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Human genome project

* Public effort - 1990-2003; S3 billion; hierarchical shotgun (“clone by
clone”)

* Private effort (Celera) — 1998-2001; $300 million; whole-genome
shotgun

* Both produced chimeric assemblies of multiple people
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“Next-generation” sequencing

e 2008 — first whole human genome sequenced using “next-
generation” technology (James Watson)

* Used 454 sequencing (pyrosequencing — sequencing by
synthesis relying on detection of pyrophosphate release upon
nucleotide incorporation)

* Could sequence 400-600Mb of DNA per 10-hour run

* Several “NGS” technologies emerged:

 Roche 454 sequencing

* |on torrent: Proton / PGM sequencing

* SOLID sequencing

e [llumina (Solexa) sequencing

* [[lumina now the most widely used



lllumina sequencing

( A. Library Preparation
GenOmIC DN A ——

l Fragmentation

Adapters

Sequencing
Library T —

NGS library is prepared by fragmenting a gDNA sample and
ligating specialized adapters to bath fragment ends.

/ B. Cluster Amplification
: i
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l Flow Cell

Bridge Amplification
Cycles

Library is loaded into a flow cell and the fragments hybridize
to the flow cell surface. Each bound fragment is amplified into

a clonal cluster through bridge amplification.




lllumina sequencing

C. Sequencing

M..*@ Nolole
Sequencing Cycles( )

Digital Image
Data is exported to an output file l

Cluster 1 > Read 1: GAGT...

Cluster 2 > Read 2: TTGA...

Cluster 3 > Read 3: CTAG...
Cluster 4 > Read 4: ATAC... Text File

Sequencing reagents, including fluorescently labeled nucleo-
tides, are added and the first base is incorporated. The flow

cell is imaged and the emission from each cluster is recorded.

The emission wavelength and intensity are used to identify
the base. This cycle is repeated “n” times to create a read
length of “n” bases.

( D. Alignment & Data Anaylsis

ATGGCATTGCAATTTGACAT
TGGCATTGCAATTTG
Read AGATGGTATTG
eacs GATGGCATTGCAA
GCATTGCAATTTGAC
ATGGCATTGCAATT
AGATGGCATTGCAATTTG

Reference A GATGGTATTGCAATTTGACAT

Genome

Reads are aligned to a reference sequence with bioinformatics
software. After alignment, differences between the reference
genome and the newly sequenced reads can be identified.




Cost of sequencing
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* Reminder: human genome 3 Gigabases
* Due to errors, we tend to sequence 20-30X to obtain high quality sequence i.e. 60-90Gb -
currently ~5$1000/genome

https://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf



Direct sequencing has enormous potential
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..and tremendous challenges

 Managing and processing vast quantities of data into
variation

* Interpreting millions of variants per individual

* An individual’s genome harbors:
 ~100,000 exonic variants
e ~80 point nonsense (loss-of-function) mutations
e ~100-200 frameshift mutations
* Tens of splice site mutations, CNV-induced gene disruptions

For very few of these do we have any conclusive understanding
of their medical impact in the population



Technical aspects of sequencing studies



Coverage

Coverage (or depth) is the average number of reads that
iInclude a given nucleotide in the reconstructed sequence.

— — C

Length of genomic segment: L
Number of reads: n
Length of each read: I

Definition: Coverage C=nl/L

* Typically use 20-30X coverage to obtain high-quality sequence for
human genomes.

* For some purposes, even very low-coverage sequencing (4X, 1X,
0.2X!) is useful.



Why do we need >1X (or >2X) coverage?

 Humans are diploid — number of reads covering each allele

follows a binomial distribution
* Need to distinguish real variants from sequencing errors,

especially since some errors are systematic.

