Introduction to Biometrical Genetics \{in the classical twin design\}

Conor Dolan et al.
Vrije Universiteit

Boulder 2018 Workshop

Slide acknowledgement: Manuel Ferreira, Pak Sham, Shaun Purcell, Sarah Medland, and Sophie van der Sluis

Slides: 3-7 what's it all about? individual differences Slides: $8-15 \ldots$.... how to quantify individual differences Slides: 16-18 genetic terminology, QTL

Slides: 19-27 ... mean \& variance as function of QTL Slides: 28-30... interpretation of variance components in regression Slides: 31-43 ... covariance as function of QTL and IBD

Slides: 44-48 ... intro to practical (there is no practical!)

"Having 5 fingers genetically determined"

"DNA includes a blueprint to build a hand"

normal

polydactyly

angry dog

Behavior genetic research is concerned with relating individual differences in phenotypes to individual differences at the genetic level and individual differences in environmental influences

Phenotype: continuously varying, genetically complex,

 e.g. (ideally) normally distributede.g., binary (dichotomous, 0-1 coded) phenotype (based on continuous phenotype; liability threshold model).

The phenotype is a quantitative trait, a metric trait, a complex trait

Genetically complex:

Individual differences in the phenotype are subject to the effects of many genes of small effects, a.k.a. polygenes, minor genes. How many? Hundreds (Educational Attainment, Height) ... Thousands....?

Phenotypic individual differences are attributable to genetic individual differences in a large number of polygenes, a.k.a. QTLs (quantitative trait loci).

Polygenicity implies phenotypic continuous distributions (Nick Martin's intro talk)

People differ phenotypically

Q. How to quantify individual differences?

The variance: $\mathrm{s}^{2}, \sigma^{2}, \sigma^{2}{ }_{\mathrm{X}}, \operatorname{var}(\mathrm{X}), \mathrm{V}_{\mathrm{X}}$
mean (X) $\quad \mu=\frac{1}{N} \sum_{i=1}^{N} x_{i}$
variance (X) $\quad \sigma^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}$

x_{i} is the phenotypic value of person $i(i=1, \ldots, N)$

Formula to find the mean for X

$$
\mu_{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}
$$

$$
\mu=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

Formula to find the mean for Y
$\mu_{y}=\frac{\sum_{i=1}^{n} y_{i}}{n}$
Formula to find covariance of $\mathrm{X} \& \mathrm{Y}$
$\operatorname{cov}(X, Y)=\frac{\sum_{i=1}^{n}\left(x_{i}-\mu_{x}\right)\left(y_{i}-\mu_{y}\right)}{(n-1)}$
We need the covariance: express the phenotypic relatedness among family members

Means, Variances and Covariances

$$
\begin{aligned}
& \begin{aligned}
& \mu=E(X)=\sum_{i} x_{i} f\left(x_{i}\right) \mu=\frac{1}{N} \sum_{i=1}^{N} x_{i} \\
& \begin{aligned}
\operatorname{Var}(X)= & E(X-\mu)^{2} \\
= & \sum_{i}\left(x_{i}-\mu\right)^{2} f\left(x_{i}\right)
\end{aligned} \sigma^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}
\end{aligned} \\
& \operatorname{Cov}(X, Y)=E\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right) \\
& \\
& \quad \sum_{i}\left(x_{i}-\mu_{X}\right)\left(y_{i}-\mu_{Y}\right) f\left(x_{i}, y_{i}\right)
\end{aligned}
$$

$$
1,1,2,2,3,4,5,5,6,6
$$

$$
\begin{aligned}
& \text { mean }=(1+1+2+2+3+4+5+5+6+6) / 10 \\
& =36 / 12=3.5
\end{aligned}
$$

