
ORIGINAL INVESTIGATION

Effects of adenosine A2A receptor stimulation
on cocaine-seeking behavior in rats

Ryan K. Bachtell & David W. Self

Received: 28 April 2009 /Accepted: 12 July 2009 /Published online: 30 July 2009
# Springer-Verlag 2009

Abstract
Rationale Dopamine (DA) receptor stimulation in the
nucleus accumbens (NAc) plays an important role in
regulating cocaine-seeking behavior. Adenosine receptors
antagonize the effects of DA receptor stimulation on
intracellular signaling, neuronal output, and behavior.
Objectives The goal of the present study is to determine the
effects of adenosine A2A receptor stimulation on reinstate-
ment of cocaine-seeking behavior in rats.
Methods Rats were trained to lever press for cocaine in daily
self-administration sessions on a fixed-ratio 1 schedule for
3 weeks. After 1 week of abstinence, lever pressing was
extinguished in six daily extinction sessions. We subsequently
assessed the effects of the adenosine A2A receptor agonist,
CGS 21680, on cocaine-, quinpirole (D2 agonist)-, and cue-
induced reinstatement to cocaine seeking. We also assessed
the effects of CGS 21680 on sucrose seeking in rats
extinguished from sucrose self-administration.
Results Pretreatment of CGS 21680 dose-dependently
blunted cocaine-induced reinstatement (15 mg/kg, i.p.).
Pretreatment with CGS 21680 (0.03 mg/kg, i.p.) also
attenuated quinpirole- and cue-induced reinstatement. A
minimally effective dose of CGS 21680 failed to alter
cocaine-induced locomotor activity or sucrose seeking.
Conclusions Stimulation of adenosine A2A receptors antag-
onizes reinstatement of cocaine seeking elicited by cocaine,

DA D2-receptor stimulation, and cocaine-conditioned cues.
These findings suggest that adenosine A2A receptor
stimulation may oppose DA D2 receptor signaling in the
NAc that mediates cocaine relapse.
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Introduction

Relapse to drug seeking is induced by exposure to drug-
associated cues and pharmacological stimuli that activate
the mesolimbic dopamine (DA) system (Shalev et al. 2002).
The mesolimbic DA system is composed of DA cells in the
ventral tegmental area (VTA) that terminate in forebrain
regions such as the nucleus accumbens (NAc). DA release in
the NAc targets two major classes of DA receptors that are
differentiated by their opposing effects on intracellular
signaling cascades. DAD1 receptors increase adenylyl cyclase
activity, while DA D2 receptors decrease activity of this
enzyme (Lachowicz and Sibley 1997). These DA receptor
subtypes are also distinguished by differential expression
patterns on distinct subtypes of NAc neurons. Although there
is evidence for co-localization in the same neurons (Aizman
et al. 2000; Schwartz et al. 1998), D1 receptors exist primar-
ily on neurons expressing substance P and dynorphin,
whereas D2 receptors exist primarily on neurons expressing
enkephalin. These two distinct populations of NAc neurons
differ in their projection targets and reflect the direct and
indirect striatal output pathways, respectively (Aubert et al.
2000; Lu et al. 1998; Steiner and Gerfen 1998).

Chronic cocaine self-administration increases behavioral
responses mediated by DA D2 receptors. Thus, repeated
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cocaine administration produces cross-sensitization with
DA D2 receptor agonists (Ujike et al. 1990) and animals
with high self-regulated cocaine intake patterns display
greater D2 receptor-induced locomotion (Edwards et al.
2007). In addition, reinstatement of cocaine seeking is
elicited by systemic and intra-NAc stimulation of D2

receptors (Bachtell et al. 2005; De Vries et al. 1999; Dias
et al. 2004; Khroyan et al. 2000; Schmidt et al. 2006;
Schmidt and Pierce 2006; Self et al. 1996). Thus,
amplification of D2-mediated behaviors following chronic
cocaine administration may enhance relapse elicited by
cocaine-conditioned cues and pharmacological stimuli by
targeting D2 receptors (Cervo et al. 2003; Gal and Gyertyan
2006). Tempering enhancements in D2 receptor-mediated
behaviors following cocaine administration may provide
effective treatments for curbing relapse vulnerability.

