
Introduction to Hail
Cotton Seed, Technical Lead

Tim Poterba, Software Engineer
Hail Team, Neale Lab

Broad Institute and MGH

Why Hail?
• Genetic data is becoming absolutely massive

Broad Genomics, by the numbers

Why Hail?
• Genetic data is becoming absolutely massive

• gnomAD: 123K exomes, 15K WGS, 40TB
compressed VCF

• UKBB: 500K samples impute 40M variants, 10s
of TB BGEN

Why Hail?
• Genetic data is becoming absolutely massive

• gnomAD: 123K exomes, 15K WGS, 40TB compressed
VCF

• UKBB: 500K samples impute 40M variants, 10s of TB
BGEN

• Power is proportional to Np(1 - p)

• Need massive data, knowledge about the genome,
functional annotation, reference datasets, burden
methods, etc. to detect association

What is Hail?
Hail is a scalable tool for

for doing data science

on genetic data.

What is Hail?
Hail is a scalable tool for

for doing data science

on genetic data.
• Scalable:

• Add more CPUs, get your answer faster.

• Add more resources, compute on bigger data.  

What is Hail?
Hail is a scalable tool for

for doing data science

on genetic data.
• Scalable:

• From 1 core (laptop) to 10,000 core clusters

• Use for QC, analysis of gnomAD (20K WGS, 200K exomes),
40TB compressed VCF

What is Hail?
Hail is a scalable tool for

for doing data science

on genetic data.

Preface

Data science is an exciting discipline that allows you to turn raw
data into understanding, insight, and knowledge. The goal of R for
Data Science is to help you learn the most important tools in R that
will allow you to do data science. After reading this book, you’ll have
the tools to tackle a wide variety of data science challenges, using the
best parts of R.

What You Will Learn
Data science is a huge field, and there’s no way you can master it by
reading a single book. The goal of this book is to give you a solid
foundation in the most important tools. Our model of the tools
needed in a typical data science project looks something like this:

First you must import your data into R. This typically means that
you take data stored in a file, database, or web API, and load it into a
data frame in R. If you can’t get your data into R, you can’t do data
science on it!

ix

What is Hail?
Hail is a scalable tool for

for doing data science

on genetic data.

No reads.

 Functionality
Import/Export
VDS
VCF
GEN
BGEN
PLINK
TSV
UCSC BED
Interval List
FAM
synthetic
JSON
Python

Transform
Query
Filter
Aggregate
Join/Annotate

Analyze
Concordance
Fisher Exact Test
GRM
IBD
Impute sex
Mendel errors
PCA
Regressions:

linear
logistic
linear-mixed

TDT
QC stats

 Architecture
• Interface is Python

• Python functions in turn use Hail expression
language

• Two languages! This is the most confusing part.

• Built on Spark, distributed computing framework

• Hail users don’t need to know Spark (but it can
be useful…)

 Architecture

Where can you run Hail?

• Single computer: laptop to big server

• On the cloud: Google and Amazon clouds both
have products that can run Hail

• To use multiple machines in HPC cluster you
probably need help from your local sysadmin.

Help!
• Extensive documentation: https://hail.is

• Another tutorial! https://hail.is/hail/tutorial.html

• Live chat: https://gitter.im/hail-is/hail

• Discussion forum: http://discuss.hail.is/

• Updates: http://discuss.hail.is/c/updates

https://hail.is
https://hail.is/hail/tutorial.html
https://gitter.im/hail-is/hail
http://discuss.hail.is/
http://discuss.hail.is/c/updates

Read the docs!

• We’ve worked hard to make them not suck.

• Liberal links in the practicals to the documentation.
Explore!

hail Caveats

• Hail is powerful but complicated.

hail Caveats
• Interface is beta

• Interface changing (improving!) often

• Moving towards versioned release next few months

• Does not support all VCF features

• Fixed genotype schema GT:AD:DP:GQ:PL/GP, diploid
genotypes only (but support for sex chromosomes), no
phasing, no symbolic alleles, no CNVs, no gVCF support.

• GRCh37 hardcoded.

Main Python objects

• HailContext: main entry point for Hail
functionality

• VariantDataset: Hail’s representation of a
dataset

• KeyTable: Table-like structure (think data frame)

HailContext

• Main entry point for Hail functionality

• Created once at the beginning of a Hail session or
script:

import hail  
hc = hail.HailContext()

• Calling functions on hc is you how access Hail
functionality

Example
In [1]: import hail

In [2]: hc = hail.HailContext()

In [3]: (hc.import_vcf('hail-practical/sample.vcf')
 ...: .count(genotypes=True))
Out[3]:
{u'callRate': 97.45664739884393,
 u'nCalled': 33720L,
 u'nGenotypes': 34600L,
 u'nSamples': 100,
 u'nVariants': 346L}

Example
In [1]: import hail

In [2]: hc = hail.HailContext()