$$
\mu=\frac{\sum_{i=1}^{N} x_{i}}{N}
$$

$$
\mathrm{f}(1)=2 / 10=.2 \quad .2 * 1+
$$

$$
\mathrm{f}(2)=2 / 10=.2 \quad .2 * 2+
$$

$$
f(3)=1 / 10=.1 \quad .1 * 3+
$$

$$
f(4)=1 / 10=.1 \quad .1 * 4+
$$

$$
\mu=E(X)=\sum_{i} x_{i} f\left(x_{i}\right)
$$

$$
\mathrm{f}(5)=2 / 10=.2 \quad .2 * 5+
$$

$$
f(6)=2 / 10=.2 \quad .2 * 6
$$

\# in R
$\mathrm{x}=\mathrm{c}(1,1,2,2,3,4,5,5,6,6)$ mean(x)
$1,1,2,2,2,3,4,5,5,5,6,6$
mean $=3.5$
$\mathrm{f}(1)=2 / 10=.2 \quad .2 *(1-3.5)^{2}+$
$f(2)=2 / 10=.2 \quad .2 *(2-3.5)^{2}+$
$\mathrm{f}(3)=1 / 10=.1 \quad .1^{*}(3-3.5)^{2}+$
$f(4)=1 / 10=.1$
$.1 *(4-3.5)^{2}+$
$f(5)=2 / 10=.2$
$.2 *(5-3.5)^{2}+$
$\mathrm{f}(6)=2 / 10=.2 \quad .2 *(6-3.5)^{2}$
variance $=3.45$
stdev $=\sqrt{ }$ variance
stdev $=\sqrt{ } 3.45=1.857$

$$
\mu=E(X)=\sum_{i} x_{i} f\left(x_{i}\right)
$$

$$
\operatorname{Var}(X)=E(X-\mu)^{2}
$$

$$
=\sum_{i}\left(x_{i}-\mu\right)^{2} f\left(x_{i}\right)
$$

\# in R
$\mathrm{x}=\mathrm{c}(1,1,2,2,3,4,5,5,6,6)$
$\operatorname{var}(\mathrm{x})$
covariance

$$
\begin{aligned}
& \operatorname{Cov}(X, Y)=E\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right) \\
& \sum_{i}\left(x_{i}-\mu_{X}\right)\left(y_{i}-\mu_{Y}\right) f\left(x_{i}, y_{i}\right)
\end{aligned}
$$

correlation

$$
\begin{aligned}
\operatorname{Cor}(\mathrm{X}, \mathrm{Y}) & =\operatorname{Cov}(\mathrm{X}, \mathrm{Y}) / \sqrt{ }[\operatorname{Var}(\mathrm{X}) * \operatorname{var}(\mathrm{Y})]= \\
& =\operatorname{Cov}(\mathrm{X}, \mathrm{Y}) /[\operatorname{stdev}(\mathrm{X}) * \operatorname{stdev}(\mathrm{Y})]
\end{aligned}
$$

$\operatorname{Cor}(\mathrm{X}, \mathrm{Y})$ is - stand-alone - interpretable

MZ covariance is 291.... uninterpretable MZ correlation is .80 interpretable

To what extent, and how, are individual differences in genetic makeup, and individual differences in environmental factors, related to phenotypic (observed) individual differences ?

To what extent, and how, do
individual differences in genetic makeup, and individual differences in environmental factors, explain phenotypic (observed) variance?

$$
\sigma_{x}^{2}=\frac{\sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}}{N-1} .
$$

$$
\begin{aligned}
\operatorname{Var}(X) & =E(X-\mu)^{2} \\
& =\sum_{i}\left(x_{i}-\mu\right)^{2} f\left(x_{i}\right)
\end{aligned}
$$

terminology

- QTL Quantative trait locus: a sequence of DNA base pairs (may be a SNP: single base pair).
- Locus: the site of the specific QTL on a chromosome (22 pairs + XY). Humans are dipoid (22 pairs autosomal chromosomes + sex chromosomes XY or XX).
- Allele: an alternative form of a gene at a locus
- Genotype: the combination of alleles at a particular locus
- Phenotype: an observed characteristic, which displays individual differences (in part due to genetic differences)

chromosome 9
location $9 q 34.2$
Mendel's law of segregration

Example of a QTL: FNBP1L gene

The FNBP1L gene has been associated with intelligence in two studies:

* "Genome-wide association studies establish that human intelligence is highly heritable and polygenic". 2011, Mol. Psychiatry 16 (10): 9961005.doi:10.1038/mp.2011.85)
* "Childhood intelligence is heritable, highly polygenic and associated with FNBP1L". Mol. Psychiatry 19(2): 2538 . doi:10.1038/mp.2012.184. Authors include Sarah Medland \& Nick Martin.

This gene is on chromosome 1 (1p22,1), and it comprises 106531 bases (106.5 Kb). Within this gene the SNP rs236330 specifically is associated with intelligence.

