
Genotype imputation is the term used to describe the 
process of predicting or imputing genotypes that are 
not directly assayed in a sample of individuals. There 
are several distinct scenarios in which genotype imputa-
tion is desirable, but the term now most often refers to 
the situation in which a reference panel of haplotypes 
at a dense set of SNPs is used to impute into a study 
sample of individuals that have been genotyped at a sub-
set of the SNPs. An overview of this process is given in 
BOX 1. Genotype imputation can be carried out across 
the whole genome as part of a genome-wide association 
(GWA) study or in a more focused region as part of a 
fine-mapping study. The goal is to predict the genotypes 
at the SNPs that are not directly genotyped in the study 
sample. These ‘in silico’ genotypes can then be used to 
boost the number of SNPs that can be tested for associa-
tion. This increases the power of the study, the ability 
to resolve or fine-map the causal variant and facilitates 
meta-analysis. BOX 2 discusses these uses of imputation 
as well as the imputation of untyped variation, human 
leukocyte antigen (HLA) alleles, copy number variants 
(CNVs), insertion–deletions (indels), sporadic missing 
data and correction of genotype errors.

The HapMap 2 haplotypes1 have been widely used 
to carry out imputation in studies of samples that have 
ancestry close to those of the HapMap panels. The CEU 
(Utah residents with northern and western European 
ancestry from the CEPH collection), YRI (Yoruba from 
Ibadan, Nigeria) and JPT + CHB (Japanese from Tokyo, 
Japan and Chinese from Beijing, China) panels consist of 
120, 120 and 180 haplotypes, respectively, at a very dense 
set of SNPs across the genome. Most studies have used a 
two-stage procedure that starts by imputing the missing 

genotypes based on the reference panel without taking 
the phenotype into account. Imputed genotypes at each 
SNP together with their inherent uncertainty are then 
tested for association with the phenotype of interest in a 
second stage. The advantage of the two-stage approach 
is that different phenotypes can be tested for association 
without the need to redo the imputation.

This Review provides an overview of the different 
methods that have been proposed for genotype impu-
tation, discusses and illustrates the factors that affect 
the accuracy of genotype imputation, discusses the use 
quality-control measures on imputed data and methods 
that can be employed in testing for association using 
imputed genotypes.

Genotype imputation methods
We assume that we have data at L diallelic autosomal 
SNPs and that the two alleles at each SNP have been 
coded 0 and 1. Let H denote a set of N haplotypes at 
these L SNPs and let G denote the set of genotype data at 
the L SNPs in K individuals with Gi = {Gi1,…, GiL} denot-
ing the genotypes of the ith individual. The individual 
genotypes are either observed so that Gik ∈ {0,1,2} or 
they are missing so that Gik = missing. The main focus 
here is in predicting the genotypes of those SNPs that 
have not been genotyped in the study sample at all but 
there are usually sporadic missing genotypes as well. We 
assume that strand alignment between data sets has been 
carried out (Supplementary information S1 (box)).

IMPUTE v1. IMPUTE v1 (REF. 2) is based on an extension  
of the hidden Markov models (HMMs) originally devel-
oped as part of importance sampling schemes for 
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Hidden Markov model
A class of statistical model  
that can be used to relate an 
observed process across the 
genome to an underlying, 
unobserved process of interest. 
Such models have been used 
to estimate population 
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genotype imputation and  
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Abstract | In the past few years genome-wide association (GWA) studies have uncovered a 
large number of convincingly replicated associations for many complex human diseases. 
Genotype imputation has been used widely in the analysis of GWA studies to boost 
power, fine-map associations and facilitate the combination of results across studies 
using meta-analysis. This Review describes the details of several different statistical 
methods for imputing genotypes, illustrates and discusses the factors that influence 
imputation performance, and reviews methods that can be used to assess imputation 
performance and test association at imputed SNPs.
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Linkage disequlibrium
The statistical association 
within gametes in a population 
of the alleles at two loci. 
Although linkage disequilibrium 
can be due to linkage, it can 
also arise at unlinked loci — for 
example, because of selection 
or non-random mating.

simulating coalescent trees3,4 and for modelling linkage 
disequilibrium (LD) and estimating recombination rates5. 
The method is based on an HMM of each individual’s 
vector of genotypes, Gi, conditional on H, and a set of 
parameters. This model can be written as

z
P(Gi|H, ,   ) = (1)P(Gi|Z, ), P(Z|H, )ρρ Σθ θ

in which Z = {Z1,…, ZL} with Zj = {Z j1, Zj2} and Zjk = {1,…, N}.  
The Zj can be thought of as the pair of haplotypes from 
the reference panel at SNP j that are being copied to 

form the genotype vector. The term P(Z|H,ρ) models 
how the pair of copied haplotypes changes along the 
sequence and is defined by a Markov chain in which 
switching between states depends on an estimate of the 
fine-scale recombination map (ρ) across the genome. 
The term P(Gi|Z,θ) allows each observed genotype 
vector to differ through mutation from the genotypes 
determined by the pair of copied haplotypes and is con-
trolled with the mutation parameter θ. Estimates of the  
fine-scale recombination map (ρ) are provided on  
the IMPUTE v1 webpage and θ is fixed internally by the 

Box 1 | How genotype imputation works

In samples of unrelated individuals, the haplotypes of the individuals over 
short stretches of sequence will be related to each other by being identical 
by descent (IBD). The local pattern of IBD can be described by an 
(unobserved) genealogical tree, which will differ at different loci throughout 
the genome owing to recombination. Imputation methods attempt to 
identify sharing between the underlying haplotypes of the study individuals 
and the haplotypes in the reference set and use this sharing to impute the 
missing alleles in study individuals. For this reason, there are strong 
connections between the models and methods used to infer haplotype 
phase and those used to perform genotype imputation22,37, as well as strong 
connections to tagging SNP-based approaches19,21,38 and methods used in 
linkage studies39,40.

The figure above illustrates imputation for a sample of unrelated 
individuals. The raw data consist of a set of genotyped SNPs that has a large 
number of SNPs without any genotype data (part a). Testing for association 
at just these SNPs may not lead to a significant association (part b). 

