Regression-Based Linkage Analysis of General Pedigrees

Pak Sham, Shaun Purcell, Stacey Cherny, Gonçalo Abecasis

This Session

- Quantitative Trait Linkage Analysis
 - Variance Components
 - Haseman-Elston
- An improved regression based method
 - General pedigrees
 - Non-normal data
- Example application
 - PEDSTATS
 - MERLIN-REGRESS

Behavior Genetics, Vol. 2, No. 1, 1972

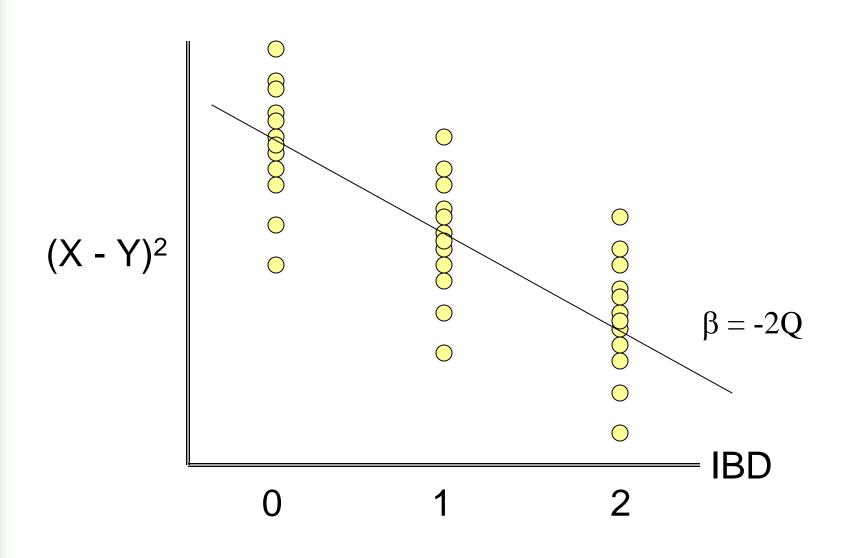
The Investigation of Linkage Between a Quantitative Trait and a Marker Locus

J. K. Haseman¹ and R. C. Elston²

- Simple regression-based method
 - squared pair trait difference
 - proportion of alleles shared identical by descent

$$(X - Y)^2 = 2(1 - r) - 2Q(\hat{\pi} - 0.5) + \varepsilon$$
 (HE-SD)

Haseman-Elston regression



Sums versus differences

- Wright (1997), Drigalenko (1998)
 - phenotypic difference discards sib-pair QTL linkage information
 - squared pair trait sum provides extra information for linkage
 - independent of information from HE-SD

$$(X + Y)^2 = 2(1 + r) + 2Q(\mathring{\pi} - 0.5) + \varepsilon$$
 (HE-SS)

Genetic Epidemiology 19:1-17 (2000)

Haseman and Elston Revisited

Robert C. Elston,* Sarah Buxbaum, Kevin B. Jacobs, and Jane M. Olson

- New dependent variable to increase power
 - mean corrected cross-product (HE-CP)

$$XY = \frac{1}{4}((X+Y)^2 - (X-Y)^2)$$

 But this was found to be less powerful than original HE when sib correlation is high

Variance Components Analysis

$$\Omega = \begin{bmatrix} \sigma_a^2 + \sigma_g^2 + \sigma_e^2 & \hat{\pi}_{marker}\sigma_a^2 + 2\varphi\sigma_g^2 \\ \hat{\pi}_{marker}\sigma_a^2 + 2\varphi\sigma_g^2 & \sigma_a^2 + \sigma_g^2 + \sigma_e^2 \end{bmatrix}$$

Where,

 φ is the kinship coefficient for the two individuals $\hat{\pi}_{marker}$ is the IBD sharing proportion