Adenosine functions as a neuromodulator of dopamine
neurotransmission and recent studies suggest that stimula-
tion of adenosine A2A receptors oppose many behavioral
effects of cocaine. Thus, stimulation of A2A receptors
reduces both the development and expression of cocaine
sensitization (Filip et al. 2006) and impairs the initiation of
cocaine self-administration (Knapp et al. 2001). Adenosine
A2A receptor antagonists, on the other hand, exacerbate
cocaine sensitization (Filip et al. 2006) and enhance
cocaine-evoked discriminative stimulus effects (Justinova
et al. 2003). While the exact mechanisms of these A2A

receptor effects are not known, they may involve reciprocal
regulation of DA D2 receptors through receptor heterome-
rization and/or opposing intracellular signaling cascades
(Fuxe et al. 2003).

Adenosine A2A receptors are primarily localized to
striatal regions in the brain where they are co-expressed
with DA D2 receptors on enkephalin-containing neurons
(Dixon et al. 1996; Fink et al. 1992; Svenningsson et al.
1998). Interestingly, A2A and D2 receptors exert a number
of effects that oppose one another on intracellular signaling
cascades, cellular functioning, and behavioral responses.
Stimulation of A2A receptors decreases the affinity of D2

receptors for dopamine (Ferre et al. 1991b), counteracts D2

receptor-mediated signal transduction (Yang et al. 1995),
opposes the effects of DA receptor stimulation on imme-
diate early gene expression in the striatum (Morelli et al.
1994; Svenningsson et al. 1999a), and reverses D2-induced
inhibition of GABA output to the pallidum (Ferre et al.
1993). Consequently, adenosine A2A receptor stimulation
exerts behavioral effects that are functionally similar to DA
receptor antagonists (Barraco et al. 1993; Brown et al.
1991; Heffner et al. 1989; Rimondini et al. 1997; Zarrindast
et al. 1993).

Based on the aforementioned relationship between A2A

and D2 receptors, stimulation of A2A receptors would
decrease DA neurotransmission and consequently relapse

behaviors mediated by D2 receptor signaling. In the present
set of experiments, we tested the hypothesis that stimulation
of adenosine A2A receptors will blunt cocaine seeking using
an animal model of relapse. We trained animals to self-
administer cocaine and tested the effects of adenosine A2A

receptor stimulation on cocaine seeking following extinc-
tion training. The effects of adenosine A2A receptor
stimulation were evaluated on cocaine seeking elicited by
cocaine, the D2 receptor agonist, quinpirole, and cocaine-
associated cues. We used the A2A agonist, CGS 21680, to
stimulate A2A adenosine receptors since the specificity of
CGS 21680 binding to A2A receptors in nucleus accumbens
is abolished in adenosine A2A but not A1 receptor knock-
out mice (Halldner et al. 2004), and is widely used as a
ligand for stimulating striatal adenosine A2A receptors
(Cunha et al. 1996; Jarvis et al. 1989). In addition, recent
work has demonstrated that motor depression induced by
the A2A agonist, CGS 21680, but not the A1 agonist, N6-
cyclopentyladenosine, was specifically blocked by the A2A

antagonist, MSX-3, and not an A1-specific antagonist
(Karcz-Kubicha et al. 2003).

Materials and methods

Animals and housing conditions

Male Sprague–Dawley rats initially weighing 275–325 g
(Charles River Laboratories, Kingston, NY, USA) were
individually housed in wire cages with food and water
available ad libitum. Experiments were conducted during
the light cycle of a 12:12-h light:dark cycle (lights on at
0700 hours) in accordance with guidelines established by
the National Institute of Health and the Institutional Animal
Care and Use Committee at the University of Texas
Southwestern Medical Center.

