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Many linkage studies are performed in inbred populations, either small isolated populations or large populations
with a long tradition of marriages between relatives. In such populations, there exist very complex genealogies
with unknown loops. Therefore, the true inbreeding coefficient of an individual is often unknown. Good estimators
of the inbreeding coefficient (f) are important, since it has been shown that underestimation of f may lead to false
linkage conclusions. When an individual is genotyped for markers spanning the whole genome, it should be possible
to use this genomic information to estimate that individual’s f. To do so, we propose a maximum-likelihood method
that takes marker dependencies into account through a hidden Markov model. This methodology also allows us
to infer the full probability distribution of the identity-by-descent (IBD) status of the two alleles of an individual
at each marker along the genome (posterior IBD probabilities) and provides a variance for the estimates. We
simulate a full genome scan mimicking the true autosomal genome for (1) a first-cousin pedigree and (2) a quadruple-
second-cousin pedigree. In both cases, we find that our method accurately estimates f for different marker maps.
We also find that the proportion of genome IBD in an individual with a given genealogy is very variable. The
approach is illustrated with data from a study of demyelinating autosomal recessive Charcot-Marie-Tooth disease.

Introduction

Many linkage studies are performed in small isolated
populations and in populations with a long tradition of
marriages between relatives. In these populations, the
set of relationships between individuals might not be
known exhaustively, since genealogies can be very com-
plex with potentially unknown loops. Therefore, no ac-
curate knowledge of each individual’s inbreeding coef-
ficient can be gained from the known genealogy. The
inbreeding coefficient (f) is the probability that the two
alleles at any locus in an individual are identical by de-
scent (Malécot 1948). In this article, we consider only
identity by descent (IBD) within an individual.

In the case of homozygosity mapping for recessive
traits (Lander and Botstein 1987), good estimators of f
are important for declaring a region as a candidate for
harboring a susceptibility locus. Indeed the linkage sta-
tistic relies on an increased genome sharing within the
affected individuals, compared with what would be ex-
pected under random segregation in the genealogies of
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the individuals. If we do not know the genealogies ex-
haustively, we may underestimate f. Underestimation of
f may artificially increase the statistics and, hence, the
rate of false-positive results (Miano et al. 2000).

We are interested in developing a methodology to
estimate an individual’s f without requiring any knowl-
edge of the parental relationships. To do so, we need
to characterize the IBD process along the individual’s
genome and estimate its parameters without using the
parental relationships. Stam (1980) was the first to pro-
pose a model for the IBD process along the genome of
an individual in finite random mating populations.
However, he assumed that he could observe continuous
IBD data on the genome, whereas only discrete identity-
by-state (IBS) data can be observed (marker genotypes).
More recently, Abney et al. (2002) used a similar model
and estimated its parameters from the individual’s ge-
nealogy. Here, we propose to rely on the individual’s
marker genotype data to estimate these parameters. To
do so, we use a hidden Markov model (HMM) for the
IBD process of the individual. The IBD transition prob-
abilities depend on the genetic distance between the
markers and two unknown parameters: f, the inbreeding
coefficient of the individual, and a, such that af is the
instantaneous rate of change per centimorgan from no
IBD to IBD.

First, we present the methodology. Then, we show
simulation results for (1) a first-cousin pedigree and (2)
a quadruple-second-cousin (cyclic sibship exchange)
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the Error Model
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pedigree (Thompson 1988), to evaluate the proposed
method and to validate our estimates. Finally, we illus-
trate the method on data from a study of Charcot-Ma-
rie-Tooth (CMT) disease (Charcot and Marie 1886;
Tooth 1886).