In [3]: (hc.import_vcf('sample.vcf')
 ...: .count(genotypes=True))
Out[3]:
{u'callRate': 97.45664739884393,
 u'nCalled': 33720L,
 u'nGenotypes': 34600L,
 u'nSamples': 100,
 u'nVariants': 346L}

Example
In [1]: import hail

In [2]: hc = hail.HailContext()

In [3]: (hc.import_vcf('sample.vcf')
 ...: .count(genotypes=True))
Out[3]:
{u'callRate': 97.45664739884393,
 u'nCalled': 33720L,
 u'nGenotypes': 34600L,
 u'nSamples': 100,
 u'nVariants': 346L}

Example
In [1]: import hail

In [2]: hc = hail.HailContext()

In [3]: (hc.import_vcf('sample.vcf')
 ...: .count(genotypes=True))
Out[3]:
{u'callRate': 97.45664739884393,
 u'nCalled': 33720L,
 u'nGenotypes': 34600L,
 u'nSamples': 100,
 u'nVariants': 346L}

Example 2

In [4]: (hc.import_vcf('hail-practical/sample.vcf')
 ...: .filter_genotypes('g.gq > 20')
 ...: .count(genotypes=True))
Out[4]:
{u'callRate': 89.09537572254335,
 u'nCalled': 30827L,
 u'nGenotypes': 34600L,
 u'nSamples': 100,
 u'nVariants': 346L}

Example 2

In [4]: (hc.import_vcf('hail-practical/sample.vcf')
 ...: .filter_genotypes('g.gq > 20')
 ...: .count(genotypes=True))
Out[4]:
{u'callRate': 89.09537572254335,
 u'nCalled': 30827L,
 u'nGenotypes': 34600L,
 u'nSamples': 100,
 u'nVariants': 346L}

Example 2

In [4]: (hc.import_vcf('hail-practical/sample.vcf')
 ...: .filter_genotypes('g.gq > 20')
 ...: .count(genotypes=True))
Out[4]:
{u'callRate': 89.09537572254335,
 u'nCalled': 30827L,
 u'nGenotypes': 34600L,
 u'nSamples': 100,
 u'nVariants': 346L}

Types

• The Hail expression language is typed.

• What is the type of 3?

Types

• The Hail expression language is typed.

• What is the type of 3? Int

Types

• The Hail expression language is typed.

• What is the type of 3? Int

• What is the type of 3.14?

Types

• The Hail expression language is typed.

• What is the type of 3? Int

• What is the type of 3.14? Double

• What is the type of “Hello, world!”?

Types

• The Hail expression language is typed.

• What is the type of 3? Int

• What is the type of 3.14? Double

• What is the type of “Hello, world!”? String

Types
• The Hail expression language is typed.

• What is the type of 3? Int

• What is the type of 3.14? Double

• What is the type of “Hello, world!”? String

• We write 3: Int to indicate that 3 has type Int.
Similarly for 3.14: Double and “Hello,
world!”: String.

Types
• The Hail expression language is typed.

• What is the type of 3? Int

• What is the type of 3.14? Double

• What is the type of “Hello, world!”? String

• 5 and “5” and 5.0 all have different types!

Types

• Int, Double and String are primitive types.

• What is the type of [1, 2, 3]?

Types

• Int, Double and String are primitive types.

• What is the type of [1, 2, 3]? Array

Types

• Int, Double and String are primitive types.

• What is the type of [1, 2, 3]? Array[Int]

Types

• Int, Double and String are primitive types.

• What is the type of [1, 2, 3]? Array[Int]

• What is the type of [1, 3.14, “foo”]?

Types

• Int, Double and String are primitive types.

• What is the type of [1, 2, 3]? Array[Int]

• What is the type of [1, 3.14, “foo”]? No.

• You can also have Array[Double],
Array[Array[Double]], … Array[T]

Types

• Int, Double and String are primitive types.

• Array[T] is a compound type, since it contains
types. We will learn about more compound types
later.

Types
• Int, Double and String are primitive types.

• Array[T] is a compound type, since it contains
types. We will learn about more compound types
later.

• Hail also has (primitive) types for genetic concepts
like Variant, Genotype, Interval, etc. A
genotype is printed like this:  
Genotype(GT=0, AD=[21, 0], DP=21,  
 GQ=60, PL=[0, 60, 759])

Main Python objects

• HailContext: main entry point for Hail
functionality

• VariantDataset: Hail’s representation of a
dataset

• KeyTable: Table-like structure (think data frame)

From VCF …

From VCF …

From VCF …

From VCF …

From VCF …

… To Variant Dataset

Variant

Sample

Genotypes

Annotations

… To Variant Dataset

v: Variant

s: Stringglobal

g: Genotypeva

sa

24

gs: Aggregable[Genotype]

24

The Model

0.3
0.5

0.2

.05

.09 .11 Pop 2

Pop 1

Pop 3

Ancestral population

Fixation Index: FST

Balding-Nichols model

●  K populations, N samples, M variants.