Cocaine self-administration procedure

Self-administration and reinstatement testing were per-
formed in operant conditioning chambers (Med-Associates,
St. Albans, VT, USA) equipped with two response levers
and an infusion pump system as previously described
(Edwards et al. 2007). Animals were initially trained to
lever press for sucrose pellets to facilitate acquisition of
cocaine self-administration. These rats were food restricted
to prevent weight gain, and trained to lever press for
sucrose pellets on a fixed ratio 1 (FR1) reinforcement
schedule until acquisition criteria had been achieved (100
sucrose pellets in two consecutive sessions). After lever-
press training, animals were fed ad libitum for at least 1 day
prior to surgical implantation with a chronic intrajugular
catheter as previously described (Self et al. 1998).
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Following at least 5–7 days’ recovery from surgery,
animals were allowed to self-administer intravenous co-
caine (0.5 mg/kg/50 μl injection) on a fixed ratio 1 (FR1)
reinforcement schedule in daily 4-h sessions for 5–6 days/
week. Cocaine injections were delivered over 2.5 s concur-
rent with the illumination of a cue light above the active
lever, and followed by an additional 12.5-s time out period
(TO 15 s) when the house light remained off and
responding was without consequence. Inactive lever
responses produced no consequence throughout testing.

Extinction/reinstatement testing

After a minimum of 15 cocaine self-administration ses-
sions, animals remained in their home cages for 7 days of
abstinence. On days 8–13 of abstinence, animals returned to
the operant conditioning chambers for extinction training in
the absence of cocaine reinforcement in 4-h test sessions.
Responses on the lever that previously delivered cocaine
injections during self-administration (drug-paired lever) and
on the inactive lever were recorded but had no programmed
drug or cue delivery.

Cocaine-primed reinstatement

The effects of adenosine A2A receptor stimulation on
cocaine-primed reinstatement was tested over repeated
reinstatement sessions to allow for testing of several doses
of the A2A agonist (0.01, 0.03, 0.1, and 0.3 mg/kg, i.p.).
Each test session was initiated with 3 h of extinction
conditions followed by a 1-h reinstatement test period. A
pretreatment of the A2A receptor agonist, CGS 21680
(vehicle, 0.01, 0.03, 0.1, 0.3 mg/kg, i.p.), was administered
5 min prior to a priming injection of cocaine (15 mg/kg, i.p.),
which was followed by a 1-h reinstatement test. Animals
received a maximum of four treatments in a randomized
order although different dose ranges were tested span-
ning the five doses. All animals were tested under the
vehicle pretreatment/cocaine reinstatement condition to
provide a baseline of cocaine-primed reinstatement.
However, all animals did not receive all doses of CGS
21680 due to concerns of residual testing and weaken-
ing of reinstatement responding over repeated trials.
Responses at both drug-paired and inactive levers were
recorded but produced no cue or drug delivery during
testing.

Cue-induced reinstatement

In a separate set of animals, we tested the effects of
adenosine A2A receptor stimulation on reinstatement eli-
cited by cocaine-associated cues. Cue-induced reinstate-
ment of cocaine-seeking behavior was measured in a

4-h reinstatement session consisting of 3 h of extinction
conditions followed by a 1-h cue-primed reinstatement test
period. A pretreatment of vehicle or 0.03 mg/kg CGS
21680 was administered 5 min prior to the cue reinstate-
ment test. This dose was used because it proved most
effective in blunting cocaine-induced reinstatement, while
having little sedative effects. The cue-induced reinstatement
test was initiated with non-contingent (priming) presenta-
tion of the cocaine injection cues delivered every 2 min for
the first 10 min. During the entire session, responding at the
drug-paired lever resulted in response-contingent cue
delivery (2.5 s illumination of cue light and infusion pump,
15 s termination of house light).