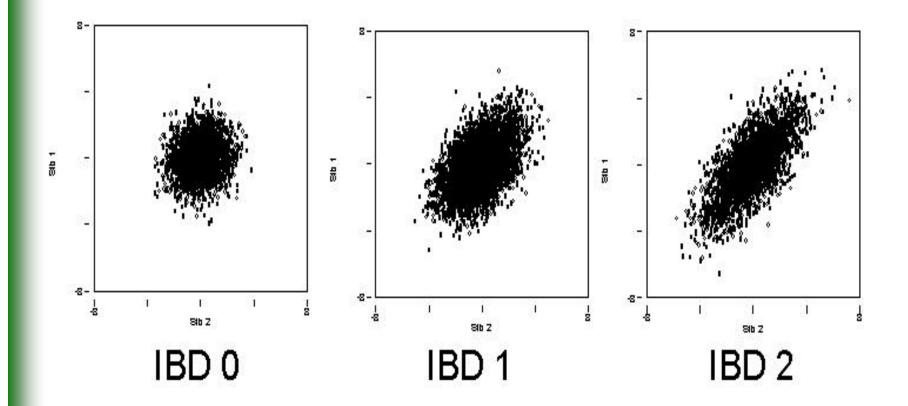
Likelihood function

$$L = \prod_{i} \sum_{j=0,1,2} Z_{ij} (2\pi)^{-1} |\Omega_{IBD=j}|^{-\frac{1}{2}} e^{-\frac{1}{2}(\mathbf{y}-\mathbf{\mu})'\mathbf{\Omega}_{IBD=j}^{-1}(\mathbf{y}-\mathbf{\mu})}$$

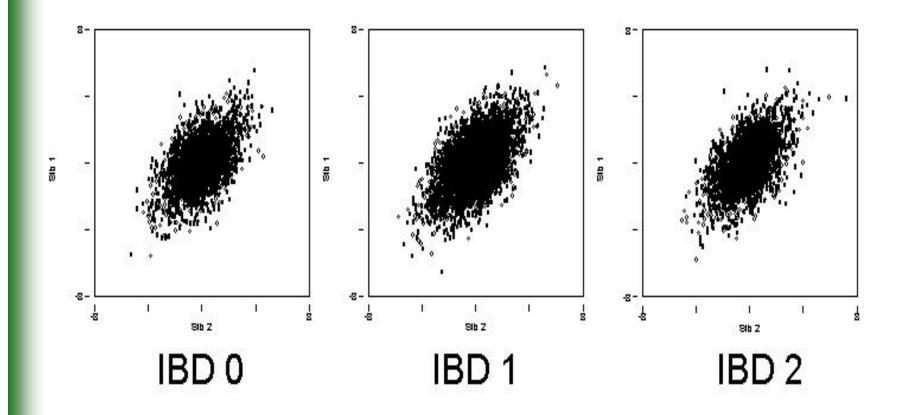
$$\approx \prod_{i} (2\pi)^{-1} |\Omega^*|^{-\frac{1}{2}} e^{-\frac{1}{2}(\mathbf{y}-\mathbf{\mu})'\mathbf{\Omega}^{*-1}(\mathbf{y}-\mathbf{\mu})}$$

$$Z_{ij} = P(IBD_i = j \mid \text{marker data})$$
 IBD sharing probabilities
$$\Omega^* = \sum_{i=0}^{n} Z_{ij} \Omega_{IBD=j}$$
 "Expected" Ω

Linkage



No Linkage



The Problem

- Maximum likelihood variance components linkage analysis
 - Powerful (Fulker & Cherny 1996) but
 - Not robust in selected samples or non-normal traits
 - Conditioning on trait values (Sham et al 2000) improves robustness but is computationally challenging
- Haseman-Elston regression
 - More robust but
 - Less powerful
 - Applicable only to sib pairs

Aim

- To develop a regression-based method that
 - Has same power as maximum likelihood variance components, for sib pair data
 - Will generalise to general pedigrees

Extension to General Pedigrees

- Multivariate Regression Model
- Weighted Least Squares Estimation
- Weight matrix based on IBD information

Switching Variables

- To obtain unbiased estimates in selected samples
 - Dependent variables = IBD
 - Independent variables = Trait

Dependent Variables

- Estimated IBD sharing of all pairs of relatives
- Example:

$$\hat{m{\Pi}} = egin{array}{c} \hat{\pi}_{12} \\ \hat{\pi}_{13} \\ \hat{\pi}_{14} \\ \hat{\pi}_{23} \\ \hat{\pi}_{24} \\ \hat{\pi}_{34} \end{array}$$