Imputation attempts to predict these missing genotypes. Algorithms differ 
in their details but all essentially involve phasing each individual in the study 
at the typed SNPs. The figure highlights three phased individuals (part c). 
These haplotypes are compared to the dense haplotypes in the reference 
panel (part d). Strand alignment between data sets must be done before this 
comparison takes place (Supplementary information S1 (box)). The phased 
study haplotypes have been coloured according to which reference 
haplotypes they match. This highlights the idea implicit in most phasing and 
imputation models that the haplotypes of a given individual are modelled as 
a mosaic of haplotypes of other individuals. Missing genotypes in the study 
sample are then imputed using those matching haplotypes in the reference 
set (part e). In real examples, the genotypes are imputed with uncertainty 
and a probability distribution over all three possible genotypes is produced. 
It is necessary to take account of this uncertainty in any downstream analysis 
of the imputed data. Testing these imputed SNPs can lead to more significant 
associations (part f) and a more detailed view of associated regions.
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Box 2 | uses of imputation

Boosting power
Imputation can lead to a boost in power of up to 10% over testing only genotyped SNPs in a genome-wide association 
(GWA) study26. Other simulations have shown that the most benefit occurs for rare SNPs, which are harder to tag2.

Fine-mapping
Imputation provides a high-resolution view of an associated region and increases the chance that a causal SNP can be 
directly identified. The figure below shows imputation in the transcription factor 7-like 2 (TCF7L2) gene in the Wellcome 
Trust Case–Control Consortium (WTCCC) type 2 diabetes scan (image reproduced, with permission, from Nature Genetics 
REF. 2 © (2007) Macmillan Publishers Ltd). The upper part of the plot shows the log

10
 p-values using called genotypes 

(black circles) and imputed genotypes (red circles). The largest -log
10

 p-value at a genotyped SNP (rs4506565) is 12.25, 
whereas the largest -log

10
 p-value at an imputed SNP (rs7903146) is 13.57. Imputed SNPs that show large associations can 

be better candidates for replication studies. The limiting factor that determines precision of fine-mapping is effectively 
the number of recombination events that have occurred in a region, or the amount of linkage disequilibrium (LD) in the 
region. Increasing sample size or mapping in populations with lower levels of LD will both act to increase the chance that 
a true casual variant can be identified.

Meta-analysis
If different cohorts have used different genotyping chips, imputation can be used to equate the set of SNPs in each study. 
The studies can then be combined in a meta-analysis at each SNP to boost power. This approach has been successful in 
identifying several new loci for a range of different traits31,41–44. A good practical guide to meta-analysis is provided by  
de Bakker et al.45. Usually each cohort is analysed separately as this allows conditioning on cohort-specific covariates.  
The results are then combined using fixed-effects or random-effects models.

imputation of untyped variation
Imputation of SNPs which have not been typed in the haplotype reference panel or the study sample is also possible. 
Some methods do this through inference of the genealogy between study sample haplotypes2,46–48 whereas others aim to 
identify haplotype effects more directly49 .These methods can lead to a boost in power, especially when the causal variant 
is rare or there is local heterogeneity in the signal of association48.

imputation of non-snP variation
The general idea of imputation is readily extended to other types of genetic variation such as copy number variants  
and classical human leukocyte antigen alleles50. Looking ahead, the imputation of large numbers of small insertions and 
deletions (indels) that will be discovered from sequencing-based projects such as the 1000 Genomes Project are likely to 
be widely adopted in GWA studies.

sporadic missing data imputation and correction of genotyping errors
Many of the widely used imputation programs allow imputation of sporadic missing genotypes that can occur when calling 
genotypes from genotyping chips (TABLE 1). Genotyping error rates are often very low (0.2% in the WTCCC study) so this 
type of imputation will not greatly boost power but can help control false positives at SNPs for which genotype calling is 
challenging. Recently, the BEAGLE model51 has been extended to handle genotype intensity data so that genotypes can 
be called by using LD information between SNPs and this offers a small improvement in genotyping error rates.
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program. The effective population size parameter (Ne)  
must be specified by the user but estimates of this param-
eter are available for a wide range of human populations 
and our experience is that performance is robust to vari-
ation in this parameter. More details of these terms and 
parameters are given in REFS 2, 5.

Exact marginal probability distributions for the 
missing genotypes that are conditional on the observed 
genotype data in the vector Gi are obtained using the  
forward–backward algorithm for HMMs6. Using a simple 
modification to the algorithm it is also possible to obtain 
a marginal distribution for genotypes that are not miss-
ing. This provides a useful method of validating observed 
genotypes and allows quality assessment of imputation 
runs. IMPUTE v1 can also carry out imputation on the 
X chromosome and this is described in BOX 3.

IMPUTE v2. IMPUTE v2 (REF. 7) uses a related but 
more flexible approach than IMPUTE v1. SNPs are 
first divided into two sets: a set T that is typed in both 
the study sample and reference panel, and a set U that 
is untyped in the study sample but typed in the refer-
ence panel. The algorithm involves estimating haplo-
types at SNPs in T (using the IMPUTE v1 HMM) and 
then imputing alleles at SNPs in U conditional on the 
current estimated haplotypes. As the imputation step is 
haploid imputation, it is very fast (O(N)) compared with 
diploid imputation (O(N2)) carried out in IMPUTE v1.  
Phase uncertainty is accounted for by iterating these 
steps using a Markov chain Monte Carlo (MCMC) 

approach. As imputation performance is driven by 
accurate matching of haplotypes, the method focuses 
on accurate haplotype estimation at the SNPs in T using 
as many individuals as possible.

Alternating between phasing and haploid imputation 
at a carefully chosen subset of SNPs is particularly suited 
to study designs in which different amounts of geno-
type data are available in different cohorts of a study. For 
example, IMPUTE v2 can use both the set of haplotypes 
from the pilot data of the 1000 Genomes Project (see 
Further information for a link) and haplotype sets from 
the HapMap3 data set as reference panels for imputa-
tion. Compared with imputation from HapMap2, 
this provides a much larger set of imputed SNPs and 
a notable boost in accuracy at those SNPs included in 
the HapMap3 SNP set. other methods can be made to 
handle this imputation scenario but IMPUTE v2 has 
been shown to be the most accurate approach7 and the 
program makes it straightforward to apply.

