Introduction to sequencing

Hilary Martin
Wellcome Trust Sanger Institute
Hinxton (near Cambridge), UK
Human genome project

- Public effort - 1990-2003; $3 billion; hierarchical shotgun ("clone by clone")
- Private effort (Celera) – 1998-2001; $300 million; whole-genome shotgun
- Both produced chimeric assemblies of multiple people

Hierarchical shotgun sequencing

Whole-genome shotgun sequencing
“Next-generation” sequencing

• 2008 – first whole human genome sequenced using “next-generation” technology (James Watson)
 • Used 454 sequencing (pyrosequencing – sequencing by synthesis relying on detection of pyrophosphate release upon nucleotide incorporation)
 • Could sequence 400-600Mb of DNA per 10-hour run

• Several “NGS” technologies emerged:
 • Roche 454 sequencing
 • Ion torrent: Proton / PGM sequencing
 • SOLiD sequencing
 • Illumina (Solexa) sequencing

• Illumina now the most widely used
Illumina sequencing

A. Library Preparation

- Genomic DNA
- Fragmentation
- Adapters
- Ligation
- Sequencing Library

NGS library is prepared by fragmenting a gDNA sample and ligating specialized adapters to both fragment ends.

B. Cluster Amplification

- Flow Cell
- Bridge Amplification Cycles
- Clusters

Library is loaded into a flow cell and the fragments hybridize to the flow cell surface. Each bound fragment is amplified into a clonal cluster through bridge amplification.
Illumina sequencing

C. Sequencing

Sequencing reagents, including fluorescently labeled nucleotides, are added and the first base is incorporated. The flow cell is imaged and the emission from each cluster is recorded. The emission wavelength and intensity are used to identify the base. This cycle is repeated “n” times to create a read length of “n” bases.

D. Alignment & Data Analysis

Reads

ATGGCATTGCAATTGACAT
TGGCATTGGCAATTGG
AGATGGTATTG
GATGGCATTGGCAAA
GCAATTGGCAATTGAC
ATGGCATTGGCAATT
AGATGGCATTGGCAATTGG

Reference Genome

AGATGGTATTGCAATTGACAT

Reads are aligned to a reference sequence with bioinformatics software. After alignment, differences between the reference genome and the newly sequenced reads can be identified.
Cost of sequencing

- Reminder: human genome 3 Gigabases
- Due to errors, we tend to sequence 20-30X to obtain high quality sequence i.e. 60-90Gb → currently ~$1000/genome

Direct sequencing has enormous potential
...and tremendous challenges

• Managing and processing vast quantities of data into variation

• Interpreting millions of variants per individual
 • An individual’s genome harbors:
 • ~100,000 exonic variants
 • ~80 point nonsense (loss-of-function) mutations
 • ~100-200 frameshift mutations
 • Tens of splice site mutations, CNV-induced gene disruptions

For very few of these do we have any conclusive understanding of their medical impact in the population
Technical aspects of sequencing studies
Coverage

Coverage (or depth) is the average number of reads that include a given nucleotide in the reconstructed sequence.

![Diagram of coverage with L, n, and I](image)

Definition: Coverage \(C = \frac{n \cdot I}{L} \)

- Typically use 20-30X coverage to obtain high-quality sequence for human genomes.
- For some purposes, even very low-coverage sequencing (4X, 1X, 0.2X!) is useful.
Why do we need >1X (or >2X) coverage?

- Humans are diploid – number of reads covering each allele follows a binomial distribution
- Need to distinguish real variants from sequencing errors, especially since some errors are systematic.
Technologies for sequencing humans

<table>
<thead>
<tr>
<th></th>
<th>Whole-genome sequencing (WGS)</th>
<th>Whole-exome sequencing (WES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount of sequence</td>
<td>3Gb</td>
<td>30Mb</td>
</tr>
<tr>
<td>Typical coverage</td>
<td>30X (for high quality)</td>
<td>Average 60-180X</td>
</tr>
<tr>
<td>Library preparation</td>
<td>Randomly shear, then do hybridisation-based capture of exonic DNA fragments</td>
<td>Shotgun sequence - randomly shear and capture</td>
</tr>
</tbody>
</table>
| Advantages | • Covers (most of) the whole sequence
 • (fairly) unbiased ascertainment | • Cheaper ($200-300)
 • Focuses on coding regions |
| Disadvantages | • expensive (~$1000 for 30X)
 • too expensive to do at very high coverage | • Uneven coverage, biases
 • Harder to call large copy number variants |
| Common applications | • Reference panels for imputation
 • Complex traits | • Mendelian diseases
 • Interrogate rare coding variants in complex traits |
The exome