Independent Variables

- Squares and cross-products
 - (equivalent to non-redundant squared sums and differences)
- Example

$$\mathbf{Y} = \begin{bmatrix} x_1 x_2 \\ x_1 x_3 \\ x_2 x_3 \\ x_2 x_4 \\ x_3 x_4 \\ x_1 x_1 \\ x_2 x_2 \\ x_3 x_3 \\ x_4 x_4 \end{bmatrix}$$

Covariance Matrices

Dependent \(\)

Obtained from prior (p) and posterior (q) IBD distribution given marker genotypes

$$Cov_I(\hat{\pi}_{ij}, \hat{\pi}_{kl}) = \left(\sum p\pi_{ij}\pi_{kl} - \tilde{\pi}_{ij}\tilde{\pi}_{kl}\right) - \left(\sum q\pi_{ij}\pi_{kl} - \hat{\pi}_{ij}\hat{\pi}_{kl}\right)$$

Covariance Matrices

Independent

$$\mathbf{\Sigma}_{\mathbf{Y}}$$

Obtained from properties of multivariate normal distribution, under specified mean, variance and correlations

$$E(X_i X_j X_k X_l) = r_{ij} r_{kl} + r_{ik} r_{jl} + r_{il} r_{jk}$$

Assuming the trait has mean zero and variance one. Calculating this matrix requires the correlation between the different relative pairs to be known.

Estimation

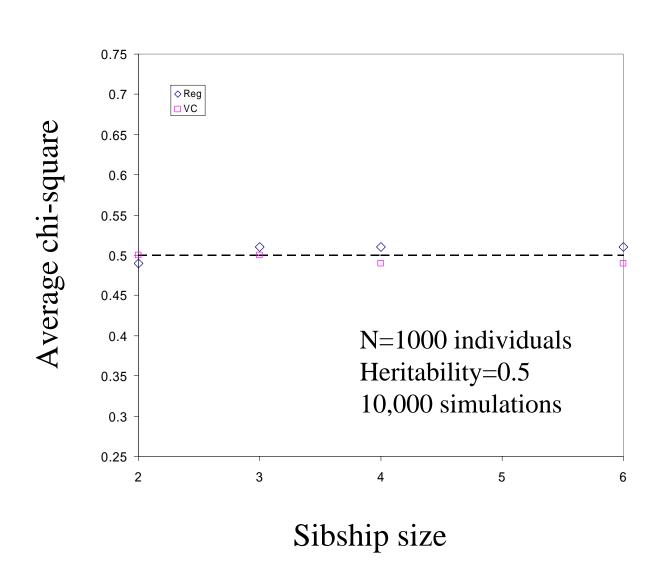
For a family, regression model is

$$\hat{\boldsymbol{\Pi}}_{C} = \boldsymbol{Q}\boldsymbol{\Sigma}_{\hat{\boldsymbol{\Pi}}}\boldsymbol{H}\boldsymbol{\Sigma}_{Y}^{-1}\boldsymbol{Y}_{C} + \boldsymbol{\epsilon}$$

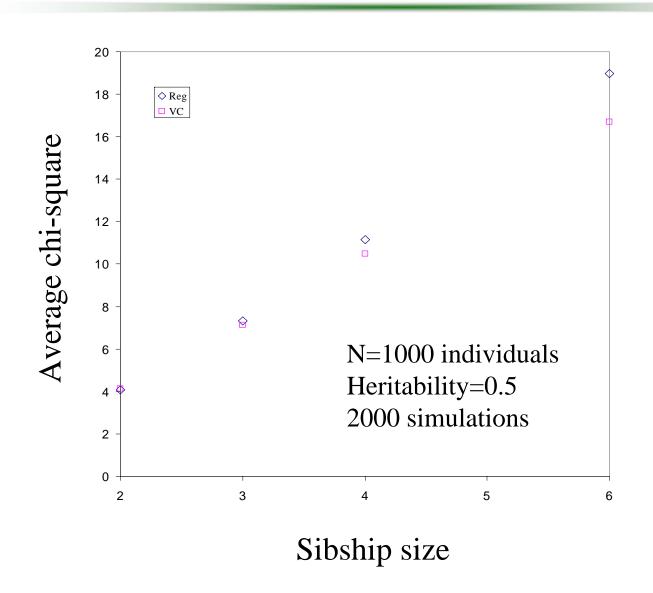
Estimate Q by weighted least squares, and obtain sampling variance, family by family

