Summarizing Variation Matrix Algebra & Mx

Michael C Neale PhD

Virginia Institute for Psychiatric and Behavioral Genetics Virginia Commonwealth University

International Workshop on Methodology for Genetic Studies of Twins and Families Boulder CO 2004

Overview

- Mean/Variance/Covariance
 - Calculating
 - Estimating by ML
- Matrix Algebra
- Normal Theory Likelihood
- Mx script language

Computing Mean

- Formula $\sum (x_i)/N$
- Can compute with
 - Pencil
 - Calculator
 - -SAS
 - -SPSS
 - Mx

One Coin toss

2 outcomes

Two Coin toss

3 outcomes

Four Coin toss

5 outcomes

Ten Coin toss

9 outcomes

Outcome

Monty Python Theory

- Elk: The Theory by A. Elk brackets Miss brackets. My theory is along the following lines.
- Host: Oh God.
- Elk: All brontosauruses are thin at one end, much MUCH thicker in the middle, and then thin again at the far end.
- That is the theory that I have and which is mine, and what it is too.

Pascal's Triangle

Frequency	Probability
1	1/1
11	1/2
121	1/4
1331	1/8
14641	1/16
15101051	1/32
1 6 15 20 15 6 1	1/64
1 7 21 35 35 21 7 1	1/128

Pascal's friend Chevalier de Mere 1654; Huygens 1657; Cardan 1501-1576

Fort Knox Toss

Infinite outcomes

Variance

- Measure of Spread
- Easily calculated
- Individual differences

Average squared deviation

Normal distribution

Variance =
$$\sum d_i^2/N$$

Measuring Variation

Weighs & Means

- Absolute differences?
- Squared differences?
- Absolute cubed?
- Squared squared?

Measuring Variation

Ways & Means

Squared differences

Fisher (1922) Squared has minimum variance under normal distribution

Covariance

- Measure of association between two variables
- Closely related to variance
- Useful to partition variance

Deviations in two dimensions

Deviations in two dimensions

Area of a rectangle

- A square, perimeter 4
- Area 1

Area of a rectangle

- A skinny rectangle, perimeter 4
- Area .25*1.75 = .4385

.25

Area of a rectangle

- Points can contribute negatively
- Area -.25*1.75 = -.4385

1.75-.25

Covariance Formula

$$\sigma_{xy} = \frac{\sum (x_i - \mu_x)(y_i - \mu_y)}{(N-1)}$$

Correlation

- Standardized covariance
- Lies between -1 and 1

$$\mathbf{r}_{\mathbf{x}\mathbf{y}} = \mathbf{c}_{\mathbf{x}\mathbf{y}}$$

$$\mathbf{r}_{\mathbf{x}\mathbf{y}} = \mathbf{c}_{\mathbf{x}\mathbf{y}}$$

Summary

Formulae

$$\mu = (\sum \mathbf{x_i})/\mathbf{N}$$

$$\sigma_{\mathbf{x}}^2 = \sum (\mathbf{x_i} - \mu^2)/(\mathbf{N} - \mathbf{1})$$

$$\sigma_{\mathbf{xy}} = \sum (\mathbf{x_i} - \mu_{\mathbf{x}})(\mathbf{y_i} - \mu_{\mathbf{y}})/(\mathbf{N} - \mathbf{1})$$

$$\mathbf{r_{\mathbf{xy}}} = \sigma_{\mathbf{xy}}$$

Variance covariance matrix

Several variables

```
Var(X) Cov(X,Y) Cov(X,Z)
Cov(X,Y) Var(Y) Cov(Y,Z)
Cov(X,Z) Cov(Y,Z) Var(Z)
```

Variance covariance matrix

Univariate Twin Data

Var(Twin1) Cov(Twin1,Twin2)

Cov(Twin2,Twin1) Var(Twin2)

Only suitable for complete data Good conceptual perspective

Conclusion

- Means and covariances
- Conceptual underpinning
- Easy to compute
- Can use raw data instead

Model fitting to covariance matrices

- Inherently compares fit to saturated model
- Difference in fit between A C E model and A E model gives likelihood ratio test
- Asymptotically distributed as chi-squared with df = difference in number of parameters (df=1 for ACE vs. AE)

Estimate saturated model

Raw Data: Estimate means & covariances

- Need:
 - 1 Likelihood theory
 - -2 Data
 - 3 Estimate covariance matrix
 - 4 Estimate mean vector
 - 5 Program