Population level

1. Allele frequencies (QTL: diallelic autosomal; e.g., SNP rs236330)
\triangleright A single locus, with two alleles

- Biallelic a.k.a. diallelic
- in GWAS: Single nucleotide polymorphism, SNP
\triangleright Alleles \boldsymbol{A} and \boldsymbol{a}
- Frequency of \boldsymbol{A} is p
- Frequency of \boldsymbol{a} is $q=1-p$

frequencies in the population
\triangleright Every individual inherits two alleles
- A genotype is the combination of the two alleles
- e.g. $\boldsymbol{A} \boldsymbol{A}, \boldsymbol{a a}$ (the homozygotes) or $\boldsymbol{A a}$ (the heterozygote)
.genotype frequencies?

Biometrical model for single biallelic QTL

\triangleright Biallelic locus

- Genotypes: AA, Aa, aa
- Genotype frequencies: $p^{2}, 2 p q, q^{2}$

Genotype frequencies (Random mating)

Hardy-Weinberg Equilibrium frequencies

$$
\begin{array}{ll}
P(\boldsymbol{A} \boldsymbol{A})=p^{2} \\
P(\boldsymbol{A} \boldsymbol{a})=2 p q & p^{2}+2 p q+q^{2}=1 \\
P(\boldsymbol{a} \boldsymbol{a})=q^{2} &
\end{array}
$$

Phenotype level: contribution to continuous variation

Biometric Model

take all aa individuals and calculate their mean phenotypic value:
$\mu-a$ (the phenotypic mean conditional on genotype aa)

Biometrical model for single biallelic QTL

1. Contribution of the QTL to the Mean

Genotypes	$\boldsymbol{A} \boldsymbol{A}$	$\boldsymbol{A a}$	$\boldsymbol{a} \boldsymbol{a}$
Effect, x	$\mu+\boldsymbol{a}$	$\mu+d$	$\mu-\boldsymbol{a}$
Frequencies, $f(x)$	p^{2}	$2 p q$	q^{2}

$(\mu+a)\left(p^{2}\right)+(\mu+d)(2 p q)+(\mu-a)\left(q^{2}\right)=$ $\mu+a\left(p^{2}\right)+d(2 p q)-a\left(q^{2}\right)=$

$$
\mu=E(X)=\sum_{i} x_{i} f\left(x_{i}\right)
$$

$\mu+a(p-q)+2 p q d$. (pop pheno mean)
contribution of the QTL to the population phenotypic mean $\mathrm{m}=a(p-q)+2 p q d$

Biometrical model for single biallelic QTL

2. Contribution of the QTL to the Variance (X)

Genotypes	AA	Aa	aa
Effect (x)	$\mu+a$	$\mu+d$	$\mu-\mathrm{a}$
Frequencies, $f(x)$	p^{2}	2pq	q^{2}
$s^{2} Q T L=(a-m)^{2} p^{2}+(d-m)^{2} 2 p q+(-a-m)^{2} q^{2}$			
$m=a(p-q)+$	2pqd) $=$

Biometrical model for single biallelic QTL

$$
\begin{aligned}
s^{2}{ }_{Q T L}= & (a-m)^{2} p^{2}+(d-m)^{2} 2 p q+(-a-m)^{2} q^{2} \\
& =\frac{2 p q[a+(q-p) d]^{2}}{}+\underline{(2 p q d)^{2}} \\
& =s^{2}{ }_{Q T L}(A)+s^{2}{ }_{Q T L}(D)
\end{aligned}
$$

Additive or linear effects give rise to variance component $S^{2} Q T L(A)=2^{*} p q[a+(q-p) d]^{2}$
Dominance or within local allelic interaction effects give rise to variance component $s^{2}{ }_{Q T L}(D)=(2 p q d)^{2}$

Biometrical model for single biallelic QTL

$$
\begin{aligned}
& s_{Q T L}^{2}=(a-m)^{2} p^{2}+(d-m)^{2} 2 p q+(-a-m)^{2} q^{2} \\
&=\frac{2 p q[a+(q-p) d]^{2}}{}+\frac{(2 p q d)^{2}}{} \\
&=s^{2}{ }_{Q T L(A)}+s^{2}{ }_{Q T L}(D)
\end{aligned}
$$

Additive effects: $s^{2}{ }_{Q T L}(A) \quad=2^{*} p q[a]^{2}$
Dominance effects: $s^{2}{ }_{Q T L(D)}=0$

