s^{2}} + \frac{s^{2}}{gTL(D)}$$

<u>Additive or linear effects</u> give rise to variance component $S^2_{QTL(A)} = 2^* pq[a+(q-p)d]^2$

<u>Dominance</u> or *within local allelic interaction* effects give rise to variance component

 $S^2_{QTL(D)} = (2pqd)^2$

$$S^{2}_{QTL} = (a-m)^{2}p^{2} + (d-m)^{2}2pq + (-a-m)^{2}q^{2}$$

$$= \frac{2pq[a+(q-p)d]^{2}}{s^{2}} + \frac{(2pqd)^{2}}{s^{2}} + \frac{s^{2}}{s^{2}} + \frac{s^{2}}{s^{2}}$$

<u>Additive</u> effects: $s_{QTL(A)}^2 = 2*pq[a]^2$ <u>Dominance</u> effects: $s_{QTL(D)}^2 = 0$

$$S^2_{QTL} = (a-m)^2 p^2 + (d-m)^2 2pq + (-a-m)^2 q^2$$

$$= 2pq[a+(q-p)d]^{2} + (2pqd)^{2}$$
$$= S^{2}_{QTL(A)} + S^{2}_{QTL(D)}$$

<u>Additive</u> effects: $s_{QTL(A)}^2 = 2pq[a+(q-p)d]^2$ <u>Dominance</u> effects: $s_{QTL(D)}^2 = (2pqd)^2$

Suppose we measure the QTL and the phenotype and regress X on QTL.The scatterplot of the data (aa coded -1; Aa coded 0; AA coded 1).

In the following slides we look at the regression lines only (not plotting the residuals – just to avoid clutter).

Explained variance:

$$S^2_{QTL(A)} = 2^* pq[a]^2$$

 $S^2_{QTL(D)} = 0$

 $s_{QTL(A)}^{2}$ always greater than zero $s_{QTL(D)}^{2}$ can be zero (additive model d=0)

3. Contribution of the QTL to the Cov (X, Y)

$$Cov(X,Y) = \sum_{i} (x_{i} - \mu_{X})(y_{i} - \mu_{Y})f(x_{i}, y_{i})$$

$$AA (a-m) Aa (d-m) aa (-a-m)$$

$$AA (a-m) (a-m)^{2} (a-m) (d-m) (a-m)(-a-m)$$

$$Aa (d-m) (a-m) (d-m) (d-m)^{2} (d-m)(-a-m)$$

$$aa (-a-m) (a-m)(-a-m) (d-m)(-a-m) (-a-m)^{2}$$

m= **a**(p-q) + 2pq**d**

What about the $f(xi, y_i)$?

 $\begin{aligned} \underline{3A. \ Contribution \ of \ the \ QTL \ to \ the \ Cov}(X,Y) &= \sum_{i} (x_{i} - \mu_{X})(y_{i} - \mu_{Y})f(x_{i}, y_{i}) \\ \hline AA \ (a-m) & Aa \ (d-m) & aa \ (-a-m) \\ \hline AA \ (a-m) & p^{2}(a-m)^{2} & 0 \ (a-m) \ (d-m) & 0 \ (a-m) \ (-a-m) \\ \hline Aa \ (d-m) & 0 \ (a-m) \ (d-m) & 2pq \ (d-m)^{2} & 0 \ (d-m) \ (-a-m) \\ \hline aa \ (-a-m) & 0 \ (a-m) \ (-a-m) & 0 \ (d-m) \ (-a-m) \\ \hline aa \ (-a-m) & 0 \ (a-m) \ (-a-m) & 0 \ (d-m) \ (-a-m) \\ \hline aa \ (-a-m) & 0 \ (a-m) \ (-a-m) & 0 \ (d-m) \ (-a-m) \\ \hline aa \ (-a-m) & 0 \ (a-m) \ (-a-m) & 0 \ (d-m) \ (-a-m) \\ \hline aa \ (-a-m) & 0 \ (a-m) \ (-a-m) & 0 \ (d-m) \ (-a-m) \\ \hline aa \ (-a-m) & 0 \ (a-m) \ (-a-m) & 0 \ (d-m) \ (-a-m) \\ \hline aa \ (-a-m) & 0 \ (a-m) \ (-a-m) & 0 \ (d-m) \ (-a-m) \\ \hline aa \ (-a-m) & 0 \ (a-m) \ (-a-m) & 0 \ (d-m) \ (-a-m) \\ \hline aa \ (-a-m) & 0 \ (a-m) \ (-a-m) & 0 \ (d-m) \ (-a-m) \\ \hline aa \ (-a-m) & 0 \ (a-m) \ (-a-m) & 0 \ (d-m) \ (-a-m) \\ \hline aa \ (-a-m) \ (-a-m$