- Exome = all the exons (bits of the genome that encode proteins)
Targeted exome capture

Hybridisation to oligonucleotide probes attached to magnetic beads

Mapping, alignment, variant calling

DNA sequencing

Captured DNA

Bamshad et al., Nature Review Genetics, 2011
Variable coverage in exome sequencing

Also note that WES shows a greater reference bias than WGS (53% versus 50.3%) – due to both capture probes and mapping bias.
Depth considerations

- Mendelian disease - need high coverage to be sure rare/de novo variants are real (20-30X WGS, or >60X WES)
- Somatic mutations – variants in <<50% of reads, so need high coverage
- Complex disease
 - High coverage needed to interrogate rare variants
 - Low coverage may still be useful to study common variants (genotypes can be improve by imputation)
- Imputation reference panel – want large number of haplotypes, low coverage sufficient for common variants
Step 1: Aligning to a reference
Many different alignment programs

Commonly used aligner: BWA-MEM (Li and Durbin) - robust, accurate ‘gold standard’ – see paper in directory

Finding the true origin of each read is a computationally demanding and important first step

Enormous pile of short reads from NGS

Mapping and alignment algorithm

Region 1

Region 2

Region 3

Reference genome

Detects correct read origin and flags them with high certainty

Detects ambiguity in the origin of reads and flags them as uncertain

SAM/BAM files

Ben Neale
Repeats cause problems with sequence data

- Simple repeats
- Paralogs resulting from genome duplication
- Repeated domains found in many different proteins

Reference: TAGTAGTAGTAGTAGTAGTAGTAGTAGTAGTAGTAGTAGTAGT

Where to put the read TAGTAGTAGT?
Mapping quality

- quantifies the probability that a read is misplaced
- Depends on base quality scores at mismatched bases, and also how many other possible mappings there are throughout the genome
The SAM/BAM file format

• The Sequence Alignment and Mapping (SAM) file format was designed to capture all of the critical information about NGS data in a single indexed and compressed file

• Contains read sequence, base quality scores, location of alignments, differences relative to reference sequence, MAPQ

• Has enabled sharing of data across centers and the development of tools that work across platforms

The Sequence Alignment/Map (SAM) Format and SAMtools

Heng Li 1,*, Bob Handsaker 2,†, Alec Wysoker 2, Tim Fennell 2, Yue Ruan 3, Nils Homer 1, Gabor Marth 5, Goncalo Abecasis 6, Richard Durbin 1,†, and 1000 Genome Project Data Processing Subgroup

1Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, UK, 2Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA, 3Beijing Institute of Genomics, Chinese Academy of Science, Beijing, 100029, China, 4Department of Computer Science, University of California Los Angeles, Los Angeles, CA 90095, USA, 5Department of Biology, Boston College, Chestnut Hill, MA 02467, USA, 6Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA

Associate Editor: Prof. Alfonso Valencia
The Genome Analysis Toolkit (GATK)

• toolkit for processing sequence data (post-alignment), calling and filtering variants

• supports any BAM-compatible aligner

• many tools developed in GATK: base quality score recalibration, HaplotypeCaller, multi-sample genotyping, variant filtering, variant quality score recalibration

• memory and CPU efficient, cluster friendly and are easily parallelized

• being used at many sites around the world

More info: http://www.broadinstitute.org/gsa/wiki/
Variant Call Format (VCF)

N.B. differs from A1/A2 on genotyping chips, or minor/major allele

<table>
<thead>
<tr>
<th>#CHROM</th>
<th>POS</th>
<th>ID</th>
<th>REF</th>
<th>ALT</th>
<th>QUAL</th>
<th>FILTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>14370</td>
<td>rs6054257</td>
<td>G</td>
<td>A</td>
<td>29</td>
<td>PASS</td>
</tr>
<tr>
<td>20</td>
<td>17330</td>
<td>.</td>
<td>T</td>
<td>A</td>
<td>3</td>
<td>q10</td>
</tr>
</tbody>
</table>

INFO field contains meta-data
- **NS** = # samples with data
- **DP** = total depth
- **AF** = ALT allele frequency
- **DB** = in dbSNP
- **H2** = in HapMap2

FORMAT specifies the genotype format
- **GT** = genotype
- **GQ** = genotype quality
- **DP** = sample depth
- **HQ** = haplotype quality

Individual genotype follows FORMAT structure
Discovery versus genotyping

• In genotype data, we know the variants are real – we just need to work out what individuals’ genotypes are

• In sequence data, we also have a discovery problem – which variants are real? – as well as a genotyping problem
What filters do we use?