Methods

Estimation of the Inbreeding Coefficient through Use
of HMM

We propose here to estimate f for an individual, from
marker data on that individual’s entire autosomal ge-
nome, by means of the maximum-likelihood method.
Latent random variables (the IBD status at the markers)
underlie these observed marker data. A marker k has
either two alleles IBD ( ) or two alleles non-IBDX p 1k

( ). We approximate the IBD process along theX p 0 Xk

genome by a Markov chain. This approximation was
shown to give results close to the true ones for geneal-
ogies such as first-cousin marriages but also for more
complex ones (Thompson 1994). With the Markov ap-
proximation, the IBD status at marker k depends only
on the IBD status at adjacent loci, and the probability
of the IBD statuses along each autosomal chromosome
pair can be written as

Mc

P(X) p P(X FX ) P(X ) , (1)�[ ]k k�1 1
kp2

where Mc is the number of markers on chromosome c.
Therefore, we need only characterize the single-locus
IBD probability and the transition IBD probabilities
between adjacent loci. The single-locus IBD probability

is our parameter of interest: the inbreeding co-P(X )k

efficient f. The transition IBD probabilities are as fol-
lows:

�at �atk kP(X p 1FX p 1) p (1 � e )f � e ,k k�1

�atkP(X p 0FX p 1) p (1 � e )(1 � f ) ,k k�1

�atkP(X p 1FX p 0) p (1 � e )f , andk k�1

�at �atk kP(X p 0FX p 0) p (1 � e )(1 � f ) � e , (2)k k�1

where tk is the genetic distance (in cM) between marker
and k. We assume an absence of genetic interfer-k � 1

ence, and the genetic map is assumed to be known with-
out error. In the first line of equation (2) describing the
probability of staying IBD, the final term, , corre-�atke
sponds to no change in the coancestry over a segment
of length tk, and the other term, , corresponds�atk(1 � e )f
to a change in the coancestry, in which case IBD results
with equilibrium probability f. Note that our model is
similar to that of Stam (1980). Indeed, in his model, he

assumes that the lengths of both IBD and non-IBD seg-
ments are distributed exponentially, with mean lengths

and , respectively. Our model corresponds to his,1/a 1/l
with and .a p a(1 � f ) l p af

From equations (1) and (2), we can compute the like-
lihood for f and a if we observe the IBD statusL (f,a)x

at the markers. However, only the genotypes arex Y
observed at the markers. The previous approximation
allows us to use an HMM to calculate the probability
of the marker genotype data. For genotype data onYc

the autosomal chromosome pair c, we have

L (f,a) p P(YFf,a) p P(YFX p x)L (f,a)�Y c c xc
x

p P(YFX p x)P(X p xFf,a)� c
x

Mc

p P(YFX p x )� �[ ]k k k
kp1x

Mc

# P(X p x FX p x ,f,a) P(X p x Ff ) .�[ ]k k k�1 k�1 1 1
kp2

This likelihood can then be calculated using theLYc

Baum algorithm (Baum 1972; Boehnke and Cox 1997;
Epstein et al. 2000), which uses a recurrence relationship
(Mc times) on one-dimensional sums to compute this Mc-
dimensional sum. The algorithm goes forward along the
genome to compute recursively

∗R (x) p P(Y , j p 0 … k � 1, X p x)k j k

∗p P(X p xFX p x )� k k�1∗x

∗ ∗ ∗# P(Y FX p x )R (x ) ,k�1 k�1 k�1

with . From (where∗ ∗R (x) p P(X p x) R M p1 1 M

), we can calculate the probability of :22� M Yccp1

∗ ∗ ∗P(YFf,a) p P(Y FX p x )R (x ) .� M M M∗x

The probability of Yk is determined by Xk and is a
function of the allele frequencies at marker k (table 1).
We have also included a simple model for genotyping
errors and mutations similar to the one of Broman and
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Weber (1999). When the genotype is missing at aYk

marker k, we sum over all possible genotypes, regardless
of the IBD status , so for all x. TheX P(YFX p x) p 1k k k

probability of Xk is determined by , as presented inXk�1

equation (2).
We perform numerical maximization of ln L (f,a) pY

through use of GEMINI (Lalouel 1979)22� ln L (f,a)Ycp1 c

to obtain the maximum-likelihood estimates (MLEs) of
f and a, hereafter denoted as and , respectively. Toˆ ˆf a
obtain variance estimates for and , we need to com-ˆ ˆf a
pute the observed information matrix . The varianceIY

of is then , and the varianceˆ ˆ �1 �1f V(f ) p (I � I I I )11 12 22 21

of is , where Iij is the element�1 �1ˆ ˆa V(a) p (I � I I I )22 21 11 12

from the ith row and jth column of . This observedIY

information is the negative curvature of the log-like-IY

lihood surface at its maximum. The informationln LY

provided by the observed data about the parametersI YY

f and a is equal to the information that would be pro-
vided by the latent IBD process (since the distributionX
of given does not depend on f and a) minus theY X
penalty of observing only and not (Sundberg 1974;Y X
Louis 1982):