Combine estimates across families, inversely weighted by their variance, to give overall estimate, and its sampling variance

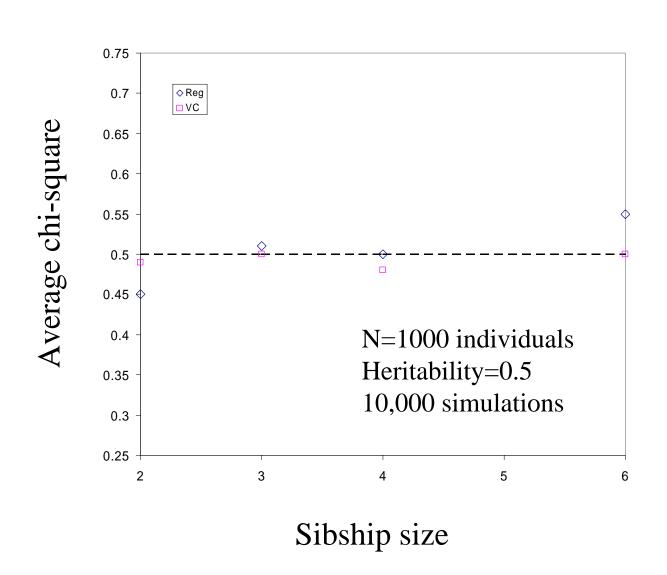
Average chi-squared statistics: fully informative marker NOT linked to 20% QTL



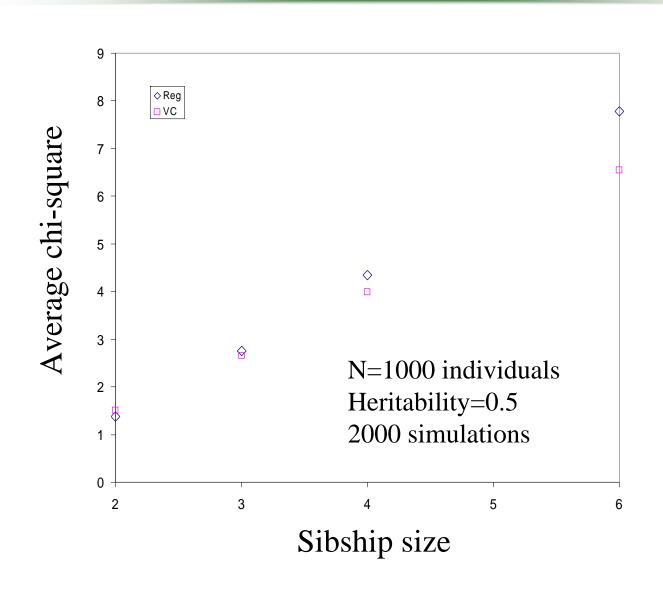
Average chi-squared statistics: fully informative marker linked to 20% QTL



