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Ascertainment Examples

Studies of patients and controls

Patients and relatives
Twin pairs with at least one affected
Single ascertainment i - 0
Complete ascertainment pi =1
Incomplete O<pi<i

Linkage studies
Affected sib pairs, DSP etc
Multiple affected families

pi = probability that someone is ascertained given that they are affected




Likelihood approach

Advantages & Disadvantages

Usual nice properties of ML remain

Flexible

Simple principle
Consideration of possible outcomes
Re-normalization

May be difficult to compute




Maximum Likelihood Estimates

Have nice properties

Asymptotically unbiased

Minimum variance of all asymptotically
unbiased estimators

Invariant to transformations




Example: Two Coin Toss

3 outcomes

Frequenc
2.5“v

Outcome
Prohahility | = freq i / sum (fregs)




Example: Two Coin Toss

3 outcomes

Frequenc
2.5“v

Outcome
Prohahility | = freq i / sum (fregs)




Non-random ascertainment

Example

Probability of observing TT globally
1 outcome from 4 = 1/4

Probability of observing TT if HH is not
ascertained
1 outcome from 3 = 1/3

or 1/4 divided by 'ascertainment
correction' of 3/4 =1/3




Correcting for ascertainment

Univariate continuous case; only subjects >t ascertained

d)ﬂj

04
0.3

0.2
likelihood




Correcting for ascertainment

Dividing by the realm of possibllities

Without ascertainment, we compute

pdf, G(|1jj, 2-j), at observed value X;
divided by:

J = P2 dx =1
With ascertainment, the correction IS

[t &( i ij) dX = 1- 5 d( i -ij) X

Does likelihood increase or decrease after correction?




Correction depends on mode|

1 Correction independent of model
parameters: "sample weights"

2 Correction depends on model parameters:
weights vary during optimization

In twin data almost always case 2
continuous data
binary/ordinal data




High correlation
Jix Jiy ©(Xy) dy dX




Medium correlation
 x f:oy $(X,y) dy dx
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Low correlation
 x f:oy $(X,y) dy dx
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Two approaches for twin data

Contingency table approach
Automatic
Limited to two variable case

Raw data approach
Manual
Multivariate
Moderator / Covariates




Contingency Table Case

Binary data

Feed program contingency table as usual

Use -1 for frequency for non-ascertained
cells

Correction for ascertainment handled
automatically




At least one twin affected
JA | =
Correction T d(x.y) dy dx




Ascertain Ifftwin 1 >t
[ty &) dy =]y [~ d(xy) dx dy

|




Contingency Tables

Use -1 for cells not ascertained
Can be used for ordinal case
Need to start thinking about thresholds

Supply estimated population values
Estimate them jointly with model




MX Syntax

Classical Twin Study: Contingency Table
ftp:/Iviews.vcu.edu/pub/mx/examples/ncbook2/categor.mx

G1: Model parameters
Data Calc NGroups=4
Begin Matrices;
X Lower 11 Free
Y Lower 1 1 Free
ZlLower 11 Free
W Lower11
End Matrices;
| parameters are fixed by default, unless declared free
Begin Algebra;
A= X*X;
E={tr¢;
E=Z*Z",
DERTIVATA:
End Algebra:
End




MX Syntax

Group 2

G2: young female MZ twin pairs
Data Ninput=2
CTable 2 2
329 83
95 83
Begin Matrices= Group 1
T full 2 1 Free
End Matrices;
Covariances A+C+D+E | A+C+D _
A+C+D | A+C+D+E;
Thresholds T ;
Options RSidual
End




MX Syntax

Group 3
G3: young female DZ twin pairs
Data Ninput=2
CTable 2 2
201 94
82 63

Begin Matrices= Group 1
HFulll11

QFull11

T Full 2 1 Free

End Matrices;

Matrix H .5

Matrix Q .25

Start .6 All

Covariances A+C+D+E | H@QA+C+Q@D _
H@A+C+Q@D | A+C+D+E /

Thresholds T ;