I p I � I . (3)Y X XFY

When the notation andl̇ (f,a) p � ln L (f,a)/�(f,a)X X

is used, we have¨ 2 2l (f,a) p � ln L (f,a)/�(f,a) I pX X X

. is the expected information from¨ ˆ ˆ�E [l (f,a)FY] I XX X

conditional on the observed genotype data . Then, theY
penalty term in equation (3) for not observing the IBD
status at the markers is

ˆ˙[ ]ˆI p V l (f,a)FYXFY X

ˆ ˆ T˙ ˙[ ]ˆ ˆp E l (f,a)l (f,a) FYX X

Tˆ ˆ˙ ˙[ ] [ ]ˆ ˆ�E l (f,a)FY E l (f,a)FY .X X

Since each term of equation (3) is a conditional ex-
pectation, each one can be estimated by a Monte Carlo
method sampling from its joint posterior distributionX

. We start with sampled from .P(XFY) X P(X p xFY)M M

Then, is obtained by sampling fromX P(X pk�1 k�1

as we go backward along the∗xFX p x ,X , … ,X ,Y)k k�1 M

genome for . These probabilities are easilyk p M … 2
obtained from the forward-backward Baum algorithm
(Baum et al. 1970). Indeed,

∗R (x)P(Y FX p x)M M MP(X p xFY) p ,M ∗ ∗ ∗�R (x )P(Y FX p x )M M M∗x

and, with the HMM structure, we have

∗P(X p xFX p x ,X , … ,X ,Y)k�1 k k�1 M

∗p P(X p xFX p x ,Y , j p 1 … Y )k�1 k j k�1

∗R (x)k�1∗p P(X p x FX p x)P(Y FX p x) .k k�1 k�1 k�1 ∗ ∗R (x )k

Simulation Study

We evaluate our proposed methodology by simula-
tion. First, we want to validate our estimates of f and
a. Then, we study their sensitivity to misspecification of
marker allele frequencies. We generate, for individuals
belonging to two different genealogies, 1,000 replicates
of a full-genome scan composed of 22 autosomal chro-
mosome pairs mimicking the true genome and giving a
total length of ∼33 morgans (through use of the Gene-
drop program of MORGAN2.5 [available from the Pan-
gaea Web site]) for three different marker maps. For each
marker, the true IBD status can be determined by making
use of the founder allele labels.

The two genealogies considered are first cousin (here-
after denoted as “1C”) and quadruple second cousin
(cyclic type; “4#2C”), as shown in figure 1. These two
genealogies (g1 and g2, respectively) have the same ex-
pected proportion of genome IBD (f p f p 1/16 pg g1 2

) but different distributions of this IBD along the0.0625
genome (and, hence, different values of a). For 4#2C,
one expects to see smaller IBD blocks than for 1C, be-
cause of more remote common ancestors, and also to
see more of these blocks, because of the multiple com-
mon ancestors. We compute the exact two-locus in-
breeding coefficient from the genealogy (through use of
the kin program of MORGAN2.5 [available from the
Pangaea Web site]) for and solve1 cM � t � 10 cM

�atP(IBD at both of 2 loci t cM apart) p f [(1 � e )f �
(from eq. [2]) for a, with or . The�ate ] f p f f p fg g1 2

values of a are not sensitive to t, and we get an expected
a from the genealogy: for 1C anda ≈ 0.063 a ≈g g1 2

for 4#2C. This implies that, for 1C, the expected0.084
mean IBD block length is cM and,�1[a (1 � f )] ≈ 17g g1 1

for 4#2C, cM. We chose these two�1[a (1 � f )] ≈ 13g g2 2

genealogies because they are likely to be found in reality
and have the same expected proportion of genome IBD
but different a values.