 $Covar(X_{i}, X_{j}) = (a-m)^{2}p^{2} + (d-m)^{2}2pq + (-a-m)^{2}q^{2}$ $= 2pq[a+(q-p)d]^{2} + (2pqd)^{2} = s^{2}_{QTL(A)} + s^{2}_{QTL(D)}$

<u>3B. Contribution of the QTL to the Cov (X, Y)</u> – Parent-Offspring

$$Cov(X,Y) = \sum_{i} (x_i - \mu_X) (y_i - \mu_Y) f(x_i, y_i)$$

	AA (a-m)	Aa (d - m)	aa (-a -m)
AA (a-m)	p³(a-m) ²	p²q (a -m)(d -m)	0 (a-m)(-a-m)
Aa (d-m)	p²q (a-m) (d-m)	pq (d-m) ²	pq ² (d-m) (-a-m)
aa (-a-m)	0 (a-m)(-a-m)	pq² (d-m) (-a-m)	q³ (-a-m) ²

given an AA parent, an AA offspring can come from either AA x AA or AA x Aa parental mating types

> AA x AA will occur $p^2 \times p^2 = p^4$ and have AA offspring Prob(AA)=1

AA x Aawill occur $p^2 \times 2pq = 2p^3q$ and have AA offspring Prob(AA)=0.5and have Aa offspring Prob(Aa)=0.5

Therefore, P(AA parent & AA offspring) = $p^4 + .5*2*p^3q$ = $p^3(p+q)$ = p^3

So can be complicated, but can also be simple

	Parent			
	AA (a - m)	Aa (d-m)	aa (-a -m)	
AA (a-m)	p³(a-m) ²	p²q (a -m)(d -m)	0 (a-m)(-a-m)	
Aa (d-m)	p²q (a - m)(d - m)	pq (d-m) ²	pq² (d-m)(-a-m)	
aa (-a-m)	0 (a-m)(-a-m)	pq ² (d-m) (-a-m)	q³ (-a-m)²	

why zero probability?

<u>3B. Contribution of the QTL to the Cov (X, Y)</u> – Parent-Offspring

	AA (a-m)	Aa (d-m)	aa (-a -m)
AA (a-m)	p³(a-m)²	p²q (a -m)(d -m)	0 (a-m)(-a-m)
Aa (d-m)	p²q (a-m)(d-m)	pq (d-m) ²	pq² (d-m)(-a-m)
aa (-a-m)	0 (a-m)(-a-m)	pq² (d-m) (-a-m)	q³ (-a-m) ²

$$Cov (X_{i}, X_{j}) = (a - m)^{2} p^{3} + \dots + (-a - m)^{2} q^{3}$$
$$= pq[a + (q - p)d]^{2} = \frac{1}{2} s^{2}_{QTL(A)}$$

<u>3C. Contribution of the QTL to the Cov (X, Y)</u> – Unrelated individuals

		p ²	2pq	q ²	
		AA (a-m)	Aa (d-m)	aa (-a - m)	
p ²	AA (a-m)	p ⁴ (a-m) ²	2p³q (a-m) (d-m)	p²q² (a-m)(-a-m)	
2pq	Aa (d-m)	2p³q (a-m) (d-m)	4p²q² (d-m) ²	2pq ³ (d-m) (-a-m)	
q ²	aa (-a-m)	p²q² (a-m)(-a-m)	2pq ³ (d-m) (-a-m)	q 4 (-a-m) ²	

$$Cov (X_{i}, X_{j}) = (a-m)^{2} p^{4} + \dots + (-a-m)^{2} q^{4}$$
$$= 0$$

Follow same method for full sibs and DZ twins Derive genotype frequences

s1	s2	eff	eff		frequency (p(A)=p, p(a)=1-p)
AA	AA	a	a	r1	p**4+p**3*q+p**2*q**2/4
aa	aa	-a	-a	r2	p**2*q**2/4+p*q**3+q**4
Aa	Aa	d	d	r3	p**3*q+3*p**2*q**2+p*q**3
AA	Aa	a	d	r4	p**3*q+p**2*q**2/2
Aa	AA	d	а	r4	p**3*q+p**2*q**2/2
Aa	aa	d	-a	r5	p**2*q**2/2+p*q**3
aa	Aa	-a	d	r5	p**2*q**2/2+p*q**3
AA	aa	a	-a	rб	p**2*q**2/4
aa	AA	-a	a	rб	p**2*q**2/4