When phenotype is strongly correlated with genotyping  
platform Howie et al.7 found that imputing untyped 
SNPs in cases from SNPs that are present in a dense set 
of genotype data from controls did not lead to increased 
false-positive rates. However, if cases and controls are 
typed on different chips, then imputing SNPs that  
are untyped in both cases and controls from a haplotype 
panel can lead to false-positive associations. SNPs that 
are imputed accurately from one chip but poorly from 
another chip may lead to differences in allele frequency 
that just reflect allele frequency differences between the 
haplotype reference panel and the study population. This 
is similar to the way that population structure can cause 
problems in GWA studies. Ideally, situations like this are 
best avoided by sensible study design. If this isn’t possi-
ble, we recommend quality-control measures to ensure 
only the most accurately imputed SNPs are used.

fastPHASE and BIMBAM. The fastPHASE8 method can 
be used to estimate haplotypes and carry out imputation 
and has recently been incorporated into an association-
testing program called BIMBAM9,10. The method uses 
the observation that haplotypes tend to cluster into 
groups of closely related or similar haplotypes. The 
model specifies a set of K unobserved states or clusters 
that are meant to represent common haplotypes. The kth 
cluster is assigned a weight (akl) that denotes the fraction 
of haplotypes it contains at site l, with

αkl = 1Σ
k

(2)

Each cluster also has an associated frequency (θkl) of 
allele 1 at each site. Each individual’s genotype data 
is then modelled as an HMM on this state space with 
transitions between states controlled by a further set of 
parameters (r) at each SNP,

P(Gi| , , r) =θα P(Gi|Zi, )P(Zi| , r)Σ
z

(3)θ α  

This equation is similar to equation 1 above with  
P(Gi|Z, θ) modelling how likely the observed genotypes 
are given the underlying states and P(Z|a, r) modelling 

 Box 3 | chromosome X imputation

Imputation on chromosome X is fundamentally similar to imputation on the autosomes, 
but it is complicated by the fact that males carry only one copy of the chromosome 
(that is, they are hemizygous), in contrast to the two copies carried by females. This is 
mainly a practical issue: most imputation models could in principle accommodate a 
mixture of haploid (male) and diploid (female) genotypes, but few methods have 
implemented this function in their software (TABLE 1). One way around this is to treat 
male genotypes as diploids that are homozygous at every SNP. However, ‘double 
counting’ the male haplotypes in this way could decrease accuracy for some methods.

Performing imputation on chromosome X also requires care because the 
hemizygosity in males reduces the effective population size (N

e
) on this chromosome 

to about three-quarters of the autosomal value. Imputation algorithms work by 
copying stretches of shared haplotypes between individuals, and a lower N

e
 causes 

the copied haplotype segments to be longer and exhibit fewer base pair differences. 
Non-parametric methods (like BEAGLE) and methods that fit population genetic 
parameters in each data set (like fastPHASE and MACH) can automatically adjust to 
these characteristics of chromosome X, although they still need special functions  
to treat males and females differently. By contrast, IMPUTE specifies the population 
genetic parameters of its model ahead of time, so these must be modified for use on 
chromosome X.

IMPUTE v1 and v2 model historical recombination by reading in a fine-scale genetic 
map and scaling it by 4N

e
. This scaling is reduced to 3N

e
 on chromosome X, which 

captures the idea that transitions between copied haplotypes should occur less often. 
It is tempting to reduce the ‘mutation rate’ θ by the same factor, but this turns out to be 
wrong because the θ parameter in the Li and Stephens model is defined conditional on 
a site carrying a mutation in the sample. This formulation assumes that there is already a  
mutation in the genealogical tree, and that we want to know the probability that  
a new haplotype will coalesce onto (or ‘copy’) a lineage that carries the mutation.  
This probability is a property of the bipartitions of a neutral coalescent tree, and it is 
invariant to constant scalings of the branch lengths. Hence, although the genealogical 
branches are shorter on chromosome X, θ remains the same in IMPUTE v1 and v2.
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Expectation-maximization 
algorithm
A method for finding 
maximum-likelihood estimates 
of parameters in statistical 
models, in which the model 
depends on unobserved latent 
variables. It is an iterative 
method which alternates 
between performing an 
expectation (E) step and a 
maximization (M) step.

patterns of switching between states, but the states  
represent clusters rather than reference haplotypes. 
An analogous model can be used for a set of observed  
haplotypes so that a likelihood can be written as

L(G, H| , , r) =
P(Gi| , , r)∏ P(Hi| , , r)∏

θα
θα θα

(4)

      
An expectation-maximization algorithm (EM algorithm) is 
used to fit the model and missing genotypes are imputed 
conditional on the parameter estimates using the forward–
backward algorithm. The authors found that averaging 
over a set of estimates produced much better results than 
choosing a single best estimate. Empircal experiments10 
suggest that using K = 20 clusters and E = 10 start points 
for the EM algorithm represents a practical compromise 
between speed and accuracy. The model underlying the 
GEDI11 approach is very similar to that of fastPHASE.

When imputing untyped SNPs from a reference panel, 
it was discovered (B.H., unpublished observations) that 
maximizing the full likelihood L(G, H|a, θ, r) resulted in 
relatively high error rates compared to other methods. 
Subsequently, it was shown that fixing parameter esti-
mates based only on the likelihood for the set of haplo-
types produces lower error rates11. This is a similar strategy 
to that used by IMPUTE v1 in which each cohort indi-
vidual is independently imputed conditional only on the 
panel data. IMPUTE v1 has the advantage of not needing 
to estimate any parameters by using real haplotypes as the 
models of underlying states. By contrast, fastPHASE uses 
a much smaller set of states, which speeds up the required 
HMM calculations but the need to estimate the many  
parameters of this method can counteract this effect.

MACH. MACH uses an HMM model very similar to that 
used by HoTSPoTTER5 and IMPUTE. The method can 
carry out phasing and as a consequence it can be used for 
imputation. The method works by successively updating  
the phase of each individual’s genotype data conditional 
on the current haplotype estimates of all the other  
samples. The model used can be written as

P(Gi|D–i,   , ) = P(Gi|Z, )P(Z|D–i, )Σ (5)θ η θη

in which D–i is the set of estimated haplotypes of all indi-
viduals except i, Z denotes the hidden states of the HMM, 
η is an ‘error’ parameter that controls how similar Gi is 
to the copied haplotypes and θ is a ‘crossover’ parameter 
that controls transitions between the hidden states. The 
parameters η and θ are also updated during each itera-
tion based on counts of the number and location of the  
change points in the hidden states Z and counts of  
the concordance between the observed genotypes to 
those implied by the sampled hidden states.