Options RSidual NDecimals=4

End




MX Syntax

Group 4

Group 4: constrain variance to 1
Constraint NI=1

Begin Matrices = Group 1 ;
lunit1 1

End Matrices;

Constraint | = A+C+E+D ;
Option Multiple

End

Specify2t89
Specify3t89

End




Raw data approach

Correction not always necessary
ML MCAR/MAR
Prediction of missingness

Correct through weight formula




Types of missingness
Little & Rubin Terminology

MCAR: Missing completely at random

MAR: Missing at random

NMAR: Not missing at random




Simulation Example

Selrand: MCAR
missingness function of independent random
variable

Selonx: MAR
missingness predicted by other measured variable
In analysis + MCAR

Selony: NMAR
missingness mechanism related to "residual”
variance in dependent variable




Method

Simulate bivariate normal data X,Y
Sigma=1 .5
51
Mu=0,0
Make some variables missing
Generate independent random normal variable, Z, if Z>0 then Y missing
If X>0 then Y missing
If Y>0 then Y missing
Estimate elements of Sigma & Mu
Constrain elements to population values 1,.5, 0 etc

Compare fit

Ideally, repeat multiple times and see if expected 'null’ distribution emerges




SAS simulation script

OPTIONS nocenter;
FILENAME sibs 'selonx.rec’;

DATA NEALEZL;
FILE sibs;

array v{2};

x=.5;

n=0;

sample: IF N gt 500 THEN GO TO DONE;
n=n+1,
famfac=rannor(0);
v(1)=SQRT(X)*famfac + SORT(1-X)*RANNOR(0);
if rannor(0) gt O then do;
v(2) = SQRT(X)*famfac + SORT(1-X)*RANNOR(0);
size=2;
end;
else do;
v(2)=;
size=1;
end;
PUT v(1) v(2);
OUTPUT;
x1=v{1}; y=v{2};

GO TO sample;

DONE: COMMENT sample complete;




SAS simulation 'model’

sqrt(r) qrt(r) sqrt(1-r)

S2




Mx Script

Rather basic, like Monday morning

Estimate pop cov matrix of X&Y, with Y observed iff X>0
Data ng=1 ni=2
Rectangular file=selonx.rec
Begin Matrices;
a sy 2 2 free ! covariance of x,y
m fu 1 2 free ! mean of x,y
End Matrices;
Means M /
Covariance A/
matrixal .31
bound . 12allaz22
option rs mu
Option issat
end

fix all
matrix 1 a
151

matrix 1 m

00

end




Mx Scripts & Data

F:\mcn\2004\sel

Check output:
Summary statistics (obs means)
Estimated means & covariance matrices
Difference In fit between estimated
values and population values

Interpretation?




ML estimation under different
missingness mechanisms

Missingness | meanx meany var x COV Xy vary

LR
Chisq

MCAR
(rand) MLE

<sample>

MAR (on x)
MLE

<sample>

NMAR (onvy)
MLE

<sample>




ML estimation under different

missingness mechanisms

Missingness

mean X

mean y

var X

COV Xy

vary

LR
Chisq

MCAR (rand)
MLE

sample

-0.0116

-0.0116

-0.1

1.0505

1.0505

0.4998

0.8769

0.8839

6.492

MAR (on x)
MLE

sample

0.0048

0.0014

1.0084

1.0084

1.1025

0.9762

NMAR (ony)
MLE

sample

-0.0204

0.0448

0.9996

0.9996

0.2894

0.2851

227.262




Screen + Examination

Only a subset, selected on basis of screen, are examined

Bivariate analysis of screen & exam

No ascertainment correction required
Example: all pairs where at least one screens positive

are examined
Works for continuous & ordinal

Undersampling: some proportion of pairs
concordant negative for screen are also examined

Ascertainment correction required
Different correction for screen -- vs +-/-+/++




Normal Theory Likelihood Function

For raw data in Mx

InLi=f In[) w g0 2]
=1

. - vector of scores

on n subjects
i - vector of predicted means

i - matrix of predicted covariances
- functions of parameters




Likelihood Function Itself
The guts of it

InL; =1 In [g Wi 9(X;, LLij, 25ij) ]

)=1

g(xi, 1L, 2 - likelihood function

Example: Normal pdf

Mx is 11 years old in 2001




Normal distribution ¢, )
Likelihood is height of the curve
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Weighted mixture of models

Finite mixture distribution

InLi=fiIn [} w; g(Xxni,2)]

J=1

] = 1....m models
w;; Welight for subject | model |

e.d., Segregation analysis




Mixture of Normal Distributions

Two normals, propotions wl & w2, different means

But Likelihood Ratio not Chi-Squared - what is it?




