Heterogeneity: Sex-limitation Models

Eveline de Zeeuw

(Meike, Brad, Sarah, Hermine, Ben, Elizabeth, and most of the rest of the faculty that has contributed bits and pieces to various versions of this talk)

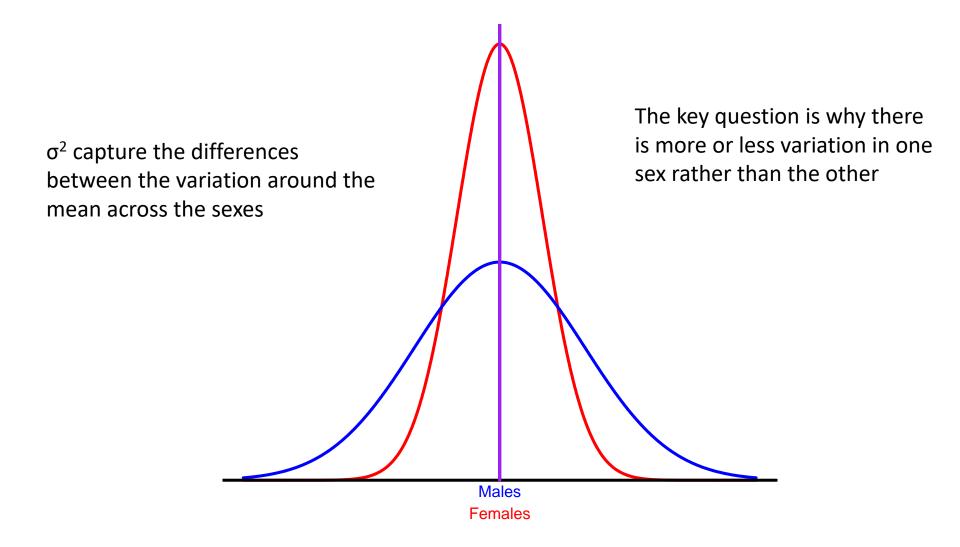
COPY FILES FROM:

Faculty/eveline/2018/sexLim

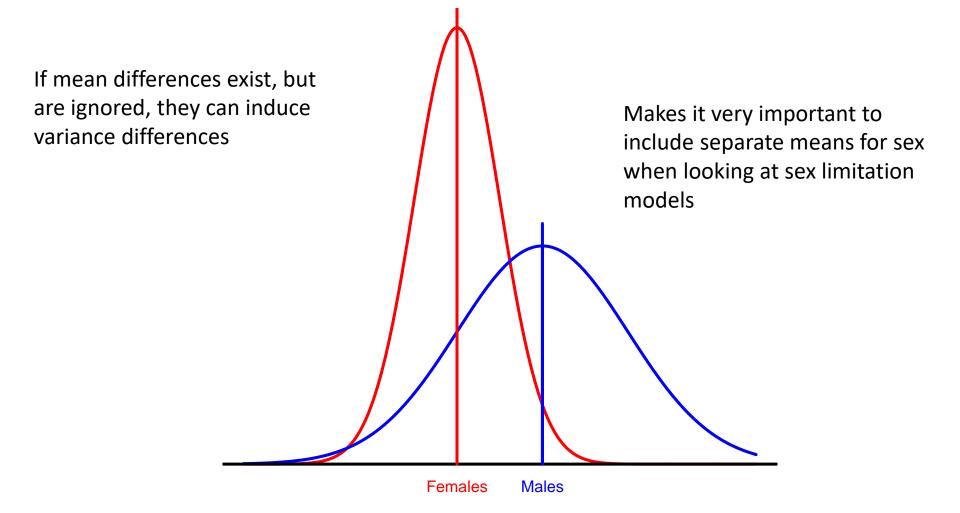
Heterogeneity

- Univariate Analysis:
 - What are the contributions of additive genetic, dominance/shared environmental and unique environmental factors to the variance?
- Heterogeneity:
 - Are the contributions of genetic and environmental factors equal for different groups, sex, cohort, SES, age, environmental exposure, etc.?

Sex Limitation = Sex Differences



Mean Differences

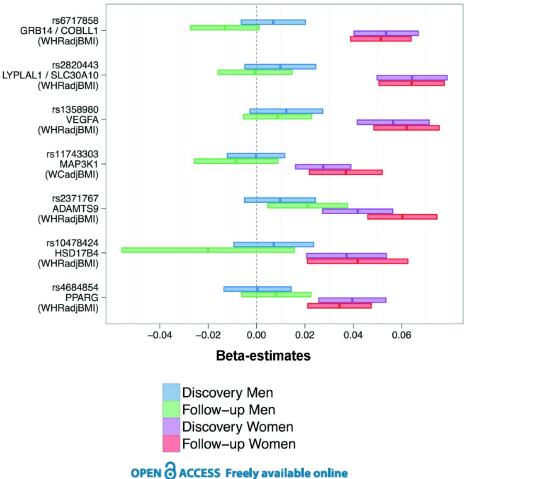

Regression coefficients (β) capture the differences between the mean levels of the trait between sexes

Not generally what we are talking about when discussion of sex limitation, but very important nonetheless.