• Problem: correlated sequencing errors and mapping artefacts drive false positives (cause loss of power, spurious conclusions) → VQSR etc

• The following should be random if the sequencing technology is working as expected:
 • Variant position in read
 • Strand bias – 5′-to-3′ and 3′-to-5′ reads should give equal representation of alternate allele
 • Allele balance – at heterozygous sites, the number of ALT reads should follow a binomial distribution with p=0.5
Value of simultaneous variant calling in multiple individuals

- **Sensitivity**
 - Greater statistical evidence compiled for true variants seen in >1 individual

- **Specificity**
 - Deviations in metrics that flag false positive sites become much more statistically significant e.g. allele balance, strand bias, proportion of reads with low MAPQ

- **Distinguishing missing genotype from homozygous reference**

![Diagram showing genotype calling](image)
Variant filtration strategies are still evolving
VQSR is a common approach

- Variant quality score recalibration aims to enable variant filtering in order to balance sensitivity and specificity
- VQSR uses machine learning to learn the annotation profile of good versus bad variants across a dataset, by integrating information from multiple QC metrics
- Requires a set of “true sites” as input e.g. HapMap3 sites
- Calculates log odds ratio of being true variant versus being false under trained Gaussian mixture model - VQSLOD added to INFO field

http://gatkforums.broadinstitute.org/gatk/discussion/39/variant-quality-score-recalibration-vqsr
An important QC metric
Transition:transversion ratio across the dataset

• within vs between type: purine (A & G) or pyrimidine (C & T)
• transitions are expected to occur twice as frequently as transversions
• across the entire genome Ti:Tv is typically ~2
• in protein coding regions, Ti:Tv is ~3 (higher because transversions are much more likely to change the encoded amino acid, especially in the third base of a codon)
• not relevant for genotype data since we know the variants are real

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-</td>
<td>Tv</td>
<td>Ti</td>
<td>Tv</td>
</tr>
<tr>
<td>C</td>
<td>Tv</td>
<td>-</td>
<td>Tv</td>
<td>Ti</td>
</tr>
<tr>
<td>G</td>
<td>Ti</td>
<td>Tv</td>
<td>-</td>
<td>Tv</td>
</tr>
<tr>
<td>T</td>
<td>Tv</td>
<td>Ti</td>
<td>Tv</td>
<td>-</td>
</tr>
</tbody>
</table>
A cautionary tale: another peril of sequence data

- Sequenced ~60 platypus samples
- Two groups of samples from the same river fell far apart on the PCA
- Noticed that this was driven by dense heterozygous SNPs falling in exons, present only in some lanes in those samples
A cautionary tale: a new platypus sub-species?

- Sequenced ~60 platypus samples
- Two groups of samples from the same river fell far apart on the PCA
- Noticed that this was driven by dense heterozygous SNPs falling in exons, present only in those samples
- Turns out some sequencing lanes had been contaminated with human exome sequencing libraries
- Human exonic reads still close enough to platypus exons to align
- Would never see something like this with genotype chip data
More common contamination problems

• Contamination between samples in the same sequencing lane
• Bacterial/viral contamination
• Females who have had multiple sons (fetal DNA remaining in mother’s blood)
• People who have had bone marrow transplants
QC for sequencing versus genotype data

• Error modes greatly differ between sequencing and genotyping chips

• In sequence data, there is a discovery problem as well as a genotyping problem (i.e. the variants may not be real variants at all) – need to filter sites as well as genotypes

• Contamination is more of a problem for sequencing than genotyping data

• Spontaneous DNA damage (e.g. at chemically modified nucleotides) leads to false variants in reads – need to avoid calling as variant sites
Solved and unsolved technical problems in sequencing data processing

• We’re now pretty good at SNP calling

• Indel calling still challenging, particularly in low-complexity regions (machine learning approach based on image recognition shows promise - DeepVariant)

• (Structural variants also hard to call)
Sequencing studies in practice
Importance of controls

- Can’t always afford to sequence both cases and controls, so use publicly available controls (lots of potential artefacts)
- Initially, researchers relied on dbSNP
- Usually interested in rare variants (otherwise would just genotype)
- Having ancestry-matched controls is very important, especially since rare variants tend to be geographically localised
Population stratification of rare variants

Differential confounding of rare and common variants in spatially structured populations

Iain Mathieson & Gil McVean

Plot of excess allele sharing: ratio of how much more likely two individuals at a given spatial distance are to share a derived allele compared to what would be expected in a homogenous population

Quantile-quantile plot of association test P values broken down by allele frequency for a small, sharply defined region of constant non-genetic risk

N.B. the scenarios simulated in this paper are probably more extreme than reality
Publicly available controls

• Since 2010, several projects have made large databases of sequence variation in healthy individuals available

• These are very valuable, but if you can afford to sequence in-house controls alongside your cases too, this is even better