Likelihood computation

Calculate height of curve

Univariate - height of normal pdf

$$- \varphi(x) =$$

-
$$(2\pi\sigma^2)^{-.5} e^{-.5((x_i - \mu)^2)/\sigma^2}$$

Multivariate - height of multinormal pdf

$$- |2\Pi\Sigma|^{-n/2} e^{-.5((\mathbf{x_i} - \mu)^{\sum^{-1}(\mathbf{x_i} - \mu)')}$$

Height of normal curve

Probability density function

Mx script to estimate covariances & means

```
#ngroups 1
                                              mydatfile.dat e.g.
                                               Data NI=2
                                               Labels BP-T1 BP-T2
#define nvar=2
                                               Rectangular File=mzbp.rec
G1: Estimate means & Covariances by ML
 #include mydatfile.dat
 Begin Matrices;
                                              mzbp.rec e.g.
  C Symm nvar nvar Free
                                                120.5 142.3
 M Full 1 nvar Free
                                                102.6 110.7
 End Matrices;
                                                 98.3 116.9
  Matrix C 1 0 1
                                              starting values for C
  Covariance C;
 Means M;
Option NDecimals=2
End
```

Matrix Algebra

- You already know a lot of it
- Economical and aesthetic
- Great for statistics

What you know

All about (1x1) matrices

Operation	Example	Result
Addition	2 + 2	
Subtraction	5 - 1	
Multiplication	2 x 2	
Division	12/3	

What you know

All about (1x1) matrices

Operation	Example	Result
Addition	2 + 2	4
Subtraction	5 - 1	4
Multiplication	2 x 2	4
Division	12 / 3	4

What you may guess

Numbers can be organized in boxes, e.g.

1 2

3 4

What you may guess

Numbers can be organized in boxes, e.g.

1 2

3 4

Matrix notation

Many numbers

```
31 23 16 99 08 12 14 73 85 98 33 94 12 75 02 57 92 75 11
28 39 57 17 38 18 38 65 10 73 16 73 77 63 18 56 18 57 02
74 82 20 10 75 84 19 47 14 11 84 08 47 57 58 49 48 28 42
88 84 47 48 43 05 61 75 98 47 32 98 15 49 01 38 65 81 68
43 17 65 21 79 43 17 59 41 37 59 43 17 97 65 41 35 54 44
75 49 03 86 93 41 76 73 19 57 75 49 27 59 34 27 59 34 82
43 19 74 32 17 43 92 65 94 13 75 93 41 65 99 13 47 56 34
75 83 47 48 73 98 47 39 28 17 49 03 63 91 40 35 42 12 54
31 87 49 75 48 91 37 59 13 48 75 94 13 75 45 43 54 32 53
75 48 90 37 59 37 59 43 75 90 33 57 75 89 43 67 74 73 10
34 92 76 90 34 17 34 82 75 98 34 27 69 31 75 93 45 48 37
13 59 84 76 59 13 47 69 43 17 91 34 75 93 41 75 90 74 17
34 15 74 91 35 79 57 42 39 57 49 02 35 74 23 57 75 11 35
```

Matrix notation

Useful subnotation

Useful subnotation

Addition

Addition

$$\underline{A}$$
 + \underline{B} = \underline{C}

Conformability

Addition

To add two matrices A and B:

of rows in A = # of rows in B

of columns in A = # of columns in B

Subtraction

Subtraction

$$\begin{bmatrix} 5 & 6 \\ & & \\ 7 & 8 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ & & \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 4 & 4 \\ & & \\ 4 & 4 \end{bmatrix}$$

$$\underline{\mathsf{B}}$$
 - $\underline{\mathsf{A}}$ = $\underline{\mathsf{C}}$

Conformability

Subtraction

To subtract two matrices A and B:

of rows in A = # of rows in B

of columns in A = # of columns in B

Multiplication (regular)