Variance Differences

Both Mean and Variance Differences

Causes of Variance Differences


 Independent variables (millions of them) can influence the trait to different extents in different groups

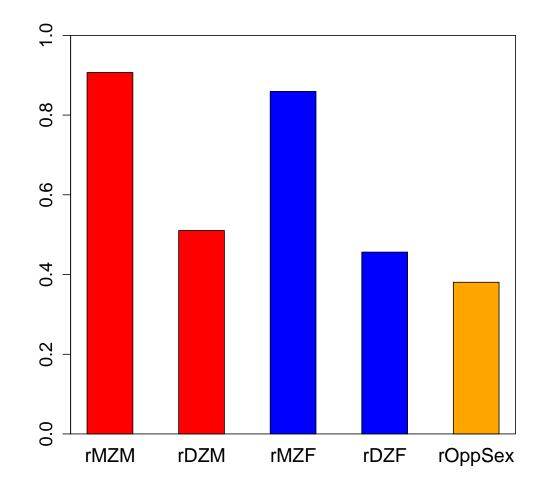
or

• Different independent variables can influence the trait in the different groups.

The Language of Heterogeneity

- Are the differences due to differences in the magnitude of the effects (quantitative differences)?
 - Is the contribution of genetic/environmental factors greater/smaller in males than in females?
- Are the differences due to differences in the nature of the effects (qualitative differences)?
 - Are there different genetic/environmental factors influencing the trait in males and females?

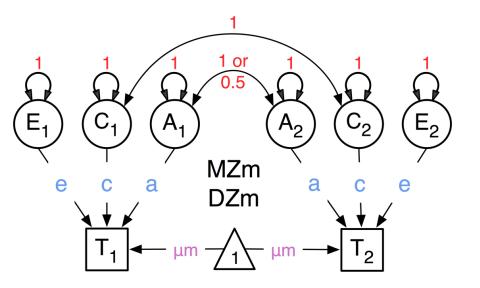
On all of the SNPs presented, women are affected by the polymorphism, while men are not.

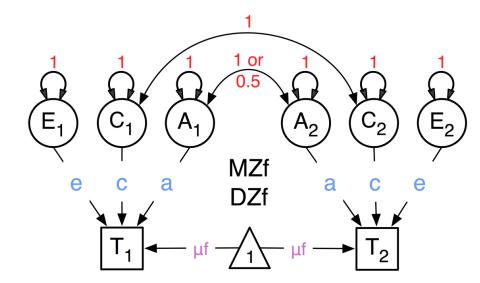

Ergo, different genes "cause" the trait in males and females! Or Molecular evidence of qualitative sex limitation

Sex-stratified Genome-wide Association Studies Including 270,000 Individuals Show Sexual Dimorphism in Genetic Loci for Anthropometric Traits

Joshua C. Randall^{1,2®}, Thomas W. Winkler^{3®}, Zoltán Kutalik^{4,5®}, Sonja I. Berndt^{6®}, Anne U. Jackson⁷, Keri L. Monda⁸, Tuomas O. Kilpeläinen⁹, Tõnu Esko^{10,11}, Reedik Mägi^{2,10}, Shengxu Li^{9,12}, Tsegaselassie Workalemahu¹³, Mary F. Feitosa¹⁴, Damien C. Croteau-Chonka¹⁵, Felix R. Day⁹,

Look at the Correlations!




Non Sex-Limitation Model

- No heterogeneity
- The same proportion (%) of variance due to A, C, E equal between groups
- Total variance equal between groups
 V_m = V_f
- Variance Components are equal between groups

$$- A_m = A_f$$
$$- C_m = C_f$$
$$- E_m = E_f$$

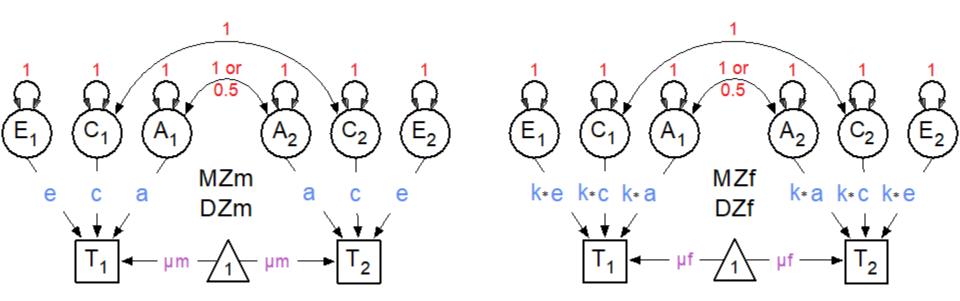
Non Sex-Limitation Model

	Male	Male
Male	$a^2 + c^2 + e^2$	(½)a ² + c ²
Male	(½)a ² + c ²	$a^2 + c^2 + e^2$