Quinpirole-induced reinstatement

In separate study groups, the effect of adenosine A2A receptor
stimulation on dopamine D2 receptor-primed relapse behav-
ior was assessed. Given the longer duration of quinpirole
action relative to cocaine, priming injections of quinpirole
(0, 0.1, 0.3, and 1.0 mg/kg, s.c.) were given before the final
2 h of the session immediately after 2 h of extinction
conditions. A pretreatment of CGS 21680 (0.03 mg/kg, i.p.)
was administered 5 min prior to quinpirole treatment.
Quinpirole doses were administered in randomized order
across test days. Responses at both levers were recorded, but
resulted in no cue or cocaine delivery.

Sucrose reinstatement

Animals were trained to self-administer sucrose pellets on
an FR1:TO 15-s schedule as described above. After 15
daily sessions (100 pellets/session), animals remained in
their home cages for 7 days of “abstinence”, and were then
subjected to extinction training in six daily 4-h sessions.
Following extinction training, animals were tested for
reinstatement of sucrose seeking. A pretreatment of CGS
21680 (0.03 mg/kg, i.p.) was administered 5 min prior to
sucrose reinstatement testing. Reinstatement testing was
initiated by non-contingent sucrose pellet delivery in a
single 1-h test immediately following 1 h of extinction
conditions. During the reinstatement phase, animals were
presented with the non-contingent delivery of a sucrose
pellet every 2 min for 1 h (30 pellets/1 h). Responding at
both levers was recorded, but resulted in no cues or sucrose
pellet delivery.

Locomotor testing

Locomotor activity was recorded in darkened circular test
chambers with a 12-cm-wide runway, equipped with four
pairs of photocells located at 90° intervals around the
1.95-m perimeter. All locomotor tests were performed
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during the light phase of the light:dark cycle. Five days
following cocaine self-administration and reinstatement
procedures, animals were habituated to the locomotor
testing apparatus for 2 h on the day prior to cocaine-
induced locomotor activity testing. On the test day, animals
were again habituated for 2 h, given a pretreatment of
vehicle or CGS 21680 (0.03 mg/kg, i.p.) and administered a
cocaine challenge (15 mg/kg, i.p.) 5 min later. Locomotor
activity was assessed for 2 h.

Data analysis

Cocaine-induced reinstatement data (lever presses) were
analyzed with a mixed design two-factor ANOVA with
lever (within) and CGS 21680/cocaine treatment (between)
as the factors. Quinpirole-induced reinstatement data (lever
presses) were analyzed with a two-factor ANOVA with
quinpirole and CGS pretreatment as the factors. Cue- and
sucrose-induced reinstatement data (lever presses) were
analyzed with a mixed design two-factor ANOVA with the
within factor, reinstatement (extinction vs. cue/sucrose),
and the between factor, pretreatment. The effect of CGS
21680 pretreatment on cocaine-induced locomotor activity
(beam breaks) was analyzed by an unpaired t test. All
interactive effects of the ANOVAs were followed by simple
main effects analyses (one-way ANOVA) and post hoc tests
(Bonferroni’s comparisons, Dunnett’s test or t test). Statis-
tical significance was preset at p<0.05.

Drugs

CGS 21680 [4-[2-[[6-amino-9-(N-ethyl-b-D-ribofuranuro-
namidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic

acid hydrochloride] was purchased from Tocris Bioscience
(Ellisville, MO, USA). Quinpirole [(−)-quinpirole hydro-
chloride] was purchased from Sigma-Aldrich (St. Louis,
MO, USA). Cocaine hydrochloride was obtained from the
National Institute on Drug Abuse (Research Triangle Park,
NC, USA). All drugs were dissolved in sterile-filtered
physiological saline.

