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This Session

« Quantitative Trait Linkage Analysis
* Variance Components
* Haseman-Elston

« An improved regression based method
» General pedigrees
* Non-normal data

« Example application
- PEDSTATS
+ MERLIN-REGRESS



Behavior Genetics, Vol. 2, No. 1, 1972

The Investigati.on of Linkage Between a Quantitative
Trait and a Marker Locus

J. K. Haseman' and R. C. Elston®

e Simple regression-based method
squared pair trait difference
proportion of alleles shared identical by descent

(X=Y)2=21-r)-2Q(n-05)+¢  (HE-SD)



Haseman-Elston regression
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Sums versus differences

* Wright (1997), Drigalenko (1998)

* phenotypic difference discards sib-pair QTL linkage
Information

« squared pair trait sum provides extra information for
linkage

 independent of information from HE-SD

(X+Y)2=2(1+r)+2Q(n-05)+¢  (HE-SS)



Genetic Epidemiology 19:1-17 (2000)

Haseman and Elston Revisited

Robert C. Elston,* Sarah Buxbaum, Kevin B. Jacobs, and Jane M. Olson

 New dependent variable to increase power
mean corrected cross-product (HE-CP)

XY =((X +Y)2 = (X =Y)?)

« But this was found to be less powerful than
original HE when sib correlation is high



Variance Components Analysis
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Likelihood function
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The Problem

 Maximum likelihood variance components
linkage analysis
* Powerful (Fulker & Cherny 1996) but
* Not robust in selected samples or non-normal traits

¢ Conditioning on trait values (Sham et al 2000)
Improves robustness but is computationally
challenging

 Haseman-Elston regression
* More robust but
* Less powerful
« Applicable only to sib pairs



Alm

 To develop a regression-based method that

« Has same power as maximum likelihood variance
components, for sib pair data

« Will generalise to general pedigrees



Extension to General Pedigrees

e Multivariate Regression Model
« Weighted Least Squares Estimation

« Weight matrix based on IBD information



Switching Variables

 To obtain unbiased estimates in selected
samples

* Dependent variables = IBD
* Independent variables = Trait



Dependent Variables

e Estimated IBD sharing of all pairs of relatives
 Example:
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Independent Variables

e Squares and cross-products

* (equivalent to non-redundant squared sums and differences)
« Example [ X,X, |
X1X3
X1X4
X2X3
X2X4
X3X4
Xlxl
X2X2
X3X3

X4 Xy



Covariance Matrices

Dependent Z )
11

Obtained from prior (p) and posterior (q)
IBD distribution given marker genotypes

Cov, (7, 7y) = (Z P77y —7?”7?“)—(2 Q77377 _ﬁij/i-kl)



Covariance Matrices

Independent ZY

Obtained from properties of multivariate normal distribution,
under specified mean, variance and correlations

E(Xixjxkxl) = Lihg TGl 6

Assuming the trait has mean zero and variance one.
Calculating this matrix requires the correlation between the
different relative pairs to be known.



Estimation

For a family, regression model is

M. =QX HI|'Y.+¢

Estimate Q by weighted least squares, and obtain
sampling variance, family by family

Combine estimates across families, inversely
weighted by their variance, to give overall
estimate, and its sampling variance



Average chi-squared statistics: fully
Informative marker NOT linked to 20% QTL
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Average chi-squared statistics: fully
Informative marker linked to 20% QTL
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Average chi-squared statistics: poorly
Informative marker NOT linked to 20% QTL
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Average chi-squared statistics: poorly
iInformative marker linked to 20% QTL
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Average chi-squares:
selected sib pairs, NOT linked to 20% QTL

20,000 simulations
10% of 5,000 sib pairs selected
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Average chi-square

selected sib pairs, linkage to 20% QTL

Average chi-squares:

25

15

20 -

2,000 simulations
10% of 5,000 sib pairs selected

10 A

Ran ASP DSP Inf

@ Full
m Poor

Selection scheme




Mis-specification of the mean,
2000 random sib quads, 20% QTL
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Mis-specification of the covariance,
2000 random sib quads, 20% QTL
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Mis-specification of the variance,
2000 random sib quads, 20% QTL
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Cousin pedigree
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Average chi-squares for 200
cousin pedigrees, 20% QTL

Poor marker information

Full marker information

REG VC REG VC
Not linked | 0.49 0.48 0.53 0.50
| Linked 4.94 4.43 13.21 112.56




Conclusion

* The regression approach

can be extended to general pedigrees

IS slightly more powerful than maximum likelihood
variance components in large sibships

can handle imperfect IBD information

IS easily applicable to selected samples

provides unbiased estimate of QTL variance
provides simple measure of family informativeness
IS robust to minor deviation from normality

e But

assumes knowledge of mean, variance and
covariances of trait distribution in population



Example Application:
Angiotensin Converting Enzyme

British population

Circulating ACE levels
* Normalized separately for males / females

10 di-allelic polymorphisms

« 26 kb

« Common

 In strong linkage disequilibrium

Keavney et al, HMG, 1998



Check The Data

e The input data is in three files:
* keavney.dat
» keavney.ped
« keavney.map

 These are text files, so you can peek at their
contents, using more or notepad

* A better way is to used pedstats ..



Pedstats

* Checks contents of pedigree and data files
- pedstats —d keavney.dat —p keavney.ped

« Useful options:

¢ --pairStatistics Information about relative pairs
o --pdf Produce graphical summary

* --hardyWeinberg Check markers for HWE

* --minGenos 1 Focus on genotyped individuals

« What did you learn about the sample?



Regression Analysis

MERLIN-REGRESS

Requires pedigree (.ped), data (.dat) and map
(.map) file as input

Key parameters:
* --mean, --variance
* Used to standardize trait
« --heritability
* Use to predicted correlation between relatives

Heritablility for ACE levels is about 0.60



MERLIN-REGRESS

 ldentify informative families
* --rankFamilies

e Customizing models for each trait

* -t models.tbl
« TRAIT, MEAN, VARIANCE, HERITABILITY in each row

e Convenient options for unselected samples:
¢ --randomSample
» --useCovariates
* --inverseNormal



The End