	Female	Female
Female	$a^2 + c^2 + e^2$	(½)a ² + c ²
Female	(½)a ² + c ²	$a^2 + c^2 + e^2$

Multiple Non Sex-Limitation Models

- It does not test whether the heterogeneity is significant
- It does not attempt to explain the sex differences
- It does not include useful information from dizygotic opposite-sex twins

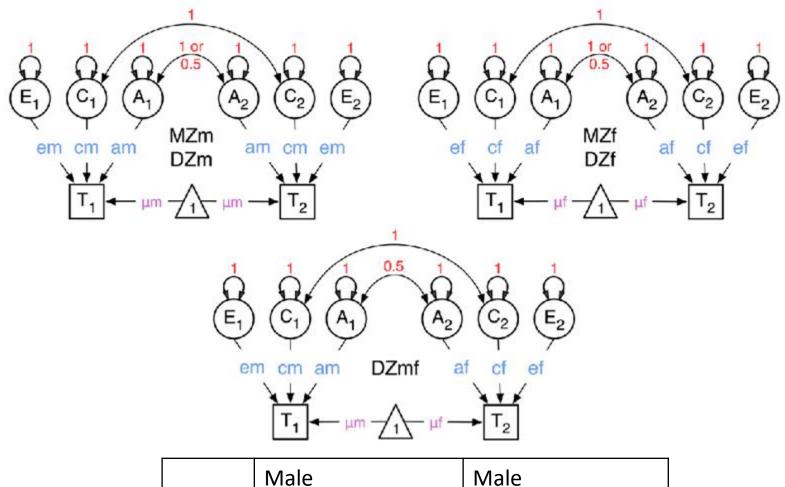

Scalar Sex-limitation Model

- Scalar sex-limitation (a quantitative model)
- The proportion (%) of variance due to A, C, E alters by a scalar (single value)
- Total variance not equal between groups
 - $-Vm = k^* Vf$
 - $-Am = k^* Af$
 - $-Cm = k^*Cf$

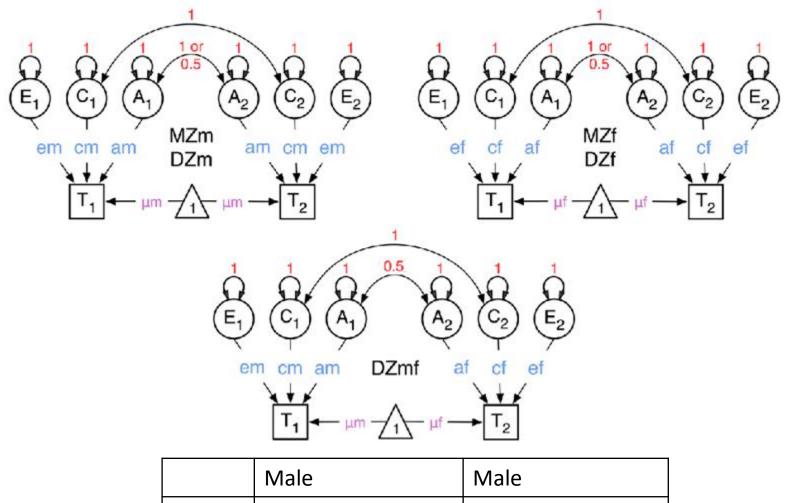
k is scalar

 $-Em = k^*Ef$

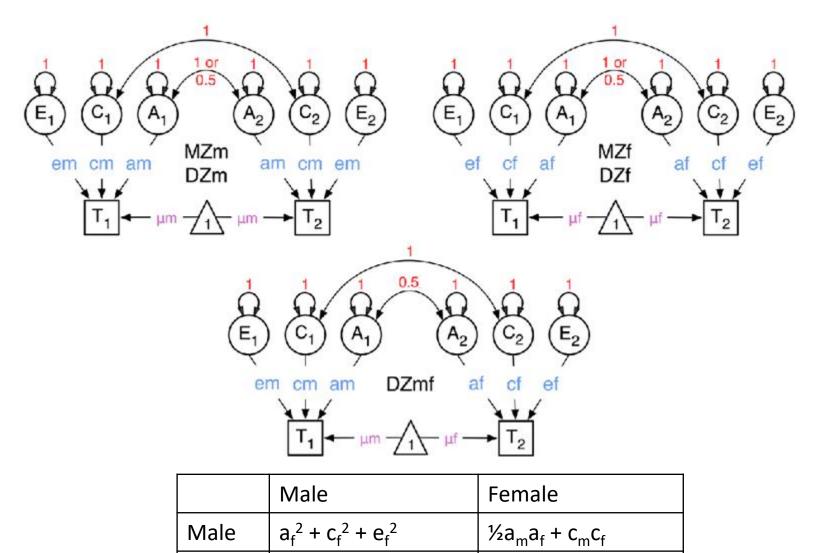
Scalar Sex-limitation Model



	Male	Male
Male	$a^2 + c^2 + e^2$	(½)a ² + c ²
Male	(½)a ² + c ²	$a^2 + c^2 + e^2$