Chr8:28325191
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Technologies for sequencing humans

Whole-genome sequencing (WGS)

Whole-exome sequencing (WES)

Amount of sequence

3Gb

30Mb

Typical coverage

30X (for high quality)

Average 60-180X

Library preparation

Randomly shear, then do
hybridisation-based capture of
exonic DNA fragments

Shotgun sequence - randomly
shear and capture

Advantages

* Covers (most of) the whole
sequence
* (fairly) unbiased ascertainment

Cheaper ($200-300)
Focuses on coding regions

Disadvantages

* expensive (~$1000 for 30X)
* too expensive to do at very
high coverage

* Uneven coverage, biases
* Harder to call large copy
number variants

Common
applications

* Reference panels for
imputation
 Complex traits

* Mendelian diseases
* Interrogate rare coding
variants in complex traits




The exome

intergenic sequences
e Gene C

DNA intron
Gene A Gene B \
N ] " — " —
oa o e
ntrons — — —
s (T S e
Gene A mRNA Gene B mRNA Gene C mRNA

Exome = all the exons (bits of the genome that encode proteins)



Targeted exome capture

Construct /

shotgun library . o . Hybridization = G
P — " < \? %\.//
Genomic DNA Fragments \/ \ \ \ ﬂ

Hybridisation to oligonucleotide probes Wash & == o,
attached to magnetic beads Pulldown /< / \

AGGTCGTTACGTACGCTAC
GACCTACATCAGTACATAG
GCATGACAAAGCTAGETGT

Mapping, alignment,
variant calling DNA sequencing Captured DNA

Nature Reviews | Genetics

Bamshad et al., Nature Review Genetics, 2011



Variable coverage in exome sequencing
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Also note that WES shows a greater reference bias than WGS (53% versus
50.3%) — due to both capture probes and mapping bias



Depth considerations

Mendelian disease - need high coverage to be sure rare/de novo
variants are real (20-30X WGS, or >60X WES)

Somatic mutations — variants in <<50% of reads, so need high
coverage

Complex disease
* High coverage needed to interrogate rare variants

* Low coverage may still be useful to study common variants
(genotypes can be improve by imputation)

Imputation reference panel — want large number of haplotypes,
low coverage sufficient for common variants



Step 1: Aligning to a reference

AGTCTGATTAGCTTAGCTTGTAGCGCTATATTAT
AGTCTGATTAGCTTAGAT i
ATTAGCTTAGATTGTAG%%
CTTAGATTGTAGC-C
TGATTAGCTTAGATTGTAGC-CTATAT
TAGCTTAGATTGTAGC—-CTATATT
TAGATTGTAGC-CTATATTA
TAGATTGTAGC-CTATATTAT

Torsten Seemann



Finding the true origin of each read is a
computationally demanding and important first step

— Region 1 Region 2 Region 3 Reference
- ———— ' ' genome
[ ( J
Mapping and !
\ } a“gnr.nent Detects correct read
Y algorithm o C
Enormous pile origin and flags them Detects ambiguity in the
of short reads with high certainty origin of reads and flags
from NGS them as uncertain

* Many different alignment programs
« Commonly used aligner: BWA-MEM (Li and Durbin) - robust, accurate ‘gold
standard’ — see paper in directory

v

SAM/BAM files
Ben Neale



Repeats cause problems with sequence data

* Simple repeats

* Paralogs resulting from genome duplication

* Repeated domains found in many different proteins

Reference: TAGTAGTAGTAGTAGTAGTAGTAGT

Where to put the read TAGTAGTAGT ?

A 100% 98% 70%

x,7/ yz? Vv /\ X ‘/zl / 7 X
AAAAAAAAAAAAAAAAAAAAA C ‘l:T C / GGCG

\I\IHI HHH\ IHH\ | | I\ I\H lA\HH
lGTAC BETEABAG

AAAAAAAAAAAAAAAAAAAAA

= _

Read-mapping confidence

Treangen and Salzberg, Nat. Rev, Genet., 2011



Mapping quality
* quantifies the probability that a read is misplaced

* Depends on base quality scores at mismatched bases, and also how many other
possible mappings there are throughout the genome
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The SAM/BAM file format

The Sequence Alignment and Mapping (SAM) file format was designed
to capture all of the critical information about NGS data in a single
indexed and compressed file

Contains read sequence, base quality scores, location of alignments,
differences relative to reference sequence, MAPQ

Has enabled sharing of data across centers and the development of
tools that work across platforms

More info at http://samtools.sourceforge.net/

The Sequence Alignment/Map (SAM) Format and
SAMtools

Heng Li'*, Bob Handsaker >} Alec Wysoker 2, Tim Fennell 2, Jue Ruan?,
Nils Homer 4, Gabor Marth ®, Goncalo Abecasis ¢, Richard Durbin !:] and
1000 Genome Project Data Processing Subgroup

'Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, UK,
“Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA, ®Beijing Institute of Genomics,
Chinese Academy of Science, Beijing, 100029, China, “‘Department of Computer Science,
University of California Los Angeles, Los Angeles, CA 90095, USA, *Department of Biology, Boston
College, Chestnut Hill, MA 02467, USA, 5Center for Statistical Genetics, Department of
Biostatistics, University of Michigan, Ann Arbor, Ml 48109, USA

Associate Editor: Prof. Alfonse Valencia

Ben Neale



The Genome Analysis Toolkit (GATK)

* toolkit for processing sequence data (post-alignment), calling and
filtering variants

* supports any BAM-compatible aligner
* many tools developed in GATK: base quality score recalibration,
HaplotypeCaller, multi-sample genotyping, variant filtering, variant

quality score recalibration

* memory and CPU efficient, cluster friendly and are easily
parallelized

* being used at many sites around the world

More info: http://www.broadinstitute.org/gsa/wiki/
Ben Neale
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NS = # samples with data

Variant Call Format (VCF)
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INFO field contains meta-data FORMAT specifies the Individual genotype
genotype format follows FORMAT
GT = genotype structure

DP = total depth

AF = ALT allele frequency
DB = in dbSNP

H2 =in HapMap2

GQ = genotype quality
DP = sample depth
HQ = haplotype quality

GT:GQ:DP:HQ 0|0:48:1:51,51
GT:GQ:DP:HQ 0|/0:49:3:58, 50



Discovery versus genotyping

* In genotype data, we know the variants are real —
we just need to work out what individuals’
genotypes are

* In sequence data, we also have a discovery
problem — which variants are real? —as well as a
genotyping problem



What filters do we use?

* Problem: correlated sequencing errors and
mapping artefacts drive false positives (cause loss
of power, spurious conclusions) = VQSR etc

* The following should be random if the sequencing
technology is working as expected:

* Variant position in read

e Strand bias — 5’-to-3’ and 3’-to-5’ reads should give
equal representation of alternate allele

* Allele balance — at heterozygous sites, the number of
ALT reads should follow a binomial distribution with
p=0.5



Value of simultaneous variant calling in
multiple individuals

* Sensitivity
* Greater statistical evidence compiled for true variants seen in >1 individual
» Specificity

* Deviations in metrics that flag false positive sites become much more
statistically significant e.g. allele balance, strand bias, proportion of reads with
low MAPQ

 Distinguishing missing genotype from homozygous reference
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Variant filtration strategies are still evolving
VQSR is a common approach

e Variant quality score recalibration aims to enable variant filtering in order
to balance sensitivity and specificity

* VQSR uses machine learning to learn the annotation profile of good versus

bad variants across a dataset, by integrating information from multiple QC
metrics

* Requires a set of “true sites” as input e.g. HapMap3 sites

e Calculates log odds ratio of being true variant versus being false under
trained Gaussian mixture model - VQSLOD added to INFO field

http://gatkforums.broadinstitute.org/gatk/discussion/39/variant-quality-score-recalibration-vqgsr




An important QC metric
Transition:transversion ratio across the dataset

within vs between type: purine (A & G) or pyrimidine (C & T)

transitions are expected to occur twice as frequently as transversions

across the entire genome Ti:Tv is typically ~2

in protein coding regions, Ti:Tv is ~3 (higher because transversions are
much more likely to change the encoded amino acid, especially in the third
base of a codon)

not relevant for genotype data since we know the variants are real

| A | C | G | T
Tv Ti Tv

Tv - Tv Ti
Ti Tv - Tv
Tv Ti Tv -

— O O X



A cautionary tale: another peril of sequence data

e Sequenced ~60 platypus samples

* Two groups of samples from the same river fell far apart on
the PCA

* Noticed that this was driven by dense heterozygous SNPs
falling in exons, present only in some lanes in those samples

e Barnard River °. .
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contamination

A cautionary tale: arew-platypussub-species?—

Sequenced ~60 platypus samples
Two groups of samples from the same river fell far apart on the PCA

Noticed that this was driven by dense heterozygous SNPs falling in
exons, present only in those samples

Turns out some sequencing lanes had been contaminated with
human exome sequencing libraries

Human exonic reads still close enough to platypus exons to align

Would never see something like this with genotype chip data



More common contamination problems

Contamination between samples in the same sequencing lane
Bacterial/viral contamination