Biometrical model for single biallelic QTL

$$
\begin{aligned}
s_{Q T L}^{2}= & (a-m)^{2} p^{2}+(d-m)^{2} 2 p q+(-a-m)^{2} q^{2} \\
& =\underline{2 p q[a+(q-p) d]^{2}}+\underline{(2 p q d)^{2}} \\
& =s^{2}{ }_{Q T L(A)}+s^{2}{ }_{Q T L}(D)
\end{aligned}
$$

Additive effects: $s^{2}{ }_{Q T L(A)}=2^{*} p q[a+(q-p) d]^{2}$
Dominance effects: $s^{2}{ }_{Q T L(D)}=(2 p q d)^{2}$

Suppose we measure the QTL and the phenotype and regress X on QTL.The scatterplot of the data (aa coded -1 ; Aa coded 0 ; AA coded 1).

we ask:
how much of the phenotypic variance is explained by the predictor (QTL)

In the following slides we look at the regression lines only (not plotting the residuals - just to avoid clutter).

$$
\begin{aligned}
& \stackrel{\sim}{\sim} \\
& \text { Explained variance (blue line): } \\
& s^{2}{ }_{Q T L(A)}=2^{*} p q[a+(q-p) d]^{2} \\
& \text { Not explained } \\
& s^{2}{ }_{Q T L(D)}=(2 p q d)^{2} \\
& a a \\
& \text { AA } \\
& \text { Aa }
\end{aligned}
$$

explained by additive model 1

explained by additive model 0.823

explained by additive model 0.949

explained by additive model 0.676

$s^{2}{ }_{Q T L(A)}$ always greater than zero
$s^{2}{ }_{Q T L}(D)$ can be zero (additive model $d=0$)

Biometrical model for single biallelic QTL

3. Contribution of the QTL to the $\operatorname{Cov}(X, Y)$

$\operatorname{Cov}(X, Y)=\sum\left(x_{i}-\mu_{X}\right)\left(y_{i}-\mu_{Y}\right) f\left(x_{i}, y_{i}\right)$			
	$\boldsymbol{A A}(\mathrm{a}-\mathrm{m})$	Aa (d-m)	ab (-a-m)
$\boldsymbol{A A}(\mathrm{a}-\mathrm{m})$	$(a-m)^{2}$	(a-m) (d-m)	(a-m) (-a-m)
$\boldsymbol{A a}$ ($\mathrm{d}_{\text {- }} \mathrm{m}$)	$(a-m)(d-m)$	$(d-m)^{2}$	$(d-m)(-a-m)$
aa (-a-m)	(a-m)(-a-m)	(d-m) (-a-m)	$(-a-m)^{2}$

$m=a(p-q)+2 p q d$
What about the $\mathrm{f}\left(\mathrm{xi}, \mathrm{y}_{\mathrm{i}}\right)$?

Biometrical model for single biallelic QTL

3A. Contribution of the QTL to the $\operatorname{Cov}(X, Y)-M Z$ twins

$$
\operatorname{Cov}(X, Y)=\sum_{i}\left(x_{i}-\mu_{X}\right)\left(y_{i}-\mu_{Y}\right) f\left(x_{i}, y_{i}\right)
$$

$$
\boldsymbol{A} \boldsymbol{A}(a-m) \quad \boldsymbol{A} \boldsymbol{a}(d-m) \quad \boldsymbol{a} \boldsymbol{a}(-a-m)
$$

$\boldsymbol{A A}(\mathrm{a}-\mathrm{m})$	$p^{2}(a-m)^{2}$	0 (a-m) (d-m)	0 (a-m) (-a-m)
Aa (d-m)	0 ($a-m$) (d-m)	2pq $(d-m)^{2}$	0 (d-m) (-a-m)
$\boldsymbol{a a}$ (-a-m)	0 (a-m) (-a-m)	0 (d-m) (-a-m)	$q^{2}(-a-m)^{2}$

$\operatorname{Covar}\left(X_{i}, X_{j}\right)=(a-m)^{2} p^{2}+(d-m)^{2} 2 p q+(-a-m)^{2} q^{2}$

$$
=2 p q[a+(q-p) d]^{2}+(2 p q d)^{2}=s^{2} Q T L(A)+s^{2} Q T L(D)
$$

Biometrical model for single biallelic QTL

3B. Contribution of the QTL to the $\operatorname{Cov}(X, Y)$ - Parent-Offspring

$$
\operatorname{Cov}(X, Y)=\sum_{i}\left(x_{i}-\mu_{X}\right)\left(y_{i}-\mu_{Y}\right) f\left(x_{i}, y_{i}\right)
$$