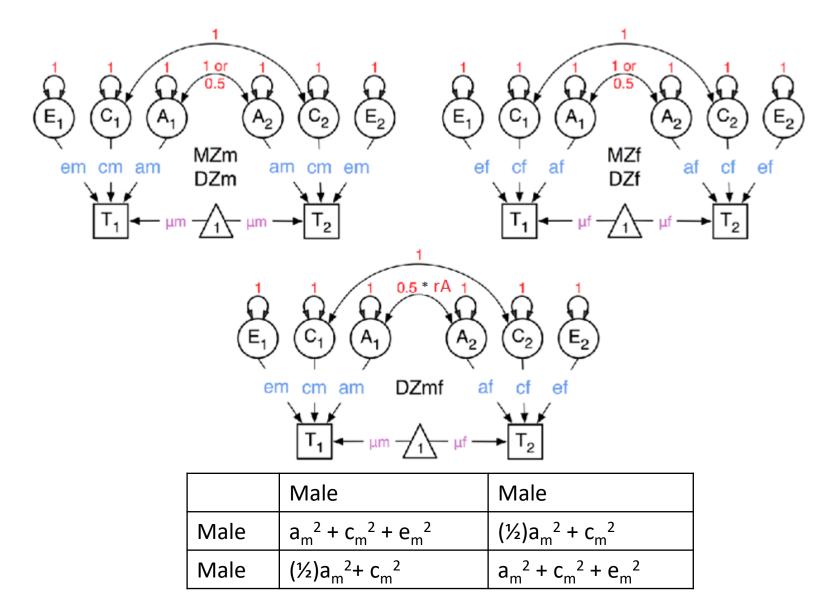

	Female	Female
Female	$k(a^2 + c^2 + e^2)$	k((½)a ² + c ²)
Female	k((½)a ² + c ²)	$k(a^2 + c^2 + e^2)$

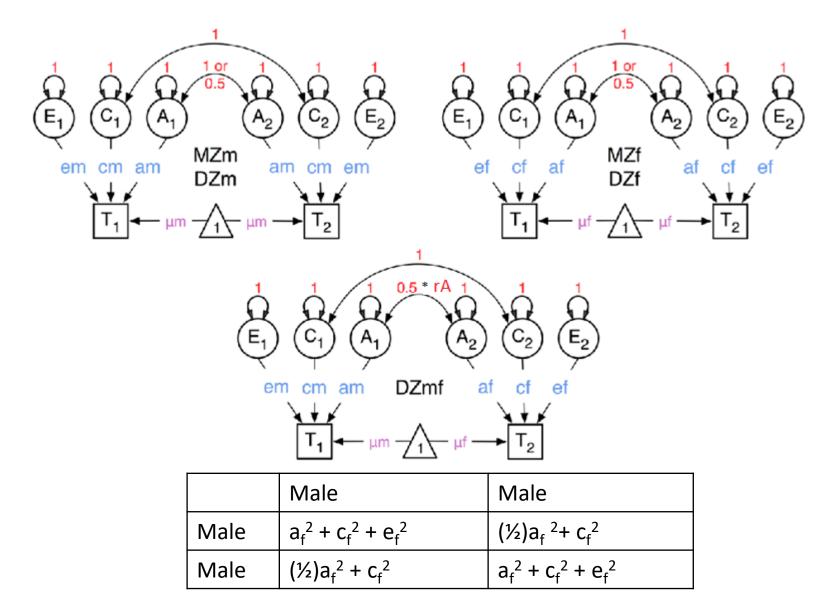
- Non-scalar sex-limitation with opposite sex pairs (a quantitative model)
- The total variance and proportion (%) of variance due to A, C, E are estimated separately for each group