Females who have had multiple sons (fetal DNA remaining in
mother’s blood)

People who have had bone marrow transplants



QC for sequencing versus genotype data

Error modes greatly differ between sequencing and
genotyping chips

In sequence data, there is a discovery problem as well as a
genotyping problem (i.e. the variants may not be real variants
at all) — need to filter sites as well as genotypes

Contamination is more of a problem for sequencing than
genotyping data

Spontaneous DNA damage (e.g. at chemically modified
nucleotides) leads to false variants in reads — need to avoid
calling as variant sites



Solved and unsolved technical problems in
sequencing data processing

 We're now pretty good at SNP calling

* Indel calling still challenging, particularly in low-complexity regions
(machine learning approach based on image recognition shows
promise - DeepVariant)

e (Structural variants also hard to call)

11111111112222222222233333333334444444444555 55555566666666667777777777888888888899999999990000000000111111111
Position:1234567890123456789012345678%9012345678901234567890123 45678901234567890123456789012345678901234567890123456789012345678

Ref:ATTTGGGGGCTGGGACTGGGTCCAGGACAGGGACTGGGGCCGGGACCGGGACCHIkk*GGGACTGGGGCCGGGACCGGGACCGGGACTGGGGCCGGGACCGGGACCGGGACAGGGACCAGGAC

Truth: ATTTGGGGGCTGGGACTGGGTCCGGGACAGGGACTGGGGCCGGGA fokokokok CCGGGACCGGGACAGGGACTGGGG—————CCGGGACCGGGACAGGGACCAGGAC
errReadl: ATTTGGGGGCTGGGACTGGGTCCGGGACAGGGACTGGGGCCGGGACCGGGAC CaniotiiokGGGAC
errRead2: CTGGGTCCgGGACAGGGACTGGGGCCGGGACCGGGACCgggacaGGGACTGGGGCCGGGACCGGGACAGGGAC
errRead3: TGGGCCGGGACaxkirrkGGGACTGGGGCCGGGACCGGGACEGGGACAGGGACtGGGEgCCGGGACCGGGACAGGGACCAGGAC
Correctl:ATTTGGGGGCTGGGACTGGGTCCGGGACAGGGACTGGGGCCGGGA fokokokokok CCGGGACCGGGAC
Correct2: CTGGGTCCgGGACAGGGACTGGGGCCGGGA: CCGGGACCGGGACaGGGACTGGGG—————CCGGGACCGGGACAGGGAC
Correct3: TGGGTCCGGGACAGGGACTGGGGCCGGGA Hokolok CCGGGACCGGGACAGGGACTGGGE—-CCGGGACCGGGACAGGGACCAGGAC

Figure from Li, Bioinformatics, 2014



Sequencing studies in practice



Importance of controls
Can’t always afford to sequence both cases and controls, so use
publicly available controls (lots of potential artefacts)
Initially, researchers relied on dbSNP
Usually interested in rare variants (otherwise would just genotype)

Having ancestry-matched controls is very important, especially since
rare variants tend to be geographically localised



Population stratification of rare variants

Differential confounding of rare and common variants in
spatially structured populations

Tain Mathieson! & Gil McVean!»2
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N.B. the scenarios simulated in this paper
are probably more extreme than reality



Publicly available controls

* Since 2010, several projects have made large databases of sequence
variation in healthy individuals available

 These are very valuable, but if you can afford to sequence in-house
controls alongside your cases too, this is even better

1000 Genomes

A Deep Catalog of Human Genetic Variation AN -’ .‘: : NHLBI Exome Sequencing Project (E P
| Exome Variant Server

6,500 European and African American exomes
(caveat: focused on heart, lung and blood disorders)

oy (S0 GEEE L e

2,500 low-coverage whole genomes

4,000 low-coverage whole genomes (TwinsUK and ALSPAC)
6,000 exomes of people with extreme phenotypes of specific conditions



Value of in-house controls

Plot shows distribution of number of “novel” heterozygous protein-altering variants per
person, across 500 people in the WGS500 project

“novel” is defined based on absence from different control datasets (2500 individuals from
1000 Genomes, 6500 from ESP, 499 from WGS500)

Filtering against in-house control datasets sequenced and processed in same way as patient
samples helps to eliminate artefacts (erroneous variant calls)
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The Exome Aggregation consortium (ExAC)

