Correction for Ascertainment

Michael C. Neale

International Workshop on Methodology for Genetic Studies of Twins and Families Boulder CO 2004

Virginia Institute for Psychiatric and Behavioral Genetics
Virginia Commonwealth University
Vrije Universiteit Amsterdam

Ascertainment Examples

- Studies of patients and controls
- Patients and relatives
 - Twin pairs with at least one affected
 - Single ascertainment pi → 0
 - Complete ascertainment pi = 1
 - Incomplete 0 < pi <1
- Linkage studies
 - Affected sib pairs, DSP etc
 - Multiple affected families

Likelihood approach

Advantages & Disadvantages

- Usual nice properties of ML remain
- Flexible
- Simple principle
 - Consideration of possible outcomes
 - Re-normalization
- May be difficult to compute

Maximum Likelihood Estimates

Have nice properties

- Asymptotically unbiased
- Minimum variance of all asymptotically unbiased estimators
- Invariant to transformations

Example: Two Coin Toss

3 outcomes

Example: Two Coin Toss

3 outcomes

Non-random ascertainment

Example

- Probability of observing TT globally
 - $\overline{-1}$ outcome from 4 = 1/4
- Probability of observing TT if HH is not ascertained
 - -1 outcome from 3 = 1/3
 - or 1/4 divided by 'ascertainment correction' of 3/4 = 1/3

Correcting for ascertainment

Univariate continuous case; only subjects > t ascertained

Correcting for ascertainment

Dividing by the realm of possibilities

• Without ascertainment, we compute pdf, $\phi(\mu_{ij}, \Sigma_{ij})$, at observed value X_i divided by:

$$\int_{-\infty}^{\infty} \varphi(\mu_{ij}, \Sigma_{ij}) dx = 1$$

With ascertainment, the correction is

$$\int_{t}^{\infty} \varphi(\mu_{ij}, \Sigma_{ij}) dx = 1 - \int_{-\infty}^{t} \varphi(\mu_{ij}, \Sigma_{ij}) dx$$

Correction depends on model

- 1 Correction independent of model parameters: "sample weights"
- 2 Correction depends on model parameters: weights vary during optimization
- In twin data almost always case 2
 - continuous data
 - binary/ordinal data

High correlation

Medium correlation

Low correlation

Two approaches for twin data

- Contingency table approach
 - Automatic
 - Limited to two variable case
- Raw data approach
 - Manual
 - Multivariate
 - Moderator / Covariates

Contingency Table Case

Binary data

- Feed program contingency table as usual
- Use -1 for frequency for non-ascertained cells
- Correction for ascertainment handled automatically

At least one twin affected

Ascertainment Correction

 $1-\int_{-\infty}^{tx} \int_{-\infty}^{ty} \varphi(x,y) \, dy \, dx$

Ascertain iff twin 1 > t

$$\int_{ty}^{\infty} \varphi(y) dy = \int_{ty}^{\infty} \int_{-\infty}^{\infty} \varphi(x,y) dx dy$$

Contingency Tables

- Use -1 for cells not ascertained
- Can be used for ordinal case
- Need to start thinking about thresholds
 - Supply estimated population values
 - Estimate them jointly with model

Classical Twin Study: Contingency Table ftp://views.vcu.edu/pub/mx/examples/ncbook2/categor.mx

```
G1: Model parameters
Data Calc NGroups=4
Begin Matrices;
X Lower 1 1 Free
Y Lower 1 1 Free
Z Lower 1 1 Free
W Lower 1 1
End Matrices;
! parameters are fixed by default, unless declared free
Begin Algebra;
A = X^*X';
C = Y^*Y';
 E = Z^*Z';
D= W*W';
End Algebra:
End
```

Group 2

Group 3

```
G3: young female DZ twin pairs
Data Ninput=2
CTable 2 2
201 94
82 63
Begin Matrices = Group 1
H Full 1 1
Q Full 1 1
T Full 2 1 Free
End Matrices;
Matrix H.5
Matrix Q .25
Start .6 All
Covariances A+C+D+E | H@A+C+Q@D_
       H@A+C+Q@D | A+C+D+E /
Thresholds T;
Options RSidual NDecimals=4
End
```

Group 4

```
Group 4: constrain variance to 1
Constraint NI=1
Begin Matrices = Group 1;
I unit 1 1
End Matrices;

Constraint I = A+C+E+D;
Option Multiple
End
Specify 2 t 8 9
Specify 3 t 8 9
End
```