Results

Adenosine A2A receptor stimulation dose-dependently
blocks cocaine-induced reinstatement

Figure 1 illustrates that administration of the adenosine A2A

agonist CGS 21680 dose-dependently reduced cocaine-
induced drug seeking. A significant treatment×lever inter-
action (F5,50=5.47, p<0.001) and significant main effects
of treatment (F5,50=5.07, p<0.001) and lever (F1,50=26.32,
p<0.001) were observed. Subsequent analysis of the
interaction found that cocaine treatment significantly
induced drug-paired lever pressing, which was dose-
dependently decreased by pretreatment with CGS 21680
(F5,50=5.29, p<0.001). A statistical trend for reduced
inactive lever pressing following the treatments was
observed (F5,50=2.25, p=0.06).

Because systemic administration of CGS 21680 produ-
ces sedation and reduced sensitized locomotor activity to
psychostimulants (Filip et al. 2006; Rimondini et al. 1997),
we tested the effects of the minimally effective dose of
CGS 21680 (0.03 mg/kg, i.p.) on cocaine-stimulated
locomotor activity. These tests were performed in the same
animals that had self-administered cocaine and were tested

Fig. 1 Administration of the adenosine A2A receptor agonist CGS
21680 dose-dependently blocked cocaine-induced reinstatement. a
Number of cocaine infusions in each 4-h session during the cocaine
self-administration phase. b Extinction training was performed in six
daily sessions 1 week following the last self-administration session.
Responses on the previously drug-paired lever were reduced to levels
comparable to inactive lever responses. c Cocaine-induced reinstate-
ment testing conducted across 5 days following extinction training.
Each reinstatement session included an initial extinction phase (2 h)

that preceded the reinstatement phase. The A2A agonist, CGS 21680,
dose-dependently reduced cocaine-induced drug-paired lever respond-
ing. The numbers of animals in each treatment group is as follows: 0
CGS/saline=7, 0 CGS/cocaine=10, 0.01 CGS/cocaine=10, 0.03
CGS/cocaine=14, 0.1 CGS/cocaine=11, 0.3 CGS/cocaine=4. *Sig-
nificant from vehicle (p<0.05, Bonferroni’s post test), #significant
from 15 mg/kg cocaine with 0 CGS 21680 pretreatment (p<0.05,
Bonferroni’s post test)
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for cocaine-induced reinstatement. As shown in Fig. 2,
pretreatment of CGS 21680 had no effect on cocaine-
induced locomotion at the same dose (15 mg/kg) used for
cocaine priming in reinstatement (t22<1, NS).

Adenosine A2A receptor stimulation blunts
quinpirole-induced reinstatement

Systemic administration of DA D2 receptor agonists
robustly stimulates reinstatement of cocaine seeking in
extinguished animals. Therefore, we tested whether a
pretreatment of CGS 21680 (0.03 mg/kg, i.p.) would
attenuate quinpirole-induced reinstatement using the mini-
mum dose effective at blocking cocaine priming. Figure 3
illustrates the dose-dependent increase in drug-paired lever
pressing resulting from quinpirole administration, which
was attenuated by a pretreatment with 0.03 mg/kg CGS
21680. Significant main effects of pretreatment (F1,44=
8.44, p<0.006) and quinpirole (F3,44=14.29, p<0.001)
were observed; however, the interaction was not significant
(F3,44=1.68, p=0.18). No effects of quinpirole or pretreat-
ment were observed in inactive lever pressing (data not
shown).

Adenosine A2A receptor stimulation reduces cue-induced
reinstatement

Presentation of cocaine-associated cues is sufficient to elicit
reinstatement of cocaine seeking in extinguished animals.
Because this is mediated in part by DA transmission in the
striatum, we tested whether a pretreatment of CGS 21680
(0.03 mg/kg, i.p.) would block cue-induced reinstatement.
Figure 4 illustrates that a CGS 21680 pretreatment signifi-
cantly blunts cue-induced reinstatement. While both pretreat-
ment groups displayed significant increases in drug-paired
lever pressing during the cue presentations compared to the

preceding hour of extinction (Cue—F1,15=40.61, p<0.001),
the CGS 21680 group responded at significantly lower levels
(Pretreatment—F1,15=7.49, p<0.02; Cue×Pretreatment—
F1,15=8.28, p<0.02). No effects of the cue presentation or
CGS 21680 pretreatment were observed on inactive lever
responding (data not shown).