	$\boldsymbol{A} \boldsymbol{A}(a-m)$	$\boldsymbol{A} \boldsymbol{a}(d-m)$	$\boldsymbol{a} \boldsymbol{a}(-a-m)$
$\boldsymbol{A A}(a-m)$	$p^{3}(a-m)^{2}$	$p^{2} \boldsymbol{q}(a-m)(d-m)$	$0(a-m)(a-m)$
$\boldsymbol{A} \boldsymbol{a}(d-m)$	$p^{2} \boldsymbol{q}(a-m)(d-m)$	$p \boldsymbol{q}(d-m)^{2}$	$p q^{2}(d-m)(-a-m)$
$\boldsymbol{a} \boldsymbol{a}(-a-m)$	$0(a-m)(a-m)$	$p q^{2}(d-m)(-a-m)$	$q^{3}\left((a-m)^{2}\right.$

given an $A A$ parent, an $A A$ offspring can come from either $A A \mathrm{x}$ $A A$ or $A A \times A a$ parental mating types

$$
\begin{array}{ll}
A A \times A A & \text { will occur } p^{2} \times p^{2}=p^{4} \\
& \text { and have } A A \text { offspring } \operatorname{Prob}(\mathrm{AA})=1 \\
A A \times A a & \text { will occur } p^{2} \times 2 p q=2 p^{3} q \\
& \text { and have } A A \text { offspring } \operatorname{Prob}(\mathrm{AA})=0.5 \\
& \text { and have } A a \text { offspring } \operatorname{Prob}(\mathrm{Aa})=0.5
\end{array}
$$

Therefore, $\mathrm{P}(A A$ parent $\& A A$ offspring $) \quad=p^{4}+.5 * 2 * p^{3} q$

$$
\begin{aligned}
& =p^{3}(p+q) \\
& =p^{3}
\end{aligned}
$$

So can be complicated, but can also be simple

Parent

why zero probability?

Biometrical model for single biallelic QTL

3B. Contribution of the QTL to the $\operatorname{Cov}(X, Y)$ - Parent-Offspring

	$\boldsymbol{A} \boldsymbol{A}(a-m)$	$\boldsymbol{A} \boldsymbol{a}(d-m)$	$\boldsymbol{a} \boldsymbol{a}(-a-m)$
$\boldsymbol{A} \boldsymbol{A}(a-m)$	$p^{3}(a-m)^{2}$	$p^{2} \boldsymbol{q}(a-m)(d-m)$	$0(a-m)(-a-m)$
$\boldsymbol{A} \boldsymbol{a}(d-m)$	$p^{2} \boldsymbol{q}(a-m)(d-m)$	$p \boldsymbol{q}(d-m)^{2}$	$p q^{2}(d-m)(-a-m)$
$\boldsymbol{a} \boldsymbol{a}(-a-m)$	$\boldsymbol{0}(a-m)(a-m)$	$p q^{2}(d-m)((a-m)$	$q^{3}(-a-m)^{2}$

$\operatorname{Cov}\left(X_{i}, X_{j}\right) \quad=(a-m)^{2} p^{3}+\ldots+(-a-m)^{2} q^{3}$

$$
=p q[a+(q-p) d]^{2} \quad=1 / 2 S^{2} Q T L(A)
$$

Biometrical model for single biallelic QTL

3C. Contribution of the QTL to the $\operatorname{Cov}(X, Y)$ - Unrelated individuals

	p^{2}	$2 p \boldsymbol{q}$	\boldsymbol{q}^{2}
	$\boldsymbol{A} \boldsymbol{A}(a-m)$	$\boldsymbol{A} \boldsymbol{a}(d-m)$	$\boldsymbol{a a}(-a-m)$
$p^{2} \boldsymbol{A} \boldsymbol{A}(a-m)$	$p^{4}(a-m)^{2}$	$2 p^{3} \boldsymbol{q}(a-m)(d-m)$	$p^{2} \boldsymbol{q}^{2}(a-m)((a-m)$
$2 p \boldsymbol{A} \boldsymbol{A}(d-m)$	$2 p^{3} \boldsymbol{q}(a-m)(d-m)$	$4 \boldsymbol{p}^{2} \boldsymbol{q}^{2}(d-m)^{2}$	$2 p \boldsymbol{q}^{3}(d-m)((a-m)$
$q^{2} \boldsymbol{a} \boldsymbol{a}(-a-m)$	$p^{2} \boldsymbol{q}^{2}(a-m)((a-m)$	$2 p q^{3}(d-m)(-a-m)$	$q^{4}(-a-m)^{2}$