Raw data approach

- Correction not always necessary
 - ML MCAR/MAR
 - Prediction of missingness
- Correct through weight formula

Types of missingness

Little & Rubin Terminology

- MCAR: Missing completely at random
- MAR: Missing at random
- NMAR: Not missing at random

Simulation Example

- Selrand: MCAR
 - missingness function of independent random variable
- Selonx: MAR
 - missingness predicted by other measured variable in analysis + MCAR
- Selony: NMAR
 - missingness mechanism related to "residual" variance in dependent variable

Method

- Simulate bivariate normal data X,Y
 - Sigma = 1.5
 - **-** .5 1
 - Mu = 0, 0
- Make some variables missing
 - Generate independent random normal variable, Z, if Z>0 then Y missing
 - If X>0 then Y missing
 - If Y>0 then Y missing
- Estimate elements of Sigma & Mu
- Constrain elements to population values 1,.5, 0 etc
- Compare fit
- Ideally, repeat multiple times and see if expected 'null' distribution emerges

SAS simulation script

```
OPTIONS nocenter;
FILENAME sibs 'selonx.rec';
DATA NEALE1;
FILE sibs;
array v{2};
x = .5;
n=0:
sample: IF N gt 500 THEN GO TO DONE;
n=n+1;
famfac=rannor(0);
v(1)=SQRT(X)*famfac + SQRT(1-X)*RANNOR(0);
if rannor(0) gt 0 then do;
 v(2) = SQRT(X)*famfac + SQRT(1-X)*RANNOR(0);
 size=2:
 end;
else do:
 v(2)=.;
 size=1;
end;
PUT v(1) v(2);
OUTPUT:
x1=v\{1\}; y=v\{2\};
GO TO sample;
```

DONE: COMMENT sample complete;

SAS simulation 'model'

Mx Script

Rather basic, like Monday morning

```
Estimate pop cov matrix of X&Y, with Y observed iff X>0
Data ng=1 ni=2
Rectangular file=selonx.rec
Begin Matrices;
 a sy 2 2 free! covariance of x,y
 m fu 1 2 free! mean of x,y
End Matrices:
Means M /
Covariance A /
 matrix a 1.31
 bound .1 2 a 1 1 a 2 2
 option rs mu
Option issat
end
fix all
 matrix 1 a
1.51
matrix 1 m
00
end
```

Mx Scripts & Data

F:\mcn\2004\sel

- Check output:
 - Summary statistics (obs means)
 - Estimated means & covariance matrices
 - Difference in fit between estimated values and population values
- Interpretation?

ML estimation under different missingness mechanisms

Missingness	mean x	mean y	var x	cov xy	var y	LR Chisq
MCAR (rand) MLE						
<sample></sample>						
MAR (on x) MLE						
<sample></sample>						
NMAR (on y) MLE						
<sample></sample>						

ML estimation under different missingness mechanisms

Missingness	mean x	mean y	var x	cov xy	var y	LR Chisq
MCAR (rand) MLE	-0.0116	-0.1	1.0505	0.4998	0.8769	6.492
sample	-0.0116	-0.0919	1.0505		0.8839	
MAR (on x) MLE	0.0048	0.0998	1.0084	0.4481	1.1025	5.768
sample	0.0014	0.4437	1.0084		0.9762	
NMAR (on y) MLE	-0.0204	0.6805	0.9996	0.1356	0.2894	227.262
sample	0.0448	0.7373	0.9996		0.2851	

Screen + Examination

Only a subset, selected on basis of screen, are examined

- Bivariate analysis of screen & exam
 - No ascertainment correction required
 - Example: all pairs where at least one screens positive are examined
 - Works for continuous & ordinal
- Undersampling: some proportion of pairs concordant negative for screen are also examined
 - Ascertainment correction required
 - Different correction for screen -- vs +-/-+/++

Normal Theory Likelihood Function

For raw data in Mx

In
$$L_i = f_i$$
 In $\left[\sum_{j=1}^m w_j \ g(x_i, \mu_{ij}, \sum_{ij})\right]$

- x_i vector of observed scoreson n subjects
- μ_{ij} vector of predicted means
- Σ_{ii} matrix of predicted covariances
 - functions of parameters

Likelihood Function Itself

The guts of it

In
$$L_i = f_i$$
 In $\left[\sum_{j=1}^{m} w_{ij} g(x_i, \mu_{ij}, \sum_{ij})\right]$