Average chi-squared statistics: poorly informative marker NOT linked to 20% QTL

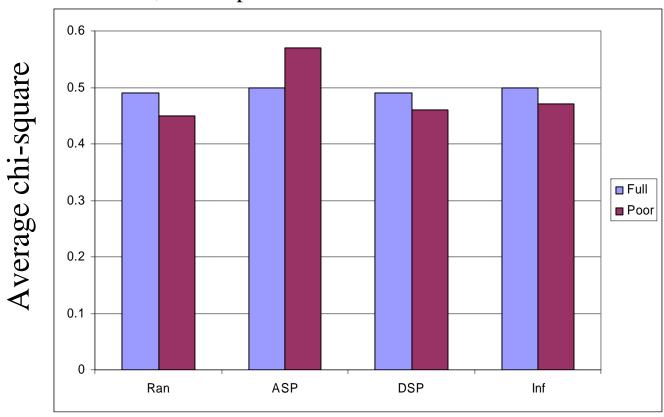


Average chi-squared statistics: poorly informative marker linked to 20% QTL



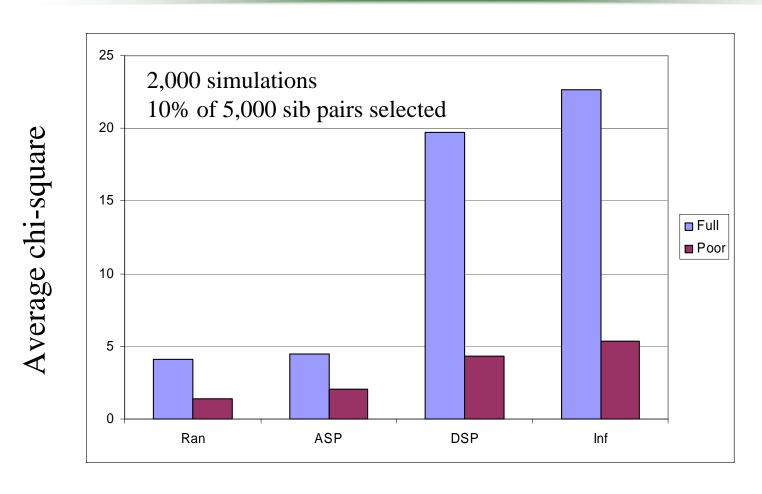
Average chi-squares: selected sib pairs, NOT linked to 20% QTL