Adenosine A2A receptor stimulation has no effect
on sucrose seeking

Finally, we incorporated a procedural control to account for
any generalized performance effects of CGS 21680
(0.03 mg/kg, i.p.) on reinstatement using non-contingent
delivery of sucrose pellets in animals trained to self-
administer sucrose pellets. Figure 5 illustrates that a
pretreatment of CGS 21680 had no effect on sucrose
reinstatement (Pretreatment—F1,13<1, NS; Sucrose×Pre-
treatment—F1,13<1, NS), despite the significant levels of
sucrose-induced lever pressing (Sucrose—F1,13=11.97, p<
0.005), which was comparable to cue-induced reinstatement
following cocaine self-administration.

Discussion

These findings demonstrate for the first time that pharma-
cological activation of adenosine A2A receptors attenuates
cocaine-seeking behavior. We show that A2A receptor
activation reduces cocaine seeking induced by pharmaco-
logical stimuli such as cocaine and quinpirole and also by
discrete cocaine-associated cues. These findings agree with
previous work demonstrating that A2A stimulation attenu-
ated the development and expression of behavioral sensi-
tization to cocaine and methamphetamine (Filip et al. 2006;
Shimazoe et al. 2000), the expression of cocaine place
conditioning (Poleszak and Malec 2002), and the initiation

Fig. 2 Cocaine-induced locomotor activity was unaltered by a
pretreatment with CGS 21680. a Time course of locomotor activity
illustrating the last 30 min of the habituation period (90–110 min)
followed by the effects of 15 mg/kg cocaine (i.p.) with and without a
pretreatment of 0.03 mg/kg CGS 21680 (i.p.). This dose was chosen

since it was the lowest dose that was effective in reducing cocaine-
induced reinstatement (Fig. 1). b Cocaine-induced locomotor activity
over the first hour in animals pretreated with vehicle or 0.03 mg/kg
CGS 21680 (i.p.). No significant changes in locomotor activity were
observed, n=12/group
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of cocaine self-administration (Knapp et al. 2001). Other
complementary work utilizing pharmacological blockade of
adenosine A2A receptors also supports an antagonistic
effect of A2A receptors on cocaine-mediated behaviors.
Thus, antagonists of A2A receptors enhanced the acute
locomotor effects of cocaine, the development, and the
subsequent expression of cocaine sensitization (Filip et al.
2006). Previous studies also showed a reversal in intracra-
nial self-stimulation current threshold impairments ob-
served during cocaine withdrawal, further suggesting that
A2A receptor antagonism alters behavioral indices of
withdrawal observed during abstinence (Baldo et al. 1999;
Filip et al. 2006). Together, these findings suggest that

adenosine A2A receptor stimulation oppose the effects of
cocaine and cocaine-associated cues. Our findings that CGS
21680 completely abolished drug-paired lever pressing
establish the potential beneficial effects of adenosine A2A

receptor stimulation on cocaine-induced cocaine-seeking
behavior, although cocaine seeking elicited by the D2

agonist, quinpirole, or cocaine-associated cues was only
partially attenuated.