Imputation of unobserved genotypes using a refer-
ence panel of haplotypes, H, is naturally accommodated 
in this method by adding H to the set of estimated hap-
lotypes D–i. The marginal distribution of the unobserved 
genotypes can then be estimated from the haplotypes 
sampled at each iteration. An alternative two-step 

approach is also recommended that estimates η and 
θ using a subset of individuals and then carries out 
maximum-likelihood genotype imputation based on 
the estimated parameters. By contrast, IMPUTE v1 uses 
fixed estimates of its mutation rates and recombination 
maps. Estimating the parameters allows more flexibility 
to adapt to the data set being analysed. However, it is 
likely that some parameters will not be estimated well 
and this will reduce imputation accuracy.

BEAGLE. The BEAGLE method12–14 is based on a graphical  
model of a set of haplotypes. The method works itera-
tively by fitting the model to the current set of estimated 
haplotypes and then resampling new estimated haplo-
types for each individual based on the model of fit. The 
probabilities of missing genotypes are calculated from 
the model that is fitted at the final iteration. The model is 
empirical in the sense that it has no parameters that need 
to be estimated and is applied to a given set of haplo-
types in two steps. In the first step, a bifurcating tree 
that describes a set of haplotypes is constructed from 
left to right across the set of haplotypes. once completed, 
each edge of the tree is weighted by the number of haplo-
types that pass along it. In the second step, the tree is 
pruned to produce a more parsimonious characteriza-
tion of the data set. At each level of the tree, pairs of 
nodes are compared in terms of their downstream haplo-
type frequencies by summing the squared differences of 
their downstream partial haplotype frequencies; if this 
number exceeds a threshold, then the nodes are not 
similar enough to combine. The current recommended 
threshold was determined empirically from simulated 
data12. Possibly the best way to understand the model 
is by looking at the small example given in Figure 2 and 
Table 1 of REF. 12. REF. 15 provides a useful review that 
contrasts various methods for phasing and imputation.

The BEAGLE model has the property that the graph 
will have few or many edges in regions in which there 
is low or high LD respectively. In this way, the model 
has the attractive property that it can adapt to the local 
haplo type diversity that occurs in the data. In some 
sense it can be thought of as a local haplotype-clustering 
model, similar to fastPHASE, but with a variable number 
of clusters across a region.

SNP tagging-based approaches. Some methods 
(PLINK16, SNPMSTAT17, UNPHASED and TUNA18) 
carry out imputation using methods based on tag SNP 
approaches19–21. For each SNP to be imputed, the refer-
ence data set is used to search for a small set of flanking 
SNPs that, when phased together with the SNP, leads 
to a haplotype background that has high LD with the 
alleles at the SNP. The genotype data from the study and 
the reference panel are then jointly phased at these SNPs 
and the missing genotypes in the study are imputed as 
part of the phasing. The advantage of this approach is 
that it is simple and quick. The downside is that these 
approaches generally don’t provide as accurate results 
as other methods because they don’t use all the data and 
the phasing is carried out through a simple multinomial 
model of haplotype frequencies22.
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Identical by state
Two or more alleles are 
identical by state if they  
are identical. Alleles which are 
identical by state may or may 
not be identical by descent 
owing to the possibility of 
multiple mutation events.

Identical by descent
Two or more alleles are 
identical by descent if they  
are identical copies of the 
same ancestral allele.

Best-guess genotype
Most imputation methods 
provide a probabilistic 
prediction of the missing 
genotypes. The best  
guess genotype is that 
genotype which has the 
largest probability.

Calibration
The probabilities of events 
predicted by a probability 
model are said to be well 
calibrated if they accurately 
estimate the proportion of 
times the events occur. For 
imputation, a method is well 
calibrated if genotypes that 
are predicted with probability 
p are correct ~100p% of  
the time.

Imputation in related samples. The UNPHASED program  
implements an unpublished method for genotype impu-
tation in nuclear families. This approach has been used 
to impute sporadic missing SNP genotype data in a 
study of nuclear families and unrelated individuals with 
a mixture of HLA and SNP genotypes23. A more focused 
method in which genotypes in founders are imputed 
down to descendents has also been proposed24. As close 
relatives will share long stretches of haplotypes, the 
descendents need only be typed at a relatively sparse set 
of markers for this to work well. Kong et al.25 proposed 
a related approach in which surrogate parents are used 
instead of real parents. For each individual, surrogate 
parents are identified as those who share long stretches 
of sequence with at least one allele that is identical by state 
(IBS). Regions in which this occurs are assumed to be 
identical by descent (IBD) and this estimated relatedness 
is used to help phase the individuals accurately over long 
stretches. This approach only works when a sufficient 
proportion of the population (>1% as a rule of thumb) 
has been genotyped, but may have useful applications 
when carrying out imputation if large, densely typed or 
sequenced cohorts become available. A related idea is 
used in IMPUTE v2 (REF. 7) in which a ‘surrogate family’ 
of individuals is used when updating the phase of a given 
individual over reasonably long stretches of sequence 
(typically 5 Mb in practice).

Comparison between methods. TABLE 1 summarizes the 
properties of each of the most popular imputation meth-
ods divided into subsections that deal with properties of 
the reference panels the methods can handle, properties 
of the study samples, relevant program options and fea-
tures, computational performance, error rates, and prop-
erties and ways of using the output files. Supplementary 
information S2 (table) is a fuller version of this table, 
which includes all the methods discussed above.

The sections of TABLE 1 on computational perform-
ance and error rate include an updated version of the 
comparison of the methods IMPUTE (v1 and v2), 
MACH, fastPHASE and BEAGLE carried out by Howie 
et al.7. IMPUTE v2 is the most accurate approach in all 
of the settings examined but all the methods produce 
broadly similar performances. The methods are also 
broadly comparable in terms of computational per-
formance. Several authors7,14 have noted that the HMM 
models used by IMPUTE and MACH scale quadratically 
as the number of haplotypes in the panel increases, but 
the adaptive haplotype selection approach in IMPUTE 
v2 (REF. 7) scales linearly with the number of haplotypes 
in the panel and overcomes this problem.