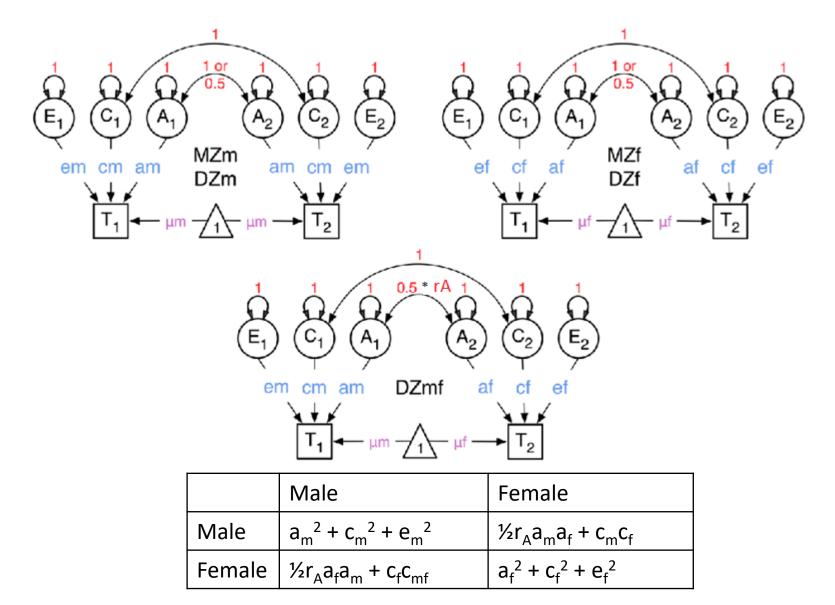

- Am ≠ Af
- Cm ≠ Cf
- Em ≠ Ef

	Male	Male
Male	$a_{m}^{2} + c_{m}^{2} + e_{m}^{2}$	$(\frac{1}{2})a_{m}^{2} + c_{m}^{2}$
Male	(½)a _m ² + c _m ²	$a_{m}^{2} + c_{m}^{2} + e_{m}^{2}$

	IVIAIE	IVIAIE
Male	$a_{f}^{2} + c_{f}^{2} + e_{f}^{2}$	$(\frac{1}{2})a_{f}^{2}+c_{f}^{2}$
Male	$(\frac{1}{2})a_{f}^{2} + c_{f}^{2}$	$a_{f}^{2} + c_{f}^{2} + e_{f}^{2}$




Female


 $\frac{1}{2}a_{f}a_{m} + c_{f}c_{m}$

 $a_f^2 + c_f^2 + e_f^2$

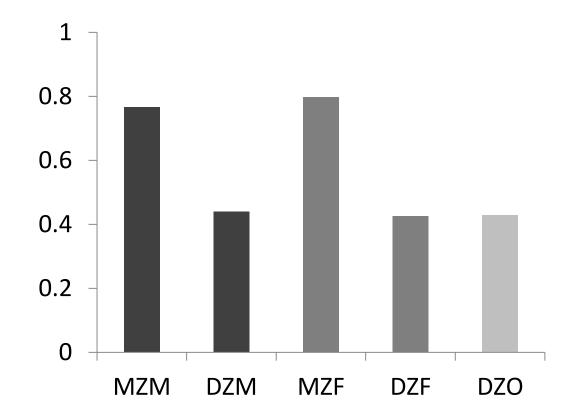
- Non-scalar sex-limitation with opposite sex pairs (a quantitative & qualitative model)
- The total variance and proportion (%) of variance due to A, C, E are estimated separately for each group
 - Vm ≠ Vf
 - Am ≠ Af
 - Cm ≠ Cf
 - Em ≠ Ef
- Genetic correlation (by means of rA) between DZO twins is estimated freely

Sex Limitation Models

Model Type	Data Requirements
Non Sex-Limitation Model (Classical Twin Model)	MZ & DZ Twins
Scalar Sex-limitation Model	MZm, MZf, DZm & DZf Twins
Non-scalar Sex-Llmitation Model	MZm, MZf, DZm, DZf & DZo Twins
General Non-scalar Sex-limitation Model	MZm, MZf, DZm, DZf & DZo Twins

Example

		family res	nds Twin	Regis	ster	VU	ZOEKE VRIJE UNIVERSITEIT AMSTERDAM	Faculteit der Gedrags- en Bewegings- wetenschappen
	HOME	NEWS	INFORMATION	TWINFO	RESEARCH	PUBLICATIONS	MIJNNTR	CONTAC
						REG	ISTER CHAN	GE OF ADDRES
			u nog niet inge ee te doen aan	schrever ons ond	n bij het NT erzoek	R? klik hier	NTR-deelner kunnen hier hun e-mailac ons door te g	klikken om dres aan
DOUBLE DUTCH	·····				1. 1. 1. 1. 11			
De opening op dinsdi bezichtigen tot en me	The second second second second second	as een groot s	succes! De fototentoonstellin	g in het Hoofdge	bouw van de Vrije Un	iiversiteit is nog vrij te	Questions about here to see our F	
			bij de fototentoonstelling ho		nu al worden besteld,	het wordt dan bezorgd	only)	
or voor u kiaargelegu	om 17 maart op	te naien. Kiik	op de foto voor meer inform	sue,			Nieuwe genen om cholesterolgehalt lichaamslengte k beïnvloeden	te en
	9	*	*				NTR krijgt pracht NWO-groot progr	
	20	â	1035	26	198		NTR-onderzoeker Radio 1 over ond Alzheimer	
							Honderdste twee voor onderzoek n Alzheimer	
							Klik hier om het l 'Tweelingonderze meerlingen verte mens' te lezen	oek - Wat
	1		10 m				Meike Bartels bij van Nederland ov YouTube)	
						(The Guardian: To	n 10 huine in


children's books

Welkom op de website van het Nederlands Tweelingen Register

Measurement Instrument

- Educational achievement test
 - Total score: Ranked from highest (1) to lowest (50) and standardized
 - Subscores: Mathematics, Language, Study Skills, World Studies
- Administered in last grade of primary school (~age 12)
- 1181 MZM, 1185 DZM, 1445 MZF, 1175 DZF and 2396 DZO pairs