General Likelihood Function

Finally the frequencies

InLi=1 In [g W 9 (X, b, i)

=

f. - frequency of case |

Sample frequencies binary data
Sometimes 'sample weights'
Might also vary over model |




General Likelihood Function

Things that may differ over subjects

In I—i -~ fi In [ Z Wij; Q(Xi,HijaZij)]
j=1

| = 1....n subjects (families)

Model for Means can differ
Model for Covariances can differ
Welights can differ

Freguencies can differ




How do we make things vary?

Definition variables

Read in rectangular or ordinal data

Definition command like backwards select
Deletes variables to be analyzed
Makes them available for
Individual-based analyses
Variable can be placed in any modifiable
matrix element




Raw Ordinal Data Syntax

Read in ordinal file
May use frequency command to save space

Weight uses \mnor function
\mnor(R_M U L K)
R - covariance matrix (p x p)
M - mean vector (1xp)
U - upper threshold (1xp)
L - lower threshold (1xp)
K - indicator for type of integration in each dimension (1xp)
0: L=-x
1: U=+
2: [}
3: L=-0 U=w




MX Syntax

G1: Model parameters
Data Calc NGroups=4
Begin Matrices;

X Lower 1 1 Free

Y Lower 1 1 Free

Z Lower 1 1 Free

W Lower 11

End Matrices;

| parameters are fixed by default, unless declared free
Begin Algebra;

A= X*X,;

C= Y*YY

E=Z*Z',

D= W*W",

End Algebra:
End




MX Syntax

G2: MZ twin pairs
Data Ninput=3
Ordinal File=mz.frq
Labels T1 T2 Freq
Definition Freq ;
Begin Matrices= Group 1
T full 2 1 Free
Ffull 11! Frequency
End Matrices;
Specify F Freq
Covariances A+C+D+E | A+C+D _
A+C+D | A+C+D+E;
Thresholds T ;
Frequency F;
Options RSidual
End




MX Syntax

G3: DZ twin pairs
Data Ninput=3
Labels T1 T2 Freq
Ordinal File=dz.frq
Definition Freq ;

Begin Matrices= Group 1
HFulll

QFulll1l

T Full 2 1 Free

Ffull 1 1! Frequency
End Matrices;

Specify F Freq

Matrix H .5

Matrix Q .25

Start .6 All

Covariances A+C+D+E | H@QA+C+Q@D _
H@A+C+Q@D | A+C+D+E /
Thresholds T ;




MX Syntax

Group 4: constrain variance to 1
Constraint NI=1

Begin Matrices = Group 1 ;
lunitl1

End Matrices;

Constraint | = A+C+E+D ;
Option Multiple

End

Specify2t89
Specify3t89

End




Ascertainment additional commands

Begin Algebra;
M=(A+C+E|A+C_A+C|A+C+E);
N=(A+C+E|h@A+C_ h@A+C|A+C+E);
J=l-\mnhor(M Z T T Z2);!Z=]0 O]
K=l-\mnor(N_ Z T T Z);! DZ case
End Algebra;

Weight J~; ! for MZ group
Weight K~; | DZ group

Why inverse of J and K?




Correcting for ascertainment

Linkage studies

Multivariate selection: multiple integrals
double integral for ASP
four double integrals for EDAC

Use (or extend) weight formula

Precompute in a calculation group
unless they vary by subject




Conclusion

Be careful when designing studies with
non-random ascertainment

Usually possible to correct
In principle, heritability should not change

In practice, it might