20,000 simulations 10% of 5,000 sib pairs selected



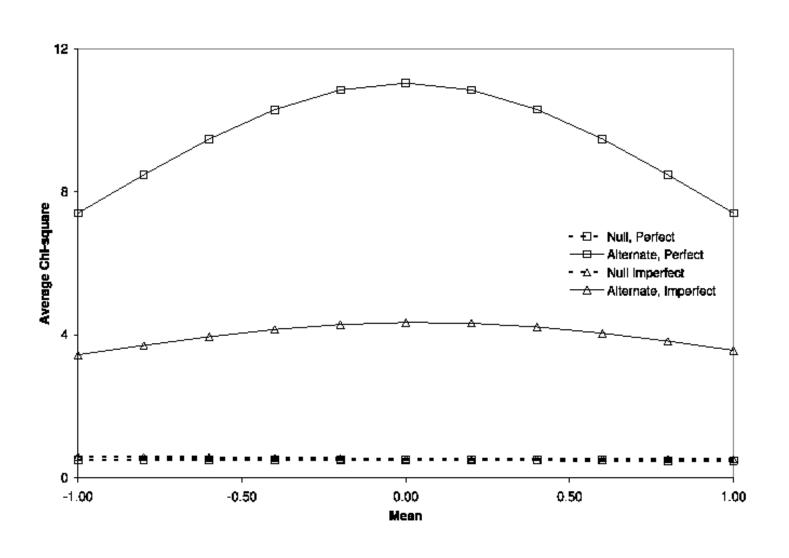
Selection scheme

Average chi-squares: selected sib pairs, linkage to 20% QTL

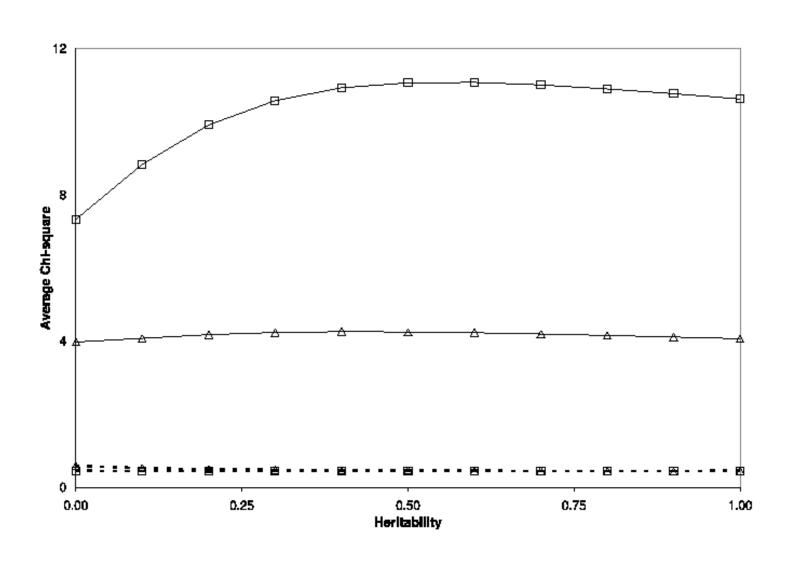


Selection scheme

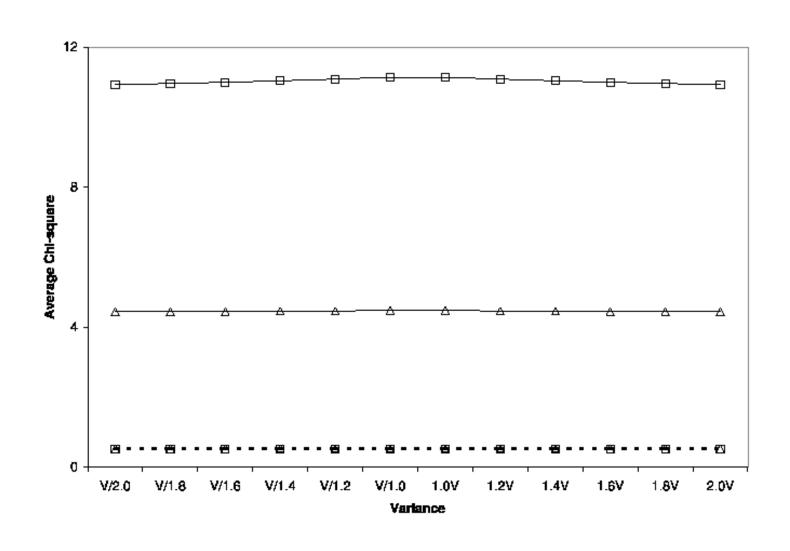
Mis-specification of the mean, 2000 random sib quads, 20% QTL



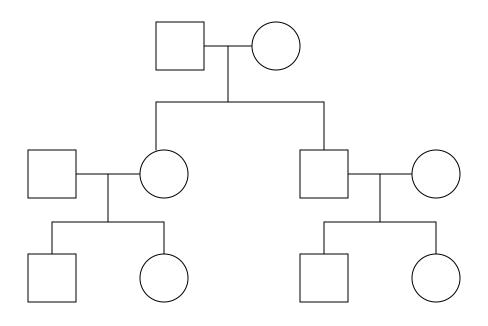
Mis-specification of the covariance, 2000 random sib quads, 20% QTL



Mis-specification of the variance, 2000 random sib quads, 20% QTL



Cousin pedigree



Average chi-squares for 200 cousin pedigrees, 20% QTL

	Poor marker information		Full marker information	
	REG	VC	REG	VC
Not linked	0.49	0.48	0.53	0.50
Linked	4.94	4.43	13.21	12.56

Conclusion

- The regression approach
 - can be extended to general pedigrees
 - is slightly more powerful than maximum likelihood variance components in large sibships
 - can handle imperfect IBD information
 - is easily applicable to selected samples
 - provides unbiased estimate of QTL variance
 - provides simple measure of family informativeness
 - is robust to minor deviation from normality
- But
 - assumes knowledge of mean, variance and covariances of trait distribution in population

Example Application: Angiotensin Converting Enzyme

- British population
- Circulating ACE levels
 - Normalized separately for males / females
- 10 di-allelic polymorphisms
 - 26 kb
 - Common
 - In strong linkage disequilibrium
- Keavney et al, HMG, 1998

Check The Data

- The input data is in three files:
 - keavney.dat
 - keavney.ped
 - keavney.map
- These are text files, so you can peek at their contents, using more or notepad
- A better way is to used pedstats ...

Pedstats

- Checks contents of pedigree and data files
 - pedstats -d keavney.dat -p keavney.ped
- Useful options:

•	pairStatistics	Information about relative p	airs
---	----------------	------------------------------	------

- --pdf
 Produce graphical summary
- --hardyWeinberg Check markers for HWE
- --minGenos 1 Focus on genotyped individuals
- What did you learn about the sample?

Regression Analysis

- MERLIN-REGRESS
- Requires pedigree (.ped), data (.dat) and map (.map) file as input
- Key parameters:
 - --mean, --variance
 - Used to standardize trait
 - --heritability
 - Use to predicted correlation between relatives
- Heritability for ACE levels is about 0.60

MERLIN-REGRESS

- Identify informative families
 - --rankFamilies
- Customizing models for each trait
 - -t models.tbl
 - TRAIT, MEAN, VARIANCE, HERITABILITY in each row
- Convenient options for unselected samples:
 - --randomSample
 - --useCovariates
 - --inverseNormal

The End