Twin Correlations

Practical

- 1. Open oneACEcm (left) or oneACEcf (right)
- 2. Walk through the script
- 3. Run the script
- 4. Report the mean and the estimates for the variance components
- 5. Be sure that you know what you are doing

Results

	Boys	Girls
Mean	02	.11
Α	.69	.72
С	.09	.08
E	.22	.20

Practical

- 1. Open oneACE5c
- 2. Walk through the first part of the script
- 3. Run it
- 4. You run the submodels
 - For each model fill in the question marks
- 5. Be sure that you know what you are doing

Results Model Fitting

Model	EP	-2LL	df	AIC	Δ-2LL	∆df	Ρ
oneACErq5c	9	35764.08	13678	8408.08	-	-	-
oneACEq5c	8	35764.19	13679	8406.19	.11	1	.738
oneACE5c	5	35766.18	13682	8402.18	2.11	4	.716

Model	EP	-2LL	df	AIC	Δ-2LL	∆df	Ρ
oneACE5c	5	35766.18	13682	8402.18	-	-	-
oneAE5c	4	35775.05	13683	8409.05	8.87	1	.003
oneCE5c	4	36462.77	13683	9096.77	696.58	1	<.001
oneE5c	3	38865.18	13684	11497.18	3098.99	2	<.001

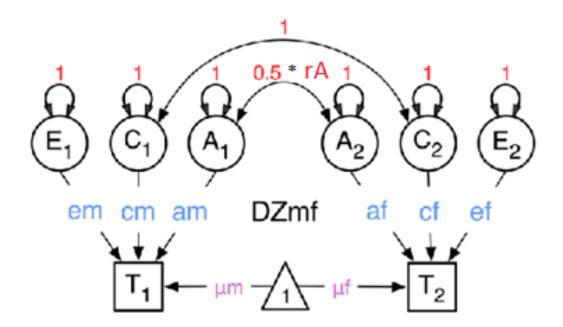
Data

```
# Load Data
Data <- read.table(file = "sexLimACE.dat", header = TRUE, na = "99999", dec = ".")
describe(Data, skew = F)
dim(Data)
head(Data)
# Select Variables for Analysis
vars <- "ea"
                                        # list of variables names
nv <- 1
                                        # number of variables
ntv <- nv*2
                                        # number of total variables
selVars <- paste(vars,c(rep(1,nv),rep(2,nv)),sep="")</pre>
# Select Data for Analysis
mzmData <- subset(Data, zyg==1, selVars)</pre>
dzmData <- subset(Data, zyg==2, selVars)</pre>
mzfData <- subset(Data, zyg==3, selVars)</pre>
dzfData <- subset(Data, zyg==4, selVars)</pre>
dzoData <- subset(Data, zyg==5, selvars) # boy-girl</pre>
# Set Starting Values
svMem <- .05 # start value for means for boys</pre>
svMef <- -.05 # start value for means for girls
svPam <- .8 # start value for a for boys
svPcm <- .2 # start value for c for boys
svPem <- .3 # start value for e for boys</pre>
```

svPaf <- .8 # start value for a for girls

```
svPcf <- .2 # start value for c for girls
svPef <- .3 # start value for e for girls</pre>
```

Means


Create Algebra for expected Mean Matrices

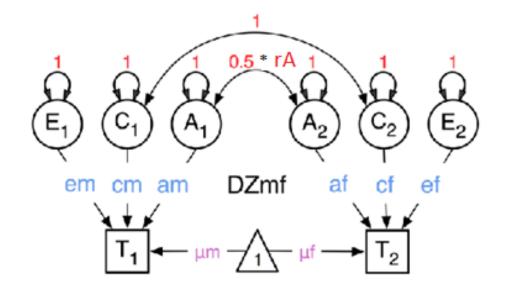
meanGm	<-	<pre>mxMatrix(type="Full", nrow=1, ncol=nv, free=TRUE, values=svMem, labels="meanm", name="meanGm")</pre>
meanGf	<-	<pre>mxMatrix(type="Full", nrow=1, ncol=nv, free=TRUE, values=svMef, labels="meanf", name="meanGf")</pre>
expMeanMZm		<- mxAlgebra(expression= cbind(meanGm, meanGm), name="expMeanMZm")
expMeanDZm		<- mxAlgebra(expression= cbind(meanGm, meanGm), name="expMeanDZm")
expMeanMZf		<- mxAlgebra(expression= cbind(meanGf, meanGf), name="expMeanMZf")
expMeanDZf		<- mxAlgebra(expression= cbind(meanGf, meanGf), name="expMeanDZf")
expMeanDZo		<- mxAlgebra(expression= cbind(meanGm, meanGf), name="expMeanDZo")