●  π is the population distribution of samples

●  P0 is ancestral frequency spectrum (uniform distribution from 0.1 to 0.9)

Outline of Hail Practicals
1. Importing, schemas, simulated data

2. The Hail expression language

3. Annotation, query and plotting

4. Aggregables: working with massive data

5. Understanding GQ and DP in sequence data

6. Unmasking ancestry

7. Basic association analysis

Practical 1: What did we
learn?

• Hail has its own file format, VDS. Why?

• VariantDatasets have three schemas. What are
they?

• You can simulate genotypes and phenotypes in
Hail.

Simulating data

Hail Expression Language
• Used all over! filtering, export, annotating, calculating,

covariates, …

• Syntax a mishmash styles. We apologize in advance.

• Built-in support for missing values: NA.

• Expression language. No user-defined functions, no
loops.

• Typed language. All expressions are statically typed.

• Functional. Modifying makes a copy.

Hail Types
Primitive
Boolean
Int
Long
Float
Double
String

Compound
Array[T]
Set[T]
Dict[K, V]
Struct {
 f1: T1,
 f2: T2, … }
Aggregable[T]*

Genetic
Locus
AltAlllele
Variant
Interval
IntervalList
Genotype

*This is the other most confusing part.

Hail Expression Language

• Don’t confuse the Hail expression language with
Python!

• Hail expressions are written as strings in Python
and passed to Hail python functions.

Hail Expression Language

• To evaluate a Python expression, you enter it in the
Python interpreter: 
In [5]: 1 + 1  
Out[5]: 2

• To evaluate a Hail expression, you pass it as a
string in Python to hc.eval_expr_typed:  
In [6]: hc.eval_expr_typed('1 + 1')  
Out[6]: (2, Int)

Hail Expression Language

• To evaluate a Hail expression, you pass it as a
string in Python to hc.eval_expr_typed:  
In [6]: hc.eval_expr_typed('1 + 1')  
Out[6]: (2, Int)

• What is the return value?

Hail Expression Language

• [1, 5, 10].filter(x => x < 10)

• The => syntax describes a unnamed function. x
refers to the elements of the array.

Outline of Hail Practicals
1. Importing, schemas, simulated data

2. The Hail expression language

3. Annotation, query and plotting

4. Aggregables: working with massive data

5. Understanding GQ and DP in sequence data

6. Unmasking ancestry

7. Basic association analysis

Practical 2: What did we
learn?

• Hail expression syntax is weird an annoying.

• Hail naturally handles missing values like R.

• You can transform Arrays with functional operators
map, filter

• You can reduce Arrays with operators like max and
mean.

• Hail supports Structs. You had already seen this
before. Where?

Aggregables
• Is that even a word?

• This is the hardest part of Hail. Once you get this,
you’re golden.

• How do you manipulate datasets that are bigger
than one computer?

• How do you understand, say, the distribution of DP
in a dataset with 100T genotypes?

Aggregables

• Aggregable[T] is an unordered, distributed
collection of T.

• Aggregable[Int] is an distributed collection of
Ints.

• The interface for Aggregable is modeled Array

Aggregables
• gs: Aggregable[Genotype]

• gs.map(g => g.dp) is an Aggregable[Int]

• gs.filter(g => g.gq > 20) is a (smaller)
Aggregable[Genotype]

• gs.map(g => g.dp).max() is an Int

• Reduction perations like max are called aggregators.
Arrays and Aggregables support a slightly different
set of reduction operators.

Aggregable Context

• Aggregables have contexts. This is the second
way the differ from Arrays.

VariantDataset

v: Variant

s: Stringglobal

g: Genotypeva

sa

24

gs: Aggregable[Genotype]

24

Aggregable Context
• Aggregables have contexts. This is the second way the

differ from Arrays.

• map, filter manipulate aggregable elements, not
context.

• Examples: 
gs.map(g => va.callRate)…  
(gs.map(g => g.dp)  
 .filter(dp => g.gq > 20)…)

• Aggregable context documented with the aggregagable.
They can all be figured out from the previous diagram.

Genotype Context
• global

• g: Genotype

• v: Variant

• s: Sample

• va

• sa

Variant Context

• global

• v: Variant

• va

• gs: Aggregable[Genotype]

Outline of Hail Practicals
1. Importing, schemas, simulated data

2. The Hail expression language

3. Annotation, query and plotting

4. Aggregables: working with massive data

5. Understanding GQ and DP in sequence data

6. Unmasking ancestry

7. Basic association analysis

Practical 4: What did we
learn?

Practical 4: What did we
learn?

• Aggregables are a convenient and elegant way to
manipulate large, distributed data objects.

• Aggregables can be manipulated similarly to
arrays.

• Aggregables carry a natural context that is not
changed by map and filter.

filter

24Variant

Sample

24

24

24

map
Sample

Variant f

reduce

24

Sample

Variant

join
Sample

RDD

…Variant 24