To examine how the methods might perform on a 
large reference panel of haplotypes, such as that being 
generated by the 1000 Genomes Project, we timed 
IMPUTE v2, fastPHASE and BEAGLE when imputing 
genotypes using a reference panel of 1,000 haplotypes 
into a study of samples consisting of 500 and 1,000 indi-
viduals. We used HAPGEN26 to simulate these data sets 
based on some of the pilot CEU haplotypes from the 1000 
Genomes Project in a 5 Mb region on chromosome 10.  
The haplotype reference contains 8,712 SNPs and the 

study sample has genotype data at 872 of these SNPs. The 
results in TABLE 1 show that IMPUTE v2 is at least twice as  
fast as both BEAGLE and fastPHASE on this data set.

Factors that affect imputation accuracy
Most imputation methods produce a probabilistic  
prediction of each imputed genotype of the form

pijk = P(Gij = k|H, G), k ∈ {0, 1, 2}, pijk = 1Σ
k

(6)
      

in which Gij ∈ {0,1,2} denotes the genotype of the ith 
individual at the jth SNP.

To assess the quality of predictions and compare 
methods, genotypes can be masked and then predicted. 
The most likely predicted genotype above some thresh-
old can be compared with the true genotype and a plot 
of the percentage discordance versus the percentage of  
missing genotypes can be constructed for a range  
of thresholds to illustrate performance. This method 
was recently used to compare methods using 1,377 UK 
individuals genotyped on both the Affymetrix 500k 
SNP chip and the Illumina 550k chip. Genotypes on 
the Affymetrix chip were combined with the 120 CEU 
haplotypes to predict the 22,270 HapMap SNPs on chro-
mosome 10 that were on the Illumina chip but not the 
Affymetrix chip. The error rate of the best-guess genotype  
for various methods was: BEAGLE (default), 6.33%; 
BEAGLE (50 iterations), 6.24%; fastPHASE (k = 20), 
6.07%; fastPHASE (k = 30), 5.92%; IMPUTE v1, 5.42%; 
IMPUTE v2 (k = 40), 5.23%; IMPUTE v2 (k = 80), 
5.16%; MACH, 5.46%, and these results are consistent 
with other comparisons27,28. For the best methods an 
error rate of 2–3% can be achieved but at the expense 
of 10% of missing genotypes. Another option involves 
measuring the squared correlation between the best-
guess genotype and the true genotype14 which can be 
averaged across SNPs to give a single measure. Another 
desirable property of imputation methods is that the 
predicted probabilities they produce should be well  
calibrated. Most methods in common use have been 
shown to produce well-calibrated probabilities2,8,14.

The imputation accuracy results from Howie et al.7 
are specific to a UK population using the CEU HapMap 
and the Affymetrix 500k chip. The study population, 
properties of the reference panel and genotyping chip will 
all influence performance, and performance may vary 
between rare and common alleles. To illustrate the way in 
which these factors affect imputation accuracy we took 
the CEU, YRI and JPT + CHB HapMap 2 haplotype pan-
els and removed a single individual from each. We then 
used genotypes at SNPs on four chips (Affymetrix 500k,  
Affymetrix 6.0, Illumina Human660W and Illumina 
Human1M) to impute masked genotypes not on each 
chip in that individual, based on the remaining haplo-
types in their panel of origin. We also assessed four 
other panels of haplotypes: a combined CEU + YRI + 
JPT + CHB panel of 414 haplotypes, which can be used 
to assess how a larger more diverse set of haplotypes 
compares with a small, more homogeneous set of haplo-
types; a CEU panel rephased without using trio infor-
mation, using fastPHASE8 (denoted CEU_FP) to assess  
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Table 1 | comparison of imputation methods

Properties imputation method

iMPUte v1 iMPUte v2.2 MAcH 
v1.0.16

fastPHAse v1.4.0 
BiMBAM v0.99

BeAGLe v3.2

Reference panels      

Can use a haplotype reference panel? Yes Yes Yes Yes Yes

Can use a genotyped reference panel? No Yes Yes Yes Yes

Can two haplotype or genotype 
reference panels be used in the  
same run?

No Yes No No No

Reference panels available in  
correct format

HapMap2 
HapMap3   
1KGP pilot data

HapMap2 
HapMap3   
1KGP pilot data

HapMap2 
HapMap3  
1KGP pilot data

HapMap2 No

Study samples      

Can take genotypes specified  
with uncertainty?

No Yes No No Yes

Can accommodate trios and  
related samples?

No No No No Trios and duos

Can impute into a study sample of 
autosomal haplotypes?

Yes Yes No No Yes

Can impute on the X chromosome? Yes Yes No No Yes

Program options and features      

Does phasing as well as imputation? No Yes Yes Yes Yes

Can impute sporadic missing genotypes? No Yes Yes Yes Yes

Has internal performance assessment? Yes Yes Yes No No

Can impute only in a specified interval? Yes Yes No No No

Can handle strand alignment  
between data sets?

Yes Yes Yes No No

SNP and sample inclusion and  
exclusion options?

Yes Yes No Yes Yes

Joint model for imputation and 
association testing?

No No No No No

Operating system requirements Linux, Solaris, 
Windows, Mac

Linux, Solaris, 
Windows, Mac 

Linux, 
Windows, Mac 

BIMBAM (source 
code + Windows) 
fastPHASE (Linux, 
Solaris, Windows, 
Mac )

Java executable

Computational performance

Assessment 1* 43m (1000 Mb) 75m (180 Mb) 105m (80 Mb) 855m (16 Mb) 56m (3100 Mb)

Assessment 2‡ --- 48m (115m) --- 157m (211m) 104m (234m)

Error rates§      

Rows correspond to the Scenario A, 
Scenario B (restricted) and  
Scenario B (full) data sets

5.42% 5.16% 5.46% 5.92% 6.33%

--- 3.4% (0.86%) --- 5.33% (1.32%) 3.46% (0.93%)

--- 3.4% (0.86%) --- --- 4.01% (1.04%)

Output files

Genotype posteriors produced? Yes Yes Yes Yes Yes

Information measures? Yes Yes Yes No Yes

Easiest use of output files to test 
association

Feed files directly 
into SNPTEST. Test 
based on genotype 
posteriors, dosages 
or thresholded 
genotypes