For each replicate, we consider three different marker
map scenarios: (S1) SNPs every 1.67 cM, with allele
frequencies 0.4/0.6 (1,972 markers); (S2) microsatellites
every 5 cM, with five equifrequent alleles (672 markers);
and (S3) microsatellites every 10 cM (347 markers). For
each marker map scenario, we estimate f and a from the
marker genotype data through use of our HMM. We
call these estimators and . From the true marker IBDˆ ˆf a
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Figure 1 Quadruple-second-cousin pedigree (cyclic type)

status, we compute the proportion of markers IBD
( ), the expected value of which is for 1C andf̂ f ftrue g g1 2

for 4#2C. Then, we evaluate how estimating marker
allele frequencies on a small sample could impact the
estimates of f and a. For each replicate, we estimate the
allele frequencies at each marker from a sample of 30
control individuals drawn from the population in which
patients were studied and the allele frequencies are
known. For the SNP map (S1), we sample our controls
from a population with allele frequencies 0.4/0.6 for all
markers and call the scenario S1′. For the microsatellite
maps (S2 and S3), we sample the 30 controls from a
population with allele frequencies 0.2/0.2/0.2/0.2/0.2
and call the scenarios S2′ and S3′, respectively. Finally,
we look at the impact of having maps in which the
markers do not have equifrequent or nearly equifrequent
alleles. For each replicate, we still have the same true
marker IBD status as we did previously, but now the
SNP map has allele frequencies 0.2/0.8 (map scenario
Z1) and the microsatellite maps have allele frequencies
0.02/0.08/0.3/0.3/0.3 (map scenarios Z2 and Z3, for the
5-cM and 10-cM spacing, respectively). For these three
map scenarios, we look at the sensitivity of and toˆ ˆf a
the estimation of marker allele frequencies from a small
control sample of 30 individuals (called Z1′ for the SNP
map, Z2′ for the 5-cM microsatellite map, and Z3′ for
the 10-cM microsatellite map). Whenever an allele was
not observed in the control sample, we gave this allele
a frequency of 0.01 and recomputed the other allele
frequencies so that the frequencies still added to 1.

In all cases, we present the median values over all the
replicates, along with the observed 95% CI. We show
median values rather than mean ones, because a is a
convex monotone function of the transition IBD prob-

abilities. Thus, the mean value of the estimates provides
an overestimate of the expected value of , but the me-â
dian value of the estimates does not. For f, the median
was equal to the mean in our simulations. Finally, wef̂
also look at the correlation between and over theˆ ˆf ftrue

simulation replicates for the three map scenarios S1, S2,
and S3.

Results

Simulation Results

Table 2 shows the median values of the estimates of
f and a under the simulation conditions for the three
map scenarios (S1, S2, and S3) and both 1C and 4#2C.
For both genealogies, the median values of are veryf̂
close to the proportion of genome IBD expected for these
two genealogies, . The median esti-f p f p 0.0625g g1 2

mates are also very similar among all marker maps. The
95% CI is wider at 10 cM than at 5 cM for the micro-
satellite marker maps. Indeed, for the same level of poly-
morphism, less information is provided about the IBD
status at one marker by the adjacent marker for looser
maps, in comparison with tighter ones. Similarly, for
both genealogies and all marker maps, the median values
of are very close to the expected andâ a ≈ 0.063g1

, for 1C and 4#2C, respectively. The CI fora ≈ 0.084g2

is rather sensitive to marker density, and we observeâ
some estimates 11 at 10 cM. This reflects the fact that,
with a 10-cM map, there are too few stretches of IBD
markers that can be observed to allow a precise estimate
of this parameter. and are good estimates of f and aˆ ˆf a
on average, but the variability in the estimates seems
quite large.
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Table 2

Median Estimates of f and a and 95% CIs over All Replicates, from
Marker Genotypes under Three Map Scenarios (S1, S2, and S3) for
Offspring of First Cousins (1C) and Quadruple Second Cousins (4#2C)