6,500 European and African American exomes (caveat: focused on heart, lung and blood disorders)

2,500 low-coverage whole genomes

4,000 low-coverage whole genomes (TwinsUK and ALSPAC)

6,000 exomes of people with extreme phenotypes of specific conditions
Value of in-house controls

- Plot shows distribution of number of “novel” heterozygous protein-altering variants per person, across 500 people in the WGS500 project
- “novel” is defined based on absence from different control datasets (2500 individuals from 1000 Genomes, 6500 from ESP, 499 from WGS500)
- Filtering against in-house control datasets sequenced and processed in same way as patient samples helps to eliminate artefacts (erroneous variant calls)
The Exome Aggregation consortium (ExAC)

- Largest exome sequencing dataset to date (now gnomAD)
- Samples with severe paediatric disease removed
- All samples called jointly to minimise artefactual differences between studies
- Value of large sample size to estimate allele frequency of rare variants accurately
- N.B. no individual-specific information, just total genotype counts
Basic variant statistics from ExAC

- After filtering, 7.4M variants, of which 317K indels → one variant every 8bp within exons
- 99% have frequency < 1%, 54% are singletons, 72% absent from 1000G+ESP
- 7.9% are have multiple ALT alleles (multiallelic) (cf. <0.5% in 1000G and ESP)
Use of ExAC for variant interpretation in Mendelian disease

Allele frequency estimates in ESP are unreliable, particularly for very low allele counts (upwardly biased)

ExAC improves filtering of rare variation compared to ESP
What are the consequences of these variants?
What can we learn about genes?
Exonic variant consequences - revision

- **Synonymous (silent)** – same amino acid
- **Missense (nonsynonymous)** – different amino acid
- **Nonsense (loss-of-function)** – premature stop codon
- **Splicing mutation** – disrupts splicing (often leading to loss-of-function)

![Table](image)
Alternative splicing
Annotation

• Process of adding information about frequency, expected functional consequence etc. of variants
• e.g. is the variant found in dbSNP? What is the rs ID? Is it found in 1000 Genomes? At what frequency in each population?
• Functional consequence – synonymous, missense, nonsense, splicing etc.
• Functional consequence often differs depending on transcript (e.g. exon may be present in some both not all transcripts)
• Commonly used tool: Variant Effect Predictor (Ensembl)
More on loss-of-function variants (LoFs)

- LoFs are variants that severely affect the function of a protein-coding gene
- Typically do so by deleting it or prompting nonsense-mediated decay (NMD)
- LoFs also called protein truncating variants (PTVs)
Different types of LoFs

- Nonsense SNVs
 - CGA...
 - TGA...

- Frameshift indels
 - [CGA]GT[A...
 - [C – AG]TGA...

- Splice disrupting SNVs
 - GT
 - CT

Breaks the GT–AG rule

- Note all premature stop codons lead to NMD
- LOFTEE – VEP plugin to annotate LoFs as high confidence or low confidence (HC, LC) based on known rules about which variants actually lead to NMD
Challenges in identifying true LoFs

- the fraction of variants that are sequencing/calling errors is higher for LoFs than other types of variants
Loss-of-function variants in ExAC

- 180K LoFs, of which 121K are singletons
- Most LoFs are common; each individual has ~2 singleton LoFs
Inferring gene constraint using ExAC data

- Relies on ratio of # observed to # expected variants in a gene
- Determining # expected variants relies on model for mutation rate in different sequence contexts - see Samocha et al. (Nat Gen, 2014) for details
- Model does well at predicting # rare synonymous variants, but less well for missense and LoFs due to selective constraint
pLI: probability of loss-of-function intolerance

- pLI less correlated with coding sequence length than LoF Z-score ($r=0.17$ vs. 0.57)
- 10,374 LoF-tolerant genes (pLI ≤ 0.1)
- 3,230 LoF-intolerant genes (pLI ≥ 0.9) → includes almost all known severe haploinsufficient (HI) disease genes; 79% have not yet been assigned a human disease phenotype (could be embryonic lethal, or patients not found yet)
gnomAD: the new, bigger version of ExAC

Also ~15,000 jointly-called whole genomes
Limitations in using ExAC and gnomAD

- differences in coverage, mapping, variant calling or QC between your dataset and theirs may lead to misestimation of allele frequency for variants in some regions
- these differences become very apparent when doing exome-wide analyses
- beware poorly matched ancestry e.g. a singleton in ExAC may be more common in a tiny Swiss village
- not necessarily useful as controls for complex disease studies because have not been screened for those phenotypes
Practical

• Variant Effect Predictor (VEP)
• ExAC
• Ensembl for viewing variant frequencies and consequences, and LD structure