Feed files directly 
into SNPTEST. Test 
based on genotype 
posteriors, dosages 
or thresholded 
genotypes

Genotype 
dosage files 
can be fed into 
MACH2DAT or 
MACH2QTL

BIMBAM can 
produce file formats 
used by BIMBAM. 
fastPHASE out 
files need to be 
processed

Best-guess phased 
haplotypes can be 
tested in BEAGLE. 
Processing required 
to use genotype 
posteriors or dosage

Properties are shown for the version of the method as listed. * Imputation of 1377 samples on the Affy500k chip from 120 CEU HapMap2 haplotypes; 7.5 Mb region. 
Data from REF. 7. ‡Imputation of 500 (1000) samples genotyped at 872 SNPs from 1000 haplotypes at 8712 SNPs in a 5 Mb region. Timings based on data sets 
simulated using HAPGEN and the pilot CEU haplotypes from the 1000 Genomes project in a 5 Mb region on chromosome 10. §Error rates from REF. 7, except results 
for IMPUTE v2 have been updated. Scenario B error rates given are for Illumina SNPs imputed from Affymetrix SNPs. Error rates for Affymetrix SNPs imputed from 
Illumina SNPs are given in brackets.
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the effects of trio phasing on imputation and to assess the 
effect of reference panel size; a subset of 60 haplotypes 
from the CEU panel (denoted CEU_60); and a subset 
of 120 haplotypes from the JPT + CHB panel (denoted 
JPT + CHB_120).

The results of this analysis are described in detail in 
BOX 4. They show that: across all imputation panels and 
genotyping chips, imputation error rate increases as the 
minor allele frequency decreases, which is in line with 
previous observations1 that have shown that rare SNPs 
are more difficult to tag than common SNPs; using a 
reference panel phased using trio information boosts 
imputation performance, compared with using a ref-
erence panel phased without trio information; and the 
Illumina chips outperform the two Affymetrix chips in 
the CEU population, but in the YRI population, the per-
formance of all chips decreases, more so for the Illumina 
chips. Therefore, the use of tagging methods for chip 
design can influence the imputation performance. The 
results also show that the error rate decreases as refer-
ence panel size increases7,14, and using a combination of 
CEU, YRI and JPT + CHB haplotype panels can boost 
the performance of imputation, especially at rare SNPs, 
compared with using a single haplotype panel.

It is also important to consider the performance of 
imputation in individuals from populations other than 
the three main HapMap panels. Huang et al.29 exam-
ined the ‘portability’ of the HapMap reference panels 
for imputation using genome-wide SNP data collected 
on samples from 29 worldwide populations. When a sin-
gle HapMap panel was used as the basis for imputation, 
they found that European populations had the lowest 
imputation error rates, followed by populations from 
east Asia, central and south Asia, the Americas, oceania, 
the Middle East and Africa. Within Africa, which has 
high levels of genetic diversity, imputation accuracy 
using the YRI panel varied substantially. These results 
indicate that differences in genetic diversity between the 
study population and the reference panel also influence 
imputation accuracy.

Huang et al.29 also found that imputation-based 
mixtures of at least 2 HapMap panels reduced imputa-
tion error rates in 25 of the populations. In 11 of the 
populations, the optimal choice of mixtures was to com-
bine all 3 HapMap populations together as a reference 
panel. of these 11 groups (Bedouin, Mozabite, Druze, 
Basque, Burusho, Daur and Yi), 7 were from Eurasia 
with some degree of dissimilarity from the HapMap 
CEU and JPT + CHB panels. The remaining four groups 
(Melanisian, Papuan, Pima and Colombian) were from 
oceania and the Americas. These results can guide the 
choice of HapMap panels to use, with the caveat that 
they are specific to the HumanHap550 chip. A related 
point concerns imputation of admixed individuals. 
Pasaniuc et al.30 have shown that imputation conditional 
on a local ancestry estimate can be more accurate than 
unconditional imputation, but the biggest gains in accu-
racy will occur in admixed individuals from genetically  
dissimilar populations.

More recently, sets of haplotypes from the HapMap3 
project and from the pilot phase of the 1000 Genomes 

Project (1KGP) have been made available. The HapMap3 
has ten distinct sets of haplotypes and larger numbers  
of haplotypes in each set. For example, there are 330 CEU 
haplotypes. This allows more accurate imputation of 
rarer SNPs but HapMap3 has a smaller set of SNPs than 
HapMap2. At the time of publication of this Review, there 
are ~7.7 million SNPs after filtering in the CEU panel of 
the 1KGP pilot project. This large boost in the number 
of SNPs allows finer resolution of signals in associated 
regions55. When the 1KGP data is complete, it is likely 
that this will become the reference set of choice for impu-
tation into GWA study data sets. The large increase in 
both the number of SNPs and samples will allow more 
accurate imputation of most SNPs, indels and other 
structural variants that occur at a frequency above 1%.

Post-imputation information measures. once imputation  
has been carried out, it is useful to assess the quality of 
imputed genotypes at SNPs in the absence of any true set 
of genotypes to compare them to. If the imputation qual-
ity is low at a SNP, it may be wise to filter out such SNPs 
before association testing is performed31. Four metrics 
have been proposed in the literature to assess quality that 
are designed to lie in the range (0,1) (Supplementary 
information S3 (box)). A value of 1 indicates that there 
is no uncertainty in the imputed genotypes whereas a 
value of 0 means that there is complete uncertainty about 
the genotypes. All of these measures can be interpreted 
in the following way: an information measure of a on 
a sample of N individuals indicates that the amount of 
data at the imputed SNP is approximately equivalent to 
a set of perfectly observed genotype data in a sample 
size of aN.

The MACH r̂ 2 measure is the ratio of the empirically 
observed variance of the allele dosage to the expected 
binomial variance at Hardy–Weinberg equilibrium. 
BEAGLE advocates using the R2 between the best-guess 
genotype and the allele dosage as an approximation to 
the R2 between the best guess-genotype and the true 
genotype14. The IMPUTE software calculates a meas-
ure of the relative statistical information about the SNP 
allele frequency from the imputed data. The SNPTEST 
program, which is primarily a package to carry out tests 
of association at SNPs, also calculates a similar relative 
information measure, but where the parameter of inter-
est is the relevant association parameter of the model 
of association being fitted. When an additive model is 
fitted, this measure then has a very strong correlation 
to the IMPUTE information measure (Supplementary 
information S4 (figure)).