<u>3B. Contribution of the QTL to the Cov (X, Y)</u> – DZ twins

	AA (a-m)	Aa (d-m)	aa (-a -m)
AA (a-m)	r1 (a - m) ²	r4 (a-m) (d-m)	r6 (a-m)(-a-m)
Aa (d-m)	r4 (a-m) (d-m)	r2 (d-m) ²	r5 (d-m)(-a-m)
aa (-a-m)	r6 (a-m)(-a-m)	r5 (d-m)(-a-m)	r3 (-a - m) ²

$$Cov(X_i, X_j) = (a-m)^2 r 1 + ... + (-a-m)^2 r 3$$

 $= \frac{1}{2} 2pq[a+(q-p)d]^{2} + \frac{1}{4}(2pqd)^{2} = \frac{1}{2} S^{2}_{QTL(A)} + \frac{1}{4} S^{2}_{QTL(D)}$

John Cleese ... A famous British person

Random segregation and identity-by-descent (IBD) in sibpairs

IDENTITY BY DESCENT (IBD) MZs

100% MZ sibs share BOTH parental alleles IBD = 2

0 sibs share ONE parental allele IBD = 1

0 sibs share NO parental alleles IBD = 0

IDENTITY BY DESCENT (IBD) DZs

4/16 = 1/4 sibs share BOTH parental alleles IBD = 2

8/16 = 1/2 sibs share ONE parental allele IBD = 1

4/16 = 1/4 sibs share NO parental alleles IBD = 0

What about parent offsping? many alleles do they share IBD?

<u>3D.</u> Contribution of the QTL to the Cov (X, Y) – DZ twins and full sibs

# identical alle inherited from parents	eles	2		11(father)(mother)		0
	1	4 (2 alleles)	+	½ (1 a	llele) +	¼ (0 alleles)
		MZ twins		P-(C	Unrelateds
דח	$= \frac{1}{4}$	Cov(MZ)	+	½ Co	v(P-O) +	¼ Cov(Unrel)
$Cov(X_i,X_i)$	= 1/4 (8	$= \frac{1}{4}(s^{2}_{QTL(A)} + s^{2}_{QTL(D)}) + \frac{1}{2}(\frac{1}{2}s^{2}_{QTL(A)}) + \frac{1}{4}(0)$) + ¼ (0)
, r <i>j</i> ,	$= \frac{1}{2} S$	$p^{2}_{QTL(A)} + \frac{1}{4}$	S ² QTL	.(D)		

Biometrical model predicts contribution of a QTL to the mean, variance and covariances of a trait (discarding environmental effects)

 $Var(X) = s^{2}_{QTL(A)} + s^{2}_{QTL(D)}$ 1 QTL $Cov(MZ) = s^2_{QTL(A)} + s^2_{QTL(D)}$ $Cov(DZ) = \frac{1}{2} s^2_{OTI(A)} + \frac{1}{4} s^2_{OTI(D)}$ $Cov(P-O) = \frac{1}{2} S^{2}_{OTL(A)}$ **Multiple QTL** $Var(X) = \Sigma(s_{QTL(A)}^2) + \Sigma(s_{QTL(D)}^2) = V_A + V_D$ $Cov(MZ) = \Sigma(s^{2}_{OTL(A)}) + \Sigma(s^{2}_{QTL(D)}) = V_{A} + V_{D}$ $Cov(DZ) = \Sigma(\frac{1}{2} s^2_{QTL(A)}) + \Sigma(\frac{1}{4} s^2_{QTL(D)}) = \frac{1}{2} V_A + \frac{1}{4} V_D$ $Cov(P-O) = \Sigma(\frac{1}{2} S^2_{OTL(A)}) = \frac{1}{2} V_A$

Contributions of V_A and V_D to covariances between relatives

These proportions tell use how much of $V_A \& V_D$ contribute to the phenotypic covariance among family members (useful info in extended twin design / extended pedigrees

Slide acknowledgement: Manuel Ferreira, Pak Sham, Shaun Purcell, Sarah Medland, and Sophie van der Sluis

see also Manuel AR Ferreira's http://slidegur.com/doc/4322268/biometrical-genetics

sgene.exe