Other work utilizing genetic deletion of the adenosine
A2A receptor report conflicting evidence and paradoxically
display behavioral effects similar to those utilizing phar-
macological stimulation. Thus, mice lacking the A2A

receptor display attenuated locomotor responses to cocaine,
impaired development of amphetamine sensitization, and
reductions in the reinforcing efficacy of self-administered
cocaine (Chen et al. 2000; Chen et al. 2003; Soria et al.
2006). These findings may result from compensatory
changes during development or may reflect the lack of
neuroanatomical specificity of A2A receptor knockdown in
neural circuits regulating these behaviors. Recent work
supports the latter since extra-striatal (forebrain) knock-
down of A2A receptors reduced psychostimulant-induced
locomotion, while striatal-specific knockdown of A2A

receptors enhanced psychostimulant-induced locomotion
akin to pharmacological antagonism (Shen et al. 2008).
These findings further suggest an inhibitory role for
adenosine A2A receptors specifically in the striatum;
however, further study will be required to ascertain the site
of action for reducing cocaine seeking.

Stimulation of the adenosine A2A receptors is known to
activate dopamine D2- and enkephalin-containing neurons
in the striatum that form the indirect pathway (Karcz-
Kubicha et al. 2006). Thus, local stimulation of A2A

Fig. 4 Administration of the adenosine A2A receptor agonist CGS
21680 blunted reinstatement induced by cocaine-associated cues. a
Number of cocaine infusions in each 4-h session during the cocaine
self-administration phase. b Extinction training was performed in six
daily sessions 1 week following the last self-administration session.
Responses on the previously drug-paired lever (solid lines) were reduced
to levels comparable to inactive lever responses (dotted lines). c Cue-
induced reinstatement testing was conducted in a 4-h reinstatement

session that included an initial extinction phase (3 h) that preceded the
reinstatement phase (1 h). Shown in the figure is the third hour of the
extinction phase and the following hour of cue testing. The A2A agonist,
CGS 21680, significantly reduced cue-induced drug-paired lever
responding. *Significant from extinction (p<0.05, Bonferroni post test).
Bar—significant from 0 CGS 21680 pretreatment (t15=3.12, p<0.01),
Vehicle N=8; CGS 21680 N=9

Fig. 3 Administration of the adenosine A2A receptor agonist CGS
21680 blunted dopamine D2 receptor-induced reinstatement. Animals
were trained to self-administer cocaine in 4-h sessions over 3 weeks
and extinguished following a week of abstinence. On the subsequent
5 days, animals were tested for D2 agonist (quinpirole)-induced
reinstatement. As can be seen, pretreatment with 0.03 mg/kg CGS
21680 (i.p.) blunted quinpirole-induced reinstatement at the two
highest doses. *Significant main effect of the CGS 21680 pretreat-
ment, n=5–8/group
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receptors in the dorsal and ventral striatum enhances
GABA input to the globus pallidus and ventral pallidum,
respectively (Mingote et al. 2008; Ochi et al. 2000). It is
plausible that A2A receptor stimulation antagonizes the
heightened sensitivity of dopamine D2 receptors in the
striatum following long-term cocaine administration. In this
manner, A2A receptor stimulation acts similarly to a D2

receptor antagonist in blocking the functional inhibition of
indirect striatal GABA output mediated by D2 receptors.

Not only are A2A and D2 receptors co-localized on the
enkephalin-containing neurons as previously described, the
receptors play an antagonistic and reciprocal role in
modulating cellular function (Ferre 1997; Ferre et al.
1991a). The inhibitory role of adenosine A2A receptor
stimulation on dopamine D2 receptors may reflect opposing
intracellular signaling cascades mediated by A2A and D2

receptors acting independently, or may involve the forma-
tion of A2A/D2 heteromers. Stimulation of A2A receptors
counteracts D2 receptor-mediated signal transduction (Yang
et al. 1995) and opposes the effects of DA receptor
stimulation on immediate early gene expression in the
striatum (Morelli et al. 1994; Svenningsson et al. 1999a).
Thus, A2A receptor-induced activation of stimulatory G
proteins and increases in cAMP production would conse-
quently increase neuron excitability and effectively offset
D2 receptor effects mediated by inhibitory G proteins
(Colwell and Levine 1995; Schiffmann et al. 2007;
Svenningsson et al. 1999a; Tozzi et al. 2007). Some of
the opposing effects also may be dictated by the formation
of heteromeric receptor complexes between postsynaptic
A2A and D2 receptors (Canals et al. 2003; Fuxe et al. 2003;
Hillion et al. 2002). The formation of A2A/D2 receptor
complexes provides inhibitory regulation over dopamine D2