FIGURE 1 shows the MACH, BEAGLE and IMPUTE 
information measures applied to a simulated imputed 
data set across a 7 Mb interval on chromosome 22 and 
shows that the measures are highly correlated, although 
the MACH measure often goes above 1 and the BEAGLE 
measure is undefined at almost 3% of SNPs (see also 
Supplementary information S4–S6 (figures)).

association testing using imputed data
The probabilistic nature of imputed SNPs means that 
testing for association at these SNPs requires some care. 
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CEU + YRI + JPT + CHB→CEU

CEU_FP→CEU

CEU→CEU

CEU + YRI + JPT + CHB→YRI

JPT + CHB_120→JPT + CHB

YRI→YRI

CEU + YRI + JPT + CHB→JPT + CHB

CEU_60→CEU

JPT + CHB→JPT + CHB

Box 4 | Factors that affect imputation accuracy

The figures above show an analysis of factors that affect imputation 
accuracy. Results are stratified by allele frequency and genotyping chip 
as the percentage discordance of the best-guess imputed genotype call, 
but only using genotypes that contain at least one copy of the rare allele, 
to increase focus on performance of imputing the rare allele. Affymetrix 
500k results are shown in black, Affymetrix 6.0 in red, Illumina Human660W 
in green and Illumina Human1M in blue. The top row of graphs shows the 
results when imputing individuals from the HapMap panels CEU (Utah 
residents with northern and western European ancestry from the CEPH 
collection), YRI (Yoruba from Ibadan, Nigeria) and JPT + CHB (Japanese 
from Tokyo, Japan and Chinese from Beijing, China). The middle row shows 
the results from the CEU_FP (CEU rephased using fastPHASE), JPT + 
CHB_120 (a subset of 120 haplotypes from the JPT + CHB panel) and the 
CEU_60 (a subset of 60 haplotypes from the CEU panel). The bottom row 
shows the performance of the combined CEU + YRI + JPT + CHB panel 
when used to impute genotypes into the single individuals extracted  
from the CEU, YRI and JPT + CHB panel. Discordance versus missing  
genotype plots are given in Supplementary information S8 (figure).

The Illumina chips outperform the two Affymetrix chips in the CEU 
population. In the YRI panel, performance of all chips decreases, more so 
for the Illumina chips. The difference between chips is larger at rarer 
SNPs. The use of tagging methods in the design of the various chips is 
expected to cause these differences.

Comparisons of the JPT + CHB panel with the CEU and YRI panels are 
confounded by several factors that may affect performance in different 
directions. First, the JPT + CHB panel was phased without the use of  
trio information, so will contain more phasing errors than the CEU and 
YRI panels52 and may act to increase imputation error rates. In addition, 
we might expect that increasing SNP density on a chip and the  
number of SNPs chosen using tagging-based methods will ameliorate 
the effects of phasing errors in the panel. Also, the JPT + CHB panel 
contains more haplotypes than the CEU and YRI panels so this should 
act to improve accuracy. These assertions are supported by the results 
of the CEU_FP panel, which show an increase in error rates for the 
Affymetrix 500k chip at common SNPs. Affymetrix 6.0 and Illumina 
Human660W chips show smaller increases and the Illumina Human1M 
chip shows no noticeable change in performance. The JPT + CHB_120 
panel clearly shows the effect of reference panel size. When focusing  
on imputing the minor allele at rare SNPs, all of the chips show an 
increase in error rate (of 5–10% for the most rare SNPs) when using the  
CEU_FP panel.

The performance of the combined CEU + YRI + JPT + CHB panel is also 
illustrated in the figure and in Supplementary information S9, S10 
(figures). Supplementary information S10 shows that there is a notable 
boost in performance across all the chips and populations studied here 
when imputing genotypes at SNPs with a minor allele frequency <5%.
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IMPUTE information measure

MACH R2

BEAGLE allelic R2

Proportional hazards model
A class of survival models in 
statistics. Survival models 
relate the time that passes 
before some event occurs to 
one or more covariates that 
may influence that quantity. In 
a proportional hazards model, 
the unique effect of a unit 
increase in a covariate is 
multiplicative with respect  
to the hazard rate.

Bayesian
A statistical school of thought 
in which the posterior 
probability distribution for  
any unknown parameter or 
hypothesis given the observed 
data is used to carry out 
inference. Bayes theorem is 
used to construct the posterior 
distribution using the observed 
data and a prior distribution, 
often allowing the 
incorporation of useful 
knowledge into the analysis.

Using only imputed genotypes that have a posterior 
probability above some threshold (or using the best-
guess genotype) is a reasonable method of comparing 
the accuracy across methods but it is not recommended 
when carrying out association tests at imputed SNPs. 
Removing genotypes in this way can lead to both false 
positives and loss of power.

Frequentist tests. To fully account for the uncertainty in 
imputed genotypes, well-established statistical theory for 
missing data problems can be used2 ( BOX 5). An observed 
data likelihood is used in which the contribution of each 
possible genotype is weighted by its imputation prob-
ability. A Score test (implemented in SNPTEST) is the 
quickest way to use this likelihood to test for associa-
tion, as it attempts to maximize the likelihood in one 
step by evaluating the first and second derivatives of 
the likelihood under the null hypothesis and works well 
when the log-likelihood is close to a quadratic. Small 
sample size, low allele frequency and increasing geno-
type uncertainty from imputation all act to degrade this 
assumption and can lead to the test reporting a spuri-
ously low p-value. In practice, thresholds on informa-
tion metrics and allele frequencies to filter out SNPs at 
which this happens have been used and work well31–33. 
As such SNPs are those likely to have very low power 

to detect effects, it is unlikely that has a negative effect 
on the study. SNPTEST v2 implements an iterative 
Newton–Raphson scheme and an EM algorithm to max-
imize the likelihood and improves performance at SNPs 
for which the Score test does poorly. SNPTEST allows 
both quantitative and binary traits and can condition on  
user-specified covariates.