 $g(x_i, \mu_{ij}, \Sigma_{ii})$ - likelihood function

Example: Normal pdf

Normal distribution $\phi(\mu_{ij}, \Sigma_{ij})$

Likelihood is height of the curve

Weighted mixture of models

Finite mixture distribution

In
$$L_i = f_i$$
 In $\sum_{j=1}^{m} w_{ij} g(x_i, \mu_{ij}, \Sigma_{ij})$

j = 1....m models w_{ij} Weight for subject i model j

e.g., Segregation analysis

Mixture of Normal Distributions

Two normals, propotions w1 & w2, different means

General Likelihood Function

Finally the frequencies

In
$$L_i = f_i$$
 In $\sum_{j=1}^{m} w_j g(x_i, \mu_{ij}, \Sigma_{ij})$

f_i - frequency of case i

- Sample frequencies binary data
- Sometimes 'sample weights'
- Might also vary over model j

General Likelihood Function

Things that may differ over subjects

In
$$L_i = f_i \ln \left[\sum_{j=1}^m w_{ij} g(x_i, \mu_{ij}, \sum_{ij}) \right]$$

 $i = 1....n$ subjects (families)

- Model for Means can differ
- Model for Covariances can differ
- Weights can differ
- Frequencies can differ

How do we make things vary?

Definition variables

- Read in rectangular or ordinal data
- Definition command like backwards select
 - Deletes variables to be analyzed
 - Makes them available for individual-based analyses
 - Variable can be placed in any modifiable matrix element

Raw Ordinal Data Syntax

- Read in ordinal file
- May use frequency command to save space
- Weight uses \mnor function
- \mnor(R_M_U_L_K)
 - R covariance matrix (p x p)
 - M mean vector (1xp)
 - U upper threshold (1xp)
 - L lower threshold (1xp)
 - K indicator for type of integration in each dimension (1xp)
 - 0: L=-∞
 - 1: U=+∞
 - **2:** ∫ u
 - 3: L=-∞ U=∞

```
G1: Model parameters
Data Calc NGroups=4
Begin Matrices;
 X Lower 1 1 Free
Y Lower 1 1 Free
 Z Lower 1 1 Free
 W Lower 1 1
End Matrices;
! parameters are fixed by default, unless declared free
Begin Algebra;
 A = X^*X';
 C= Y*Y';
 E = Z^*Z';
 D= W*W';
End Algebra:
End
```

```
G2: MZ twin pairs
Data Ninput=3
Ordinal File=mz.frq
Labels T1 T2 Freq
Definition Freq;
Begin Matrices= Group 1
T full 2 1 Free
 F full 1 1! Frequency
End Matrices;
Specify F Freq
Covariances A+C+D+E | A+C+D _
       A+C+D | A+C+D+E;
Thresholds T;
Frequency F;
Options RSidual
End
```

```
G3: DZ twin pairs
Data Ninput=3
Labels T1 T2 Freq
Ordinal File=dz.frq
Definition Freq;
```

```
Begin Matrices= Group 1
H Full 1 1
Q Full 1 1
T Full 2 1 Free
F full 1 1! Frequency
End Matrices;
Specify F Freq
Matrix H .5
Matrix Q .25
Start .6 All
```

```
Covariances A+C+D+E | H@A+C+Q@D _ 
H@A+C+Q@D | A+C+D+E / 
Thresholds T;
```

```
Group 4: constrain variance to 1
Constraint NI=1
Begin Matrices = Group 1;
I unit 1 1
End Matrices;

Constraint I = A+C+E+D;
Option Multiple
End
Specify 2 t 8 9
Specify 3 t 8 9
End
```

Ascertainment additional commands

```
Begin Algebra; M=(A+C+E|A+C_A+C|A+C+E); N=(A+C+E|h@A+C_h@A+C|A+C+E); J=I-\mor(M_Z_T_T_Z); !Z=[0\ 0] K=I-\mor(N_Z_T_T_Z); !DZ case End Algebra;
```

Weight J~; ! for MZ group Weight K~; ! DZ group

Correcting for ascertainment

Linkage studies

- Multivariate selection: multiple integrals
 - double integral for ASP
 - four double integrals for EDAC
- Use (or extend) weight formula
- Precompute in a calculation group
 - -unless they vary by subject

Conclusion

- Be careful when designing studies with non-random ascertainment
- Usually possible to correct
- In principle, heritability should not change
- In practice, it might