Simulationa (95% CI)f̂ (95% CI)â

1C, , :f p .0625 a p .063g g1 1

S1 .066 (.021–.123) .063 (.022–.165)
S2 .064 (.023–.123) .063 (.021–.195)
S3 .065 (.012–.133) .066 (.017–1.182)

4#2C, , :f p .0625 a p .084g g2 2

S1 .063 (.022–.114) .088 (.037–.226)
S2 .063 (.020–.114) .086 (.032–.240)
S3 .064 (.006–.127) .089 (.024–1.278)

a ( , ) and ( , ) are the expected (f, a) for 1C and 4#2C, respec-f a f ag g g g1 1 2 2

tively. Each simulation included 1,000 replicates. S1 p SNPs every 1.67 cM,
frequency .4/.6; S2 p microsatellites every 5 cM, five alleles, frequency .2/.2/
.2/.2/.2; S3 p microsatellites every 10 cM, five alleles, frequency .2/.2/.2/.2/
.2.

Table 3

Median Estimates of f and 95% CI over All
Replicates, from IBD Data ( ) and from Markerf̂true

Genotypes ( ) under Three Map Scenarios (S1, S2,f̂
and S3) for Offspring of First Cousins

Simulationa (95% CI)f̂true (95% CI)f̂

S1 .061 (.024–.120) .066 (.021–.123)
S2 .061 (.024–.120) .064 (.023–.123)
S3 .060 (.023–.118) .065 (.012–.133)

a Each simulation included 1,000 replicates. S1 p
SNPs every 1.67 cM, frequency .4/.6; S2 p micro-
satellites every 5 cM, five alleles, frequency .2/.2/.2/
.2/.2; S3 p microsatellites every 10 cM, five alleles,
frequency .2/.2/.2/.2/.2.

Since very similar results were obtained for both 1C
and 4#2C, only results for 1C are presented hereafter.
To evaluate how much of this variability is due to our
method, we compare our estimate ( ) to the proportionf̂
of markers IBD ( ) rather than to the inbreeding co-f̂true

efficient expected from the genealogy. Table 3 gives
and the estimates obtained from the observed IBSf̂true

data with the three marker maps (S1, S2, and S3) for
1C. The table shows that, even when the true IBD status
is known, there is a large variability in . This meansf̂true

that two individuals with the same genealogy may be
characterized by very different values of f. For instance,
an offspring of 1C ( ) can have as little asf p 0.0625g1

3% or as much as 12% of his or her genome IBD. In
addition, for S1 and S2 maps, both the median and 95%
CI for are very similar to the ones for , althoughˆ ˆf ftrue

the variability of is always slightly larger because thef̂
IBD status has to be inferred from the IBS data. For S3,
we can see that the variability of the estimate is muchf̂
larger than that of , because marker genotypes everyf̂true

10 cM do not provide good information on the hidden
IBD status at the markers.

Figure 2 shows the correlation between and ,ˆ ˆf ftrue

with each dot corresponding to a simulation replicate
for 1C. The correlation between and is very highˆ ˆf ftrue

(0.89) when marker map S1 is used. Similar results
were also observed for 4#2C, with a correlation of
0.84 for marker map S1. Hence, is a good estimatef̂
of the proportion of markers IBD, and it also reflects
well the high variability of this proportion. Again, we
can see that the correlation is not as good for the es-
timates obtained from markers observed only every 10
cM (map S3).

Table 4 shows the sensitivity of our estimations to
marker allele frequency accuracy for 1C, looking at
marker map scenarios S1, S2, and S3. For all marker
maps, we observe a small upward bias for the estimates

of f when the control individuals are drawn from the
same population as the patients (S1′, S2′, and S3′). The
largest bias is observed for the 10-cM map S3′ but is
still within the 95% CI of . When the genotype dataf̂
are simulated with markers having a rare allele (table
5), results are very similar, but the variability is slightly
increased (especially for the 10-cM map) because of the
decreased informativeness of each marker.