* Largest exome sequencing dataset to date (now gnomAD)
e Samples with severe paediatric disease removed
e All samples called jointly to minimise artefactual differences between studies

* Value of large sample size to estimate allele frequency of rare variants accurately

N.B. no individual-specific information, just total genotype counts
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Basic variant statistics from ExAC

 After filtering, 7.4M variants, of which 317K indels = one variant every 8bp within exons
* 99% have frequency < 1%, 54% are singletons, 72% absent from 1000G+ESP

* 7.9% are have multiple ALT alleles (multiallelic) (cf. <0.5% in 1000G and ESP)
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Use of EXAC for variant interpretation in
Mendelian disease

Allele frequency estimates in ESP are
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What are the consequences of these variants?
What can we |learn about genes?



Exonic variant conseguences - revision

* Synonymous (silent) — same amino acid
* Missense (hnonsynonymous)
* Nonsense (loss-of-function) — premature stop codon

 Splicing mutation - disrupts splicing (often leading to

loss-of-functinn)

Second letter
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Ben Neale



Alternative splicing

Chromo- ~ Exon 1 Exon 2 Exon 3 Exon 4 Exon 5 Exon6
somal 5 e e
DNA
l Transcription
Primary RNA 5 gy T — — 3’
transcript 1 2 5 6
Alternatlve splicing
mRNAs( )
——— | —— |
1. 2 4 5 6 1 3 4 5 6
l1?andaﬁon l1?andanon l1?anﬂaﬁon

Protein 1 Protein 2 Protein 3

THE CELL, Fourth Edition, Figure 55 © 2006 ASM Press and Sinauer Associates, Inc.



Annotation

Process of adding information about frequency, expected
functional consequence etc. of variants

e.g. is the variant found in dbSNP? What is the rs ID? Is it found in
1000 Genomes? At what frequency in each population?

Functional consequence — synonymous, missense, honsense,
splicing etc.

Functional consequence often differs depending on transcript
(e.g. exon may be present in some both not all transcripts)

Commonly used tool: Variant Effect Predictor (Ensembl)



More on loss-of-function variants (LoFs)

 LoFs are variants that severely affect the function of a
protein-coding gene

* Typically do so by deleting it or prompting nonsense-
mediated decay (NMD)

* LoFs also called protein truncating variants (PTVs)



Different types of LoFs
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* Note all premature stop codons lead to NMD
 LOFTEE — VEP plugin to annotate LoFs as high confidence or low confidence (HC, LC) based
on known rules about which variants actually lead to NMD



Challenges in identifying true LoFs
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 the fraction of variants that are sequencing/calling errors is higher for
LoFs than other types of variants

Konrad Karczewski



Loss-of-function variants in EXAC
e 180K LoFs, of which 121K are singletons

* Most LoFs are common; each individual has ~2 singleton LoFs
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Observed Number of Synonymous Variants
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Inferring gene constraint using ExAC data

Relies on ratio of # observed to # expected variants in a gene

Determining # expected variants relies on model for mutation rate in
different sequence contexts - see Samocha et al. (Nat Gen, 2014) for details

Model does well at predicting # rare synonymous variants, bue less well for

missense and LoFs due to selective constraint
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Number of genes
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pLl less correlated with coding sequence length than LoF Z-score (r=0.17
vs. 0.57)

10,374 LoF-tolerant genes (pLI £0.1)

3,230 LoF-intolerant genes (pLl = 0.9) = includes almost all known
severe haploinsufficient (HI) disease genes; 79% have not yet been
assigned a human disease phenotype (could be embryonic lethal, or

patients not found yet)



gnomAD: the new, bigger version of EXAC

Also ~15,000 jointly-called whole genomes
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Limitations in using EXAC and gnomAD

differences in coverage, mapping, variant calling or QC between
your dataset and theirs may lead to misestimation of allele
frequency for variants in some regions

these differences become very apparent when doing exome-
wide analyses

beware poorly matched ancestry e.g. a singleton in EXAC may be
more common in a tiny Swiss village

not necessarily useful as controls for complex disease studies
because have not been screened for those phenotypes



Practical

* Variant Effect Predictor (VEP)
* EXAC

* Ensembl for viewing variant frequencies and
consequences, and LD structure