Path Coefficients

Create Matrices for Path Coefficients

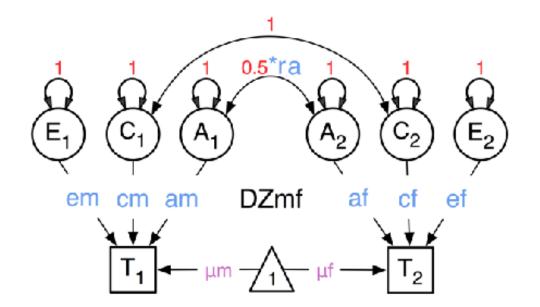
pathAm <	<-	mxMatrix(t	ype="Lower",	nrow=n∨,	ncol=nv,	<pre>free=TRUE,</pre>	values=svPam,	labels="am11",	name="am")	
pathCm <	<-	mxMatrix(t	ype="Lower",	nrow=n∨,	ncol=nv,	free=TRUE,	values=svPcm,	labels="cm11",	name="cm")	
	<-	mxMatrix(ty	<pre>ype="Lower",</pre>	nrow=n∨,	ncol=nv,	free=TRUE,	values=svPem,	labels="em11",	name="em")	
	<-	mxMatrix(t	ype="Lower",	nrow=n∨,	ncol=nv,	free=TRUE,	values=svPaf,	labels="af11",	name="af")	
pathCf <	<-	mxMatrix(t	ype="Lower",	nrow=n∨,	ncol=nv,	free=TRUE,	values=svPcf,	labels="cf11",	name="cf")	
pathEf <	<-	mxMatrix(t	ype="Lower",	nrow=n∨,	ncol=nv,	free=TRUE,	values=svPef,	labels="ef11",	name="ef")	
pathrA <	<-	mxMatrix(t	ype="Full", n	row=1, nc	.ol=1, fre	e=TRUE, va7	<pre>/ues=.5, label=</pre>	="ra11", lbound=	=0, ubound=1, r	name="rA")

Variance Components


Create Algebra for Variance Components

COVAM	<- mxAlgebra(expression=am	%*% t(am),	name="Am")
COVCM	<- mxAlgebra(expression=cm	%*% t(cm),	name="Cm")
COVEM	<- mxAlgebra(expression=em	%*% t(em),	name="Em")
covAf	<- mxAlgebra(expression=af	%*% t(af),	name="Af")
covCf	<- mxAlgebra(expression=cf	%*% t(cf),	name="Cf")
covef	<- mxAlgebra(expression=ef	%*% t(ef),	name="Ef")

Covariances


Create Algebra for expected Variance/Covariance Matrices in MZ & DZ twins

COVPf	<-	mxAlgebra(expression= Af+Cf+Ef, name="Vf")
COVPM	<-	mxAlgebra(expression= Am+Cm+Em, name="Vm")
covMZf	<-	mxAlgebra(expression= Af+Cf, name="cMZf")
covDZf	<-	mxAlgebra(expression= 0.5%x%Af+ Cf, name="cDZf")
COVMZm	<-	mxAlgebra(expression= Am+Cm, name="CMZm")
COVDZm	<-	mxAlgebra(expression= 0.5%x%Am+ Cm, name="cDZm")
covDZfm			expression= 0.5%*%rA%x%(af%*%t(am))+cf%*%t(cm), name="cDZfm")
covDZmf			expression= 0.5%*%rA%x%(am%*%t(af))+cm%*%t(cf), name="cDZmf")
			<pre>expression= rbind(cbind(vf, cMZf), cbind(t(cMZf), vf)), name="expCovMZf")</pre>
			<pre>expression= rbind(cbind(Vf, cDZf), cbind(t(cDZf), Vf)), name="expCovDZf")</pre>
			<pre>expression= rbind(cbind(Vm, cMZm), cbind(t(cMZm), Vm)), name="expCovMZm")</pre>
			<pre>expression= rbind(cbind(Vm, cDZm), cbind(t(cDZm), Vm)), name="expCovDZm")</pre>
expCovDZo	<-	mxAlgebra(expression= rbind(cbind(Vf, cDZmf), cbind(cDZfm, Vm)), name="expCovDZo")