Conformability

To multiply two matrices A and B:

of columns in A = # of rows in B

Multiply: A (m x n) by B (n by p)

$$A \qquad x \qquad B \qquad = \qquad C$$

Cij =
$$\sum_{k=1}^{11}$$
 Aik x Bkj

Multiply: A (m x n) by B (n by p)

$$A \qquad x \qquad B \qquad = \qquad C$$

$$Cij = \sum_{k=1}^{n} Aik \times Bkj$$

Multiply: A (m x n) by B (n by p)

$$A \qquad x \qquad B \qquad = \qquad C$$

$$Cij = \sum_{k=1}^{n} Aik \times Bkj$$

Multiply: A (m x n) by B (n by p)

$$A \qquad x \qquad B \qquad = \qquad C$$

$$Cij = \sum_{k=1}^{n} Aik \times Bkj$$

Multiply: A (m x n) by B (n by p)

$$\begin{bmatrix} 5 & 6 \\ x & 3 & 4 \end{bmatrix} = \begin{bmatrix} (5x1)+(6x3) & (5x2)+(6x4) \\ (7x1)+(8x3) & (7x2)+(8x4) \end{bmatrix}$$

$$A \qquad x \qquad B \qquad = \qquad C$$

$$Cij = \sum_{k=1}^{n} Aik \times Bkj$$

Multiply: A (m x n) by B (n by p)

$$A \qquad x \qquad B \qquad = \qquad C$$

$$Cij = \sum_{k=1}^{n} Aik \times Bkj$$

Inner product of a vector

(Column) Vector c (n x 1)

Inner product is c'c:

[2 4 1]
$$\begin{bmatrix} 2 \\ 4 \\ 1 \end{bmatrix}$$
 = (2x2)+(4x4)+(1x1)
= 21
(Sum of squares)

Outer product of a vector

(Column) Vector c (n x 1)

Outer product is cc'

```
2 [2 4 1] = 2x2 2x4 2x1
4x2 4x4 4x1
1 1x2 1x4 1x1
= 4 8 2
8 16 4
2 4 1
```

Matrix Algebra

EXERCISES!

A number can be divided by another number -

How do you divide matrices?

And that $a \times 1 = a$

1 is the *inverse* of a

Matrix 'equivalent' of 1 is the identity matrix

-1 -1 Find A such that A A = I

Inverse of (2 x 2) matrix

- 1. Find determinant
- 2. Swap a11 and a22
- 3. Change signs of a12 and a21
- 4. Divide each element by determinant
- 5. Check by pre- or post- multiplying by

inverse

Inverse of (2 x 2) matrix

1. Find determinant

$$=$$
 (a11 x a22) - (a21 x a12)

$$det(A) = (2x3) - (1x5) = 1$$

Inverse of (2 x 2) matrix

- 1. Find determinant
- 2. Swap a11 and a22
- 3. Change signs of a12 and a21
- 4. Divide each element by determinant
- 5. Check by pre- or post- multiplying by inverse

Inverse of (2 x 2) matrix

2. Swap elements a11 and a22

becomes 3 5 1 2

Inverse of (2 x 2) matrix

- 1. Find determinant
- 2. Swap a11 and a22
- 3. Change signs of a12 and a21
- 4. Divide each element by determinant
- 5. Check by pre- or post- multiplying by

inverse

Inverse of (2 x 2) matrix

3. Change sign of a12 and a21

becomes 3 -5 -1 2

Inverse of (2 x 2) matrix

- 1. Find determinant
- 2. Swap a11 and a22
- 3. Change signs of a12 and a21
- 4. Divide each element by determinant
- 5. Check by pre- or post- multiplying by

inverse

Inverse of (2 x 2) matrix

4. Divide each element by determinant

becomes 3 -5 -1 2

Inverse of (2 x 2) matrix

- 1. Find determinant
- 2. Swap a11 and a22
- 3. Change signs of a12 and a21 V
- 4. Divide each element by determinant
- 5. Check by pre- or post- multiplying by

inverse

Inverse of (2 x 2) matrix

5. Check result with A A = I

$$A A = I$$

e.g.
$$\begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$$

Matrix Algebra

EXERCISES!

Matrices can have special forms

Scalar (1 x 1) [9]

Row vector (1 x n) [2 6 3 8]

Column vector (n x 1)

Matrix notation

(column) vector

Matrix notation

(row) vector

More special matrices

```
Square (n x n)
                  3 12 18
                  15 8 21
                   9 17 86
Symmetric (n x n)
                    72 8 10
                    8 14 7
                    10 7 44
Diagonal (n x n)
                   19
                         0
                      12 0
                   0
                       0
```

Even more special matrices

```
Lower Triangular (n x n)
                      3 0
                      15 8 0
                         17 86
Sub-diagonal (n x n)
                           0
                      0 0 8
                     10 7 0
Standardized (n x n)
                       .5 .3
```

Yet more special matrices

```
Full (mxn) 23 18 15 8
7 13 80 72
```

Matrix names

Single letter in Mx