Application to Real Data: Families with CMT Disease

CMT disease is the most frequent inherited neurop-
athy. On the basis of motor-nerve conduction velocities
(MNCVs) at the median nerve, two main types can be
distinguished: the axonal type (MNCV 140 m/s) and the
demyelinating type (MNCV !35 m/s) (Harding and Tho-
mas 1980; Bouche et al. 1983). For both types, modes
of inheritance can be autosomal dominant, autosomal
recessive, or X-linked.

We had genome-scan data for 26 unrelated individ-
uals affected with demyelinating CMT and originat-
ing from the Mediterranean basin (Northern Africa,
France, and Italy). The mode of inheritance seemed
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Figure 2 Estimated f ( ) versus marker IBD proportion ( ) for offspring of first cousins under 1.67-cM SNP map with marker alleleˆ ˆf ftrue

frequencies 0.4/0.6 (S1) (A), 5-cM microsatellite map with marker allele frequencies 0.2/0.2/0.2/0.2/0.2 (S2) (B), and 10-cM microsatellite map
with marker allele frequencies 0.2/0.2/0.2/0.2/0.2 (S3) (C). The solid line represents .ˆ ˆf p ftrue

likely to be recessive: all parents of the affected indi-
viduals were clinically healthy, without neurological
signs of peripheral neuropathy. In addition, all patients
were tested for the PMP22 duplication on chromosome
17 (the most frequent causative gene for the dominant
form of demyelinating CMT) and the results were neg-
ative. Finally, parents of an affected individual were
always related: most couples were reported as first
cousins, two were reported as second cousins, and one
was reported as first cousins with paternal grandpar-
ents also being first cousins. For six individuals, the

parental relationships were not precisely reported.
Hence, for these six individuals, the usual LOD-score
calculations could not be performed.

The marker map had microsatellite markers spaced at
∼10 cM (for a total of 376 markers) and with an average
expected heterozygosity of 0.79. We estimated the
marker allele frequencies for the parents of the affected
individuals, when available, not taking into account
their relatedness. This will potentially increase the fre-
quency of rare alleles at a marker.

We used our method to study the inbreeding coeffi-
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Table 4

Median Estimates of f and 95%
CIs over All Replicates, for
Offspring of First Cousins, Using
Marker Genotypes

Simulationa (95% CI)f̂

S1 .066 (.021–.123)
S1′ .068 (.023–.127)
S2 .064 (.023–.123)
S2′ .071 (.027–.130)
S3 .065 (.012–.133)
S3′ .073 (.020–.140)

a Marker allele frequencies are
the theoretical ones (S1, S2, and S3)
or were estimated on a control sam-
ple of 30 individuals (S1′, S2′, and
S3′). Each simulation included
1,000 replicates. S1 p SNPs every
1.67 cM, frequency .4/.6; S2 p mi-
crosatellites every 5 cM, frequency
.2/.2/.2/.2/.2; S3 p microsatellites
every 10 cM, frequency .2/.2/.2/.2/
.2.

Table 5

Median Estimates of f and 95%
CIs over All Replicates, for
Offspring of First Cousins, Using
Marker Genotypes

Simulationa (95% CI)f̂

Z1 .065 (.019–.124)
Z1′ .070 (.022–.128)
Z2 .065 (.020–.127)
Z2′ .071 (.023–.132)
Z3 .066 (.000–.139)
Z3′ .076 (.012–.148)

a Marker allele frequencies are
the theoretical ones (Z1, Z2, and
Z3) or were estimated on a control
sample of 30 individuals (Z1′, Z2′,
and Z3′). Each simulation included
1,000 replicates. Z1 p SNPs every
1.67 cM, frequency .2/.8; Z2 p mi-
crosatellites every 5 cM, frequency
.02/.08/.3/.3/.3; Z3 p microsatelli-
tes every 10 cM, frequency .02/.08/
.3/.3/.3.

cients of all 26 affected individuals. Figure 3 shows the
estimates of f we obtained for each individual. The val-
ues of the estimates ranged from 0 to 0.167. The six
affected individuals with no genealogical information
had in the lower part of this range, between 0 andf̂
0.061.