receptor binding and inhibitory G-protein coupling (Ferre et

al. 1991a; Fuxe et al. 1998; Hillion et al. 2002; Torvinen et
al. 2005). The relative contribution of heteromerized and
non-heteromerized A2A and D2 receptors to counteract D2-
mediated signaling remains unclear, especially in the
context of addiction.

Alternatively, it is possible that presynaptic A2A recep-
tors located on glutamate terminals in striatum indiscrim-
inately alter the striatal neuronal function since local
injections of CGS 21680 have been shown to increase
striatal glutamate release (Corsi et al. 1999; Rodrigues et al.
2005). However, previous work has demonstrated that
stimulation of AMPA glutamate receptors in the NAc
induces drug seeking (Cornish et al. 1999) while blockade
of AMPA receptors attenuates cocaine- and cue-induced
drug seeking (Backstrom and Hyytia 2007; Cornish et al.
1999). It therefore does not seem likely that presynaptic
A2A receptor stimulation resulting in striatal glutamate
release would mediate a reduction in cocaine seeking.

It is also possible that the effects of systemic CGS 21680
administration on the reinstatement behavior shown here
are mediated by A2A receptors located outside of the
striatum. While adenosine A2A receptors are most abundant
in striatal regions, low to moderate levels of A2A receptors
are found in other regions such as the medial prefrontal
cortex and the amygdala (Svenningsson et al. 1999b).
These two regions also receive dopaminergic innervation
that is known to be involved in cocaine seeking (McFarland
and Kalivas 2001), and A2A receptor stimulation within
these structures may similarly modulate dopamine trans-
mission. Stimulation of A2A receptors in the prefrontal
cortex decreased sedation time and electroencephalographic
activity, both measures of increased arousal (Van Dort et al.
2009), which were not observed in the present study with
the most effective dose of CGS 21680. The effect of A2A

Fig. 5 Administration of the adenosine A2A receptor agonist CGS
21680 had no effect on sucrose seeking. a Sucrose self-administration
was conducted over 3 weeks. b Extinction training was performed in six
daily sessions 1 week following the last self-administration session.
Responses on the previously sucrose-paired lever (solid line) were
reduced to levels comparable to inactive lever responses (dotted line). c

Sucrose reinstatement testing was conducted in a 2-h reinstatement
session that included an initial extinction phase (1 h) that preceded the
reinstatement phase (1 h). The A2A agonist, CGS 21680, failed to alter
sucrose seeking despite significant responding on the lever previously
paired with sucrose delivery. *Significant from extinction (p<0.05,
Dunnett’s test), Vehicle N=7, CGS 21680 N=8
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receptor stimulation in the amygdala is unclear. Given the
amygdala’s involvement in cue-induced cocaine seeking,
one may predict that stimulation of A2A receptors in the
amygdala would blunt cue-induced cocaine seeking per-
haps through similar antagonism of D2 receptors as found
in the striatum. Future studies will be necessary to fully
elucidate the involvement of A2A receptors in specific brain
circuits regulating drug seeking.

In conclusion, our findings suggest an important antago-
nistic role for adenosine A2A receptor stimulation in
mediating cocaine relapse behaviors. We demonstrate that
stimulation of A2A receptors blunts cocaine seeking induced
by pharmacological and conditioned stimuli in an animal
model of relapse. These findings support the notion that this
effect involves a negative interaction between adenosine A2A

receptors and relapse mediated by D2 receptor stimulation.
Together, these findings suggest that enhancing the inhibi-
tory regulation of dopamine D2 receptors may provide an
effective pharmacological treatment strategy.
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