$\operatorname{Cov}\left(X_{i}, X_{j}\right)$

$$
\begin{aligned}
& =(a-m)^{2} p^{4}+\ldots+(-a-m)^{2} q^{4} \\
& =0
\end{aligned}
$$

Follow same method for full sibs and DZ twins
Derive genotype frequences

s1	s2	eff	eff		frequency $(p(A)=p, p(a)=1-p)$
AA	AA	a	a	r1	$\mathrm{p}^{* *} 4+\mathrm{p}^{* *} 3 * \mathrm{q}+\mathrm{p}^{* *} 2^{*} \mathrm{q}^{* *} 2 / 4$
aa	aa	-a	-a	r2	$\mathrm{p}^{* *} 2 * \mathrm{q}^{* *} 2 / 4+\mathrm{p}^{*} \mathrm{q}^{* *} 3+\mathrm{q}^{* *} 4$
Aa	Aa	d	d	r3	$\mathrm{p} * * 3 * \mathrm{q}+3 * \mathrm{p} * * 2 * \mathrm{q} * * 2+\mathrm{p}$ * ${ }^{* *} 3$
AA	Aa	a	d	r4	$\mathrm{p}^{* *} 3 * \mathrm{q}+\mathrm{p}^{* *} 2 * \mathrm{q}^{* *} 2 / 2$
Aa	AA	d	a	r4	$\mathrm{p}^{* *} 3 * \mathrm{q}+\mathrm{p}^{* *} 2 * \mathrm{q}^{* *} 2 / 2$
Aa	aa	d	-a	r5	$\mathrm{p}^{* *} 2 * \mathrm{q}^{* *} 2 / 2+\mathrm{p}^{*} \mathrm{q}^{* *} 3$
aa	Aa	-a	d	r5	$\mathrm{p}^{* *} 2 * \mathrm{q}^{* *} 2 / 2+\mathrm{p}^{*} \mathrm{q}^{* *} 3$
AA	aa	a	-a	r6	p**2*q**2/4
aa	AA	-a	a	r6	p**2*q**2/4

Biometrical model for single biallelic QTL

3B. Contribution of the QTL to the $\operatorname{Cov}(X, Y)-D Z$ twins

	$\boldsymbol{A A}(a-m)$	$\boldsymbol{A} \boldsymbol{a}(d-m)$	$\boldsymbol{a} \boldsymbol{a}(-a-m)$
$\boldsymbol{A A}(a-m)$	$r \mathbf{1}(\mathrm{a}-m)^{2}$	$r 4(a-m)(d-m)$	$r \boldsymbol{6}(a-m)(-a-m)$
$\boldsymbol{A} \boldsymbol{a}(d-m)$	$r 4(a-m)(d-m)$	$r 2(d-m)^{2}$	$r 5(d-m)(-a-m)$
aa $(-a-m)$	$r \boldsymbol{6}(a-m)(-a-m)$	$r 5(d-m)(-a-m)$	$r 3(-a-m)^{2}$

$\operatorname{Cov}\left(X_{i}, X_{j}\right) \quad=(a-m)^{2} r 1+\ldots+(-a-m)^{2} r 3$
$=1 / 22 p q[a+(q-p) d]^{2}+1 / 4(2 p q d)^{2}=1 / 2 S^{2}{ }_{Q T L(A)}+1_{4} S^{2}{ }_{Q T L(D)}$

John Cleese ... A famous British person

Random segregation and identity-by-descent (IBD) in sibpairs

IDENTITY BY DESCENT (IBD) MZs

Sib 1

\square 100% MZ sibs share BOTH parental alleles IBD $=2$
\square 0 sibs share ONE parental allele IBD $=1$
\square 0 sibs share NO parental alleles IBD $=0$

IDENTITY BY DESCENT (IBD) DZs

Sib 1

$4 / 16=1 / 4$ sibs share BOTH parental alleles IBD $=2$

$8 / 16=1 / 2$ sibs share ONE parental allele IBD $=1$
$4 / 16=1 / 4$ sibs share NO parental alleles IBD $=0$

Random segregation and identity-by-descent (IBD) in sibpairs

> What about parent offsping? many alleles do they share IBD?