Covariances

Create Algebra for expected Variance/Covariance Matrices in MZ & DZ twins
covPf <- mxAlgebra(expression= Af+Cf+Ef, name="Vf")
<pre>covPm <- mxAlgebra(expression= Am+Cm+Em, name="Vm")</pre>
covMZf <- mxAlgebra(expression= Af+Cf, name="cMZf")
covDZf <- mxAlgebra(expression= 0.5%x%Af+ Cf, name="cDZf")
covMZm <- mxAlgebra(expression= Am+Cm, name="cMZm")
<u>covDZm <- mxAlgebra(expression= 0.5%x%Am+ Cm, name="cDZm")</u>
<pre>covDZfm <- mxAlgebra(expression= 0.5%*%rA%x%(af%*%t(am))+cf%*%t(cm), name="cDZfm")</pre>
<pre>covDZmf <- mxAlgebra(expression= 0.5%*%rA%x%(am%*%t(af))+cm%*%t(cf), name="cDZmf")</pre>
<pre>expCovMZf <- mxAlgebra(expression= rbind(cbind(vf, cMZf), cbind(t(cMZf), vf)), name="expCovMZf")</pre>
expCovDZf <- mxAlgebra(expression= rbind(cbind(Vf, cDZf), cbind(t(cDZf), Vf)), name="expCovDZf")
expCovMZm <- mxAlgebra(expression= rbind(cbind(Vm, cMZm), cbind(t(cMZm), Vm)), name="expCovMZm")
<pre>expCovDZm <- mxAlgebra(expression= rbind(cbind(Vm, cDZm), cbind(t(cDZm), Vm)), name="expCovDZm")</pre>
<pre>expCovDZo <- mxAlgebra(expression= rbind(cbind(Vf, cDZmf), cbind(cDZfm, Vm)), name="expCovDZo")</pre>

Create Data Objects for Multiple Groups

dataMZm	<- mxData(observed=mzm[
dataDZm	<- mxData(observed=dzm[Data, type="raw")
dataMZf	<- mxData(observed=mzf	Data, type="raw")
dataDZf	<- mxData(observed=dzf	Data, type="raw")
dataDZo	<- mxData(observed=dzo	Data, type="raw")

Create Expectation Objects for Multiple Groups

expMZm	<- mxExpectationNormal(covariance="expCovMZm", means="expMeanMZm", dimnames=selVars)
expDZm	<- mxExpectationNormal(covariance="expCovDZm", means="expMeanDZm", dimnames=selVars)
expMZf	<- mxExpectationNormal(covariance="expCovMZf", means="expMeanMZf", dimnames=selVars)
expDZf	<- mxExpectationNormal(covariance="expCovDZf", means="expMeanDZf", dimnames=selVars)
expDZo	<- mxExpectationNormal(covariance="expCovDZo", means="expMeanDZo", dimnames=selVars)
funML	<- mxFitFunctionML()

	houer objecto for harcipic di oupo
parsm	<- list(meanGm, pathAm, pathCm, pathEm, covAm, covCm, covEm, covPm, pathrA)
parsf	<- list(meanGf, pathAf, pathCf, pathEf, covAf, covCf, covEf, covPf, pathrA)
mode1MZm	<- mxModel(parsm, covMZm, expCovMZm, expMeanMZm, dataMZm, expMZm, funML, name="MZm")
modelDZm	<- mxModel(parsm, covDZm, expCovDZm, expMeanDZm, dataDZm, expDZm, funML, name="DZm")
modelMzf	<- mxModel(parsf, covMZf, expCovMZf, expMeanMZf, dataMZf, expMZf, funML, name="MZf")
modelDZf	<- mxModel(parsf, covDZf, expCovDZf, expMeanDZf, dataDZf, expDZf, funML, name="DZf")
modelDZo	<pre><- mxModel(parsm, parsf, covDZmf, covDZfm, expCovDZo, expMeanDZo, dataDZo, expDZo, funML, name="DZO")</pre>
multi	<- mxFitFunctionMultigroup(c("MZm","DZm","MZf","DZf","DZo"))

```
# Create Algebra for Variance Components
         <- rep('vc',nv)
rowvc
         <- rep(c('Am','Cm','Em','SAm','SCm','SEm'),each=nv)
colvcm
         <- rep(c('Af','Cf','Ef','SAf','SCf','SEf'),each=nv)
colvcf
         <- mxAlgebra( expression=cbind(Am,Cm,Em,Am/Vm,Cm/Vm,Em/Vm), name="VCm", dimnames=list(rowVC,colVCm))
estVCm
         <- mxAlgebra( expression=cbind(Af,Cf,Ef,Af/Vf,Cf/Vf,Ef/Vf), name="VCf", dimnames=list(rowVC,colVCf))
estVCf
# Create Confidence Interval Objects
         <- mxCI( c("VCf[1,1:3]","VCm[1,1:3]") )
CIACE
# Build Model with Confidence Intervals
modelACErg <- mxModel( "oneACErq5c", parsm, parsf, modelMZm, modelDZm, modelMZf, modelDZf, modelDZo, multi, estVCm, estVCf, ciACE )</pre>
# -----
# RUN MODEL
# Run General Sex Limitation ACE Model
fitACErq <- mxRun( modelACErq, intervals=T )</pre>
sumACErg <- summary( fitACErg )</pre>
# Print Goodness-of-fit Statistics & Parameter Estimates
fitGofs(fitACErq)
fitEstVCfm(fitACErq)
```