This application illustrates how genomic data can be
used to provide estimates of f when no information on
the genealogy is available. However, our estimates have
to be taken with caution, for two reasons. The marker
map has a mean marker spacing of 10 cM, and some
marker genotypes are missing. As we have shown by
simulation, a denser map is necessary for reliable esti-
mations. In addition, we do not have a good control
sample for the marker allele frequency estimation and,
as we showed, it may lead to overestimation of .f̂

Discussion

In small isolated populations and in populations with a
long tradition of marriages between relatives, there exist
very complex genealogies with unknown loops. There-
fore, the inbreeding coefficient f of an individual is often
unknown. Here, we have presented a method that can
reliably estimate the individual’s f from marker data on
his or her entire genome, without requiring any knowl-
edge of the genealogy.

We have found by simulations that our estimator is
unbiased. There is a very good correlation between our
estimator and the true proportion of genome IBD, as
long as maps are dense enough. Our estimator also re-
quires good estimates of marker allele frequencies. We
have shown that estimating marker allele frequencies

from a small sample of control individuals will always
tend to slightly overestimate the inbreeding coefficient.

We have also found very different estimates of f for
two individuals with the same genealogy. This is not a
result of our estimation method but represents the true
variability of the proportion of genome IBD. The ob-
served variability is due to the finite length of the human
genome, which leads to a small number of independent
observations in the individual’s genome. This variability
in the proportion of genome IBD around the value ex-
pected from the individual’s genealogy had also been
pointed out by Stam (1980).

From the estimation of the parameters f and a, one
can compute the IBD probabilities at each marker of
the genome of the individual (posterior IBD probabil-
ities) via the Baum algorithm (Baum et al. 1970). This
can then be used to perform a homozygosity map-
ping–type analysis even when no genealogical infor-
mation is available for the affected individuals. For each
affected individual, the posterior IBD probability at a
marker can be controlled for his or her “genomic” in-
breeding coefficient. Accumulation, over independent
affected individuals, of excess sharing at a marker will
be considered as evidence for the presence of a recessive
gene in the neighborhood.

Finally, this method can be generalized to other kinds
of linkage analyses in inbred populations. For instance,
we have previously shown that the maximum LOD
score affected-sib-pair method (Risch 1989) is quite sen-
sitive to an underestimation of the parental relationships
(Leutenegger et al. 2002). We are currently extending
our method to a pair of individuals for application in
affected-sib-pair analyses in inbred populations. In that
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Figure 3 Estimated f ( ) for the 26 individuals with CMT disease.f̂
Solid lines represent . SEs were obtained from the observedf̂ � SE
Fisher information matrix with 8,000 Monte Carlo realizations. 1C�
p first-cousin offspring whose paternal grandparents are also first
cousins; 1C p first-cousin offspring; 2C p second-cousin offspring;
? p no genealogical information. is the proportion of genome IBDfg

expected from the genealogy.

case, for each sib pair, we are estimating the maternal
and paternal inbreeding coefficients, the parental kin-
ship coefficient, and the corresponding a values.
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Paris

Miano MG, Jacobson SG, Carothers A, Hanson I, Teague P,
Lovell J, Cideciyan AV, Haider N, Stone EM, Sheffield VC,
Wright AF (2000) Pitfalls in homozygosity mapping. Am J
Hum Genet 67:1348–1351

Risch N (1989) Genetics of IDDM: evidence for complex in-
heritance with HLA. Genet Epidemiol 6:143–148

Stam P (1980) The distribution of the fraction of the genome
identical by descent in finite random mating populations.
Genet Res Camb 35:131–155

Sundberg R (1974) Maximum likelihood theory for incomplete
data from an exponential family. Scand J Statist 1:49–58

Thompson EA (1988) Two-locus and three-locus gene identity
by descent in pedigrees. IMA J Math Appl Med Biol 5:
261–279

——— (1994) Monte Carlo estimation of multilocus auto-
zygosity probabilities. In: Sall J, Lehman A (eds) Proceedings
of the 1994 Interface Conference. Interface Foundation of
North America, Fairfax Station, VA, pp 498–506

Tooth H (1886) The peroneal type of progressive muscular
atrophy. PhD thesis, Cambridge University, Cambridge, UK