Biometrical model for single biallelic QTL

3D. Contribution of the QTL to the $\operatorname{Cov}(X, Y)-\mathrm{DZ}$ twins and full sibs
\# identical alleles inherited from parents

2

1	1
(father)	(mother)

$\underbrace{1 / 4(2 \text { alleles })}+\underbrace{1 / 2(1 \text { allele })}+\underbrace{1 / 4(0 \text { alleles })}$
MZ twins

$$
D Z
$$

$$
\operatorname{Cov}\left(X_{i j} X_{j}\right)
$$

$$
\begin{aligned}
& =1 / 4 \operatorname{Cov}(M Z) \quad+1 / 2 \operatorname{Cov}(P-O)+1 / 4 \operatorname{Cov}(\text { Unrel) } \\
& =1 / 4\left(s^{2}{ }_{Q T L(A)}+s^{2}{ }_{Q T L(D)}\right)+1 / 2\left(1 / 2 S^{2}{ }_{Q T L(A)}\right)+1 / 4(0) \\
& =1 / 2 S^{2}{ }_{Q T L(A)}+1 / 4 S_{Q T L(D)}^{2}
\end{aligned}
$$

Biometrical model predicts contribution of a QTL to the mean, variance and covariances of a trait (discarding environmental effects)

1 QTL $\quad \operatorname{Var}(X)=s^{2}{ }_{Q T L(A)}+s^{2}{ }_{Q T L(D)}$

$$
\begin{aligned}
& \operatorname{Cov}(M Z)=s^{2}{ }_{Q T L(A)}+s^{2}{ }_{Q T L(D)} \\
& \operatorname{Cov}(D Z)=1 / 2 s^{2}{ }_{Q T L(A)}+1 / 4 s^{2}{ }_{Q T L(D)} \\
& \operatorname{Cov}(P-O)=1 / 2 s^{2}{ }_{Q T L(A)}
\end{aligned}
$$

Multiple QTL $\operatorname{Var}(X)=\Sigma\left(s^{2}{ }_{Q T L(A)}\right)+\Sigma\left(s^{2}{ }_{Q T L}(D)\right)=V_{A}+V_{D}$

$$
\begin{aligned}
& \operatorname{Cov}(M Z)=\Sigma\left(s^{2}{ }_{Q T L(A)}\right)+\sum\left(s^{2}{ }_{Q T L(D)}\right)=V_{A}+V_{D} \\
& \operatorname{Cov}(D Z)=\Sigma\left(1 / 2 s^{2}{ }_{Q T L(A)}\right)+\sum\left(1 / 4 s^{2}{ }_{Q T L(D)}\right)=1 / 2 V_{A}+1 / 4 V_{D} \\
& \operatorname{Cov}(P-O)=\Sigma\left(1 / 2 s^{2}{ }_{Q T L(A)}\right)=1 / 2 V_{A}
\end{aligned}
$$

Contributions of V_{A} and V_{D} to covariances between relatives
average proportion of alleles shared identically by descent

These proportions tell use how much of $V_{A} \& V_{D}$ contribute to the phenotypic covariance among family members (useful info in extended twin design / extended pedigrees

Slide acknowledgement: Manuel Ferreira, Pak Sham, Shaun Purcell, Sarah Medland, and Sophie van der Sluis

see also Manuel AR Ferreira's http://slidegur.com/doc/4322268/biometrical-genetics

sgene.exe

Single Gene Model	
QTL parameters	Allele frequencies
Gere A	$\bigcirc \bigcirc$
Gere B	$\sqrt { 0 . 5 0 0 } \longdiv { 0 . 5 0 0 }$
a.] 1.	Genetic
d區 $=$	values
Par $]$ -	$\longdiv { 1 . 0 0 } \longdiv { 0 . 0 2 }$

Genotypic	8	88	¢	Total
Frequencies	0.	0.0	0	1.000
Valuet =	-1.000	0.020	1.000	0
Meancertredu	$\sqrt{-1.010}$	0	0	$\longdiv { 0 . 0 1 0 }$
Mean-centred values times genolype frequa	$\longdiv { 0 . 0 5 2 }$	0.005	0.248	0

Vaniance Components	
A	B
add. 0.50	000
dom 000	$\longdiv { 0 . 0 0 }$
Retidual	iance