A simpler approach involves using the expected allele 
count eij = pij1 + 2pij2 (also called the posterior mean or 
allele dosage). These expected counts can be used to test 
for association with a binary or quantitative phenotype, 
using a standard logistic or linear regression model, 
respectively. This method has been shown to provide 
a good approximation to methods that take the geno-
type uncertainty into account when the effect size of the 
risk allele is small10, which is the case for most of the 
common variants found in recent GWA studies. This 
approach is implemented in the programs MACH2DAT/
MACH2QTL, SNPTEST, PLINK and the R pack-
age ProbABEL. The ProbABEL package also allows 
time-to-event phenotypes to be considered using Cox  
proportional hazards models.

Bayesian approaches. Bayesian methods for analysing 
SNP associations have recently been proposed2,9,10,34,35 
and have advantages over the use of p-values in power 

Figure 1 | Post-imputation information measures. The plot shows the IMPUTE, MACH and BEAGLE information 
measures applied to a data set simulated of 1,000 cases and 1,000 controls on chromosome 22 using HAPGEN26  
and the CEU (Utah residents with northern and western European ancestry from the CEPH collection) HapMap2 
haplotypes (release 22) in the interval 14–21 Mb. Only genotypes at SNPs on the Affymetrix 500k chip were 
simulated. IMPUTE was then used to impute all ungenotyped SNPs from the CEU HapMap2 haplotypes. Each of the 
three metrics are plotted against the base pair position for each imputed SNP. The blue dots in the BEAGLE plot 
indicate the position of all those SNPs for which the allelic R2 metric is undefined owing to the most likely genotype 
call resulting in a monomorphic SNP. Red lines are shown at 0 and 1.
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Box 5 | Frequentist tests that model genotype uncertainty

To fully account for the uncertainty in imputed genotypes, well-established 
statistical theory for missing data problems can be used. This theory 
partitions the data structure into observed data Y

O
 and missing data Y

M
 with 

Y
F
 = (Y

M
, Y

O
) denoting the full data. Then the observed data likelihood, for a 

parameter θ, which is the log of the full data likelihood integrated over the 
missing data, is given by

∗ θ θ θ∫
The score and information matrix of this likelihood53,54 are given by

∗ θ θ θ
∗ θ
θ

and

∗ θθθ θ

∗ θ
θ

θ

in which U(θ ) and I(θ ) are the full data score and information.
If we let Φ

i
 denote the phenotype of the ith individual in a study of N 

samples with N
1
 cases and N

2
 controls, then the full data likelihood is

Φ ΦΣ∏ θθ

and the conditional distribution of the missing data given the observed  
data and the parameters, P(Y

M
|Y

O
, θ) , is given by

θ θΦ ) ∝ Φ )

For a binary phenotype, it is usual to use a logistic regression model of 
the form

Φ Φ Φ∏θ

in which

γµ  γµθ
µ

µ

γ

γ

In this model, m is the baseline log-odds of disease for the 0 genotypes,  
g specifies the increase in log-odds due to each copy of the allele coded 
1 and p

i
 is the probability that individual i develops the disease. The odds 

ratios of disease for individuals with genotypes 1 and 2 (relative to 
individuals with the 0 genotype) are e g and e2g, respectively. This model is 
multiplicative on the odds scale and additive on the log-odds scale.  
The score and information matrix for this model are given by

ΦΣθ

and

Σθ

Dominant, recessive, heterozygote and general two-parameter models of 
association can be dealt with similarly.

It may also be the case that the phenotype is quantitative. In this case, an 
option is to model the phenotype using a normal distribution,

Φ γµ σθ

This model assumes normally distributed residuals, which may not be true. 
Transformation of the phenotype, which is a mixture of distributions, has been 
proposed to make this assumption more valid and should work well unless the 
effect size of a SNP is large9. Alternatively, Poisson and gamma regression 
models could be used as ways of handling discrete phenotypes bounded at 
0 and phenotypes in which the error distribution is not symmetric.

One way of carrying out a test of association is to use a Score test, which 
needs calculations of the observed data score and information matrix only 
under the null hypothesis, H

O
: θ = θ

0
. For example, for a binary phenotype, 

if H
O

: g = 0 then µ̂θ  in which µ̂  is the maximum likelihood estimate 
(MLE) of m with g=0 that is, µ̂ . The score statistic is given by 

γ
∗

γ
∗ which has a χ  distribution under H

O
 (Supplementary 

information S7 (box)). Alternatively, a Newton–Raphson algorithm can be 
used to maximize the likelihood directly. This has parameter updates

∗ ∗θ θθθ

If this algorithm converges to θ̂ , then a maximum likelihood ratio test 
(MLRT) statistic can be used, which has the form

χ
∗ θ
θ∗

Another option is a Wald test, which has the form

χθ
θ∗ γγ

γ

assuming 0
∗ˆ ˆθ θ θ  under H

O

A further alternative is to use an expectation-maximization (EM) 
algorithm, which is guaranteed to converge to a local maximum of the 
likelihood, under reasonable regularity conditions for the likelihood 
(Supplementary information S7). All of these methods are implemented 
in SNPTEST v2.

and interpretation. Within the Bayesian framework, 
focus centres on calculation of a Bayes factor (BF), 
which is the ratio of marginal likelihoods between 
a model of association (M1) and a null model of no  
association (M0),

BF = (7)P(Data|M1)
P(Data|M0)

in which the marginal likelihoods are defined by

∫
N

i = 1

P(Data|Ml) =

P(Φ|Gij = k, )pijk   P( |Ml)dθθΣ∏ θ
2

k = 0

(8)     

and θ denotes the regression parameters. This can be 
approximated using a Laplace approximation and a 
straightforward modification of the likelihood maxi-
mization used by frequentist methods (Supplementary 
information S7 (box)). We have found that this 
approach (implemented in SNPTEST) is much more 
stable than when maximizing the likelihood, as the 
prior acts to regularize the parameter estimation. The 
expected genotype count can also be used to calculate 
Bayes factors10 and is implemented in both BIMBAM 
and SNPTEST. Stephens and Balding35 provide an 
excellent Review of the use of Bayes factors and include 
a good discussion on the choice of priors. In particular, 
they discuss the idea of using a mixture of priors to 
more precisely control beliefs about large effect sizes. 

Frequentist
A name for the school of 
statistical thought in which 
support for a hypothesis or 
parameter value is assessed 
using the probability of the 
observed data (or more 
extreme data sets) given the 
hypothesis or value. These 
theories are usually contrasted 
with Bayesian models.
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one public resource of such data will be the 1000 
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