
The design and interpretation of genetic association
studies depends on the relationship between the

genotyped variants and the underlying functional
variant, often parameterized as the squared correla-
tion or r2 measure of linkage disequilibrium between
two loci. While it has long been recognized that
placing a constraint on the r2 between two loci also
places a constraint on the difference in frequencies
between the coupled alleles, this constraint has not
been quantified. Here, quantification of this severe
constraint is presented. For example, for r2 ≥ .8, the
maximum difference in allele frequency is ± .06
which occurs when one locus has allele frequency
.5. For r2 ≥ .8 and allele frequency at one locus of .1,
the maximum difference in allele frequency at the
second locus is only ± .02. The impact on the design
and interpretation of association studies is discussed.

Association studies test for a relationship between
genetic variants and disease status and are an impor-
tant tool in the search for genes involved in complex
diseases (Risch & Merikangas, 1996). Often there are
no strong hypotheses about the functional role of a
specific genotyped variant. Under these circumstances
any association detected must be interpreted as being
caused either by the variant or something correlated
with it. The observed effect size of the association can
be interpreted in terms of the effect size at the causal
variant, the frequency of the causal variant, the fre-
quency of the genotyped variant and the extent of
linkage disequilibrium (LD) between the casual and
genotyped loci. These parameters are, of course,
unknown but understanding the relationship between
them and the boundaries placed upon them helps with
the interpretation of the observed association. The
same parameters are also crucial to the design of asso-
ciation studies. The effective size of an association
study (N’) for a genotyped variant in LD with the
causal variant is related to the size of an association
study (N) needed when the causal variant itself is geno-
typed by a factor of 1/r2 (Pritchard & Przeworski,
2001; Risch & Teng, 1998) where r2 is the squared cor-
relation coefficient measure of LD between the two
loci. Therefore, in the design of association studies it is
common practice to choose markers that are represen-

tative of the LD landscape of the region under study,
such that all excluded markers are in high LD with one
or a combination of chosen markers. In this way, if the
causal locus is not genotyped then the association with
disease may still be detected by the correlated associa-
tion with the genotyped marker loci. Many methods of
SNP selection have been proposed. The simplest
method, motivated by the power relationship described
above, excludes markers that make r2 greater than a
defined threshold with any selected marker (e.g.,
Carlson et al., 2004). 

For all of these reasons, the interplay between the
allele frequencies of genotyped and causal variants and
the r2 between them underpins any association study.
The dependence of r2 on the allele frequencies at the
two loci has long been recognized (Devlin & Risch,
1995; Hedrick, 1987; Hill & Robertson, 1968; Risch,
2000; Risch & Teng, 1998) and has resulted in recom-
mendations that SNPs should be selected on the basis
of their frequencies to increase the probability of
detecting an association with a nearby causative locus
(Garner & Slatkin, 2003; Ohashi & Tokunaga, 2001).
Muller-Myshok and Abel (1997) were the first to
caution on the power of association studies when the
difference in allele frequencies of genotyped and causal
variant is high and when LD between them is low.
Zondervan and Cardon (2004) provide a thorough
exploration of the relationship between causal and cor-
related variants and their impact on association studies
as they ‘discuss the underappreciated importance of the
marker allele frequency relative to the frequency of the
disease variant in influencing the probability of finding
the association’. However, these discussions have all
fallen short of quantifying the restrictions posed on
allele frequencies by the r2 relationship between them.
In this study, we quantify the maximum difference in
allele frequencies between two loci as constrained by
their r2 and use these results to discuss the conse-
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quences for the design and interpretation of associa-
tion studies.

Methods
Linkage Disequilibrium

Central to our discussion is the concept of linkage dise-
quilibrium which describes the relationship between
alleles at two (or more) loci. Many statistics have been
proposed to explain this relationship (reviewed, e.g., by
Morton et al., 2001; Nordborg & Tavare, 2002). Two
of the most commonly used measures are |D’| and r2. If
there are two loci, each with two alleles, and the fre-
quencies for allele 1 at each locus are pA and pB

respectively, and the frequency of both 1 alleles together
is pAB (see Table 1), then the covariance between the loci
is D = pAB – pApB, where pApB is the expected value of
pAB in the absence of allelic association (or coupling).
When D is positive, pAB has maximum value equal to
the smaller of pA or pB and therefore the maximum
value of D is the smaller of pA(1 – pB) and pB (1 – pA);
when it is negative, its maximum value is the smaller of
pApB and (1 – pA)(1 – pB). The sign of D reflects the
chance ordering of the alleles at each locus, but can be
important in the comparison of LD between the same
loci genotyped in different populations (e.g., cases and
controls) when alleles have been ordered in the same
way. The LD measure r2 is the squared correlation,
where r scales D by the standard deviations of the allele
frequencies at two loci, r2 = D2/ {pApB(1 – pA)(1 – pB)}. In
contrast, D’ scales D by its maximum value given the
allele frequencies:

D’ = D/min{pA (1 – pB), pB (1 – pA)} if D > 0

D’ = D/min{pApB, (1 – pA)(1 – pB)} if D < 0

Whenever one pair of allele combinations is absent,
|D’| = 1 and LD is described as ‘complete’ because the
allelic association is as high as possible given the allele
frequency at each locus. For example, if pA = .6, pB = .1
and pAB = .1 (hence paB = 0), |D’| = 1, but r2 = .07; this
situation may represent, for example, a young SNP that
first occurred on the background of the common allele
at locus A. In contrast, ‘perfect LD’ is when only two of
the four haplotypes are observed and can only occur
when allele frequencies at the two loci are the same, in
this case r2 = |D’| = 1. |D’| has range 0 – 1 regardless of
allele frequency (although with small sample size, |D’| is
often estimated to be 1 when minor allele frequency is

low), whereas the maximum value for r2 is the smaller
of pA (1 – pB)/(1 – pA) pB and its inverse. Studies which
describe the observed LD landscape often quote both
|D’| and r2 which allows an at-a-glance judgment of LD
together with the difference in allele frequencies of the
coupled alleles. For example, high |D’| and high r2 =
tendency to the presence of only two haplotypes, small
difference in allele frequency of coupled alleles; high
|D’| and low r2 = tendency to the presence of only three
haplotypes, different allele frequencies of the coupled
alleles; low |D’|, low r2 = tendency toward random cou-
pling of alleles and presence of all four haplotypes.

Quantification of Relationship Between Allele Frequencies and r2

Whilst a general judgment can be made about differ-
ence in allele frequencies from the joint knowledge of
the r2 and |D’| LD measures, there has been no formal
framework to quantify the relationship between r2 and
allele frequencies. The boundaries on allele frequency
given the r2 between two loci can be derived as
follows. If alleles A and B are the coupled alleles at
two different loci and if pB = pA + v, with v ≥ 0, then
the maximum value for pAB is pA, so that the
maximum value for D is pA – pA(pA + v). Under these
conditions and if r2 exceeds some threshold t, then r2

can be written as 

Rearrangement of this equation shows that if the allele
frequency at locus 1 is pA then the maximum allele 
frequency at the second locus, given that r2 ≥ t,
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Table 1

Notation for Haplotype and Allele Frequencies

Locus B
Locus A Allele 1 Allele 2 Allele frequency

Allele 1 pAB pAb pA

Allele 2 paB pab pa =1 – pA

Allele frequency pB pb = 1 – pB 1

Table 2

Limits on Allele Frequency at Locus 2 (pB) Given Allele Frequency at Locus 1 (pA) and LD Measure > t for Measures of LD Whose Range is
Dependent on the Allele Frequencies at the Two Loci

Measure of LD Symbol Estimate vmin vmax Lower limit of pB Upper limit of pB

Squared r2 D2/pA(1 – pA)pB(1 – pB) pA (1 – pA)(1 – t)/ pA (1 – pA)(1 – t)/ t pA / (1 – pA(1 – t)) pA / (pA(1 – t) + t)
correlation (1 – pA(1 – t)) (pA(1 – t) + t). 

Regression b D/ pB(1 – pB) pA(1 – t) pA (1 – t)/t t pA 1/t

Frequency f or d D/ pA(1 – pA) (1 – pA)(1 – t) (1 – pA)(1 – t) pA – (1 – pA)(1 – t) 1 – t (1 – pA)
difference

Note: b and f listed in Table 2 of Morton et al. (2001); d used by Kruglyak (1999)
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is pB = pA + vmax , wherevmax = (1 – pA)(1 – t)/{pA(1 – t) + t}.
The minimum allele frequency at the second locus,
pB = pA – vmin can be derived in a similar way, vmin

= (1 – pA)(1 – t)/{1 – pA(1 – t)}. Similar limits can be
derived for other measures of LD which are dependent
on allele frequency and are included here for com-
pleteness (Table 2). 

Association Studies

We can utilize these results to consider some aspects of
design and interpretation of association studies.
Zondervan and Cardon (2004; Box 3, equation 3),
using the results of Ackerman et al. (2003), presented
an expression for the allelic odds ratio present at a
marker locus in LD with a causal variant (ORM) in
terms of the odds ratio at the causal variant (ORT),
the allele frequencies at the marker (pM) and causal
variant (pT) loci and the disequilibrium covariance (D)
between them: 

They considered some specific examples of well-estab-
lished complex disease associations. They examined
ranges of marker allele frequencies and D’ and calcu-
lated the ORM that would arise from these
combinations (their Figure 1). We consider three of
their examples: a) Type 2 diabetes, PPARγ, pT = .85,
ORT = 1.23; c) Alzheimer’s disease, APOE(*4), pT =
.15, ORT = 3.3; d) deep vein thrombosis F5, pT = .03,
ORT = 3.8). We include one additional example to
complete a broad spectrum of causal allele frequen-
cies: b) pT = .5, ORT = 2.5 and examine ORM for the
possible range of pM given the r2 between the disease
and marker loci for a range of r2. The method of Risch
and Teng (1998) was used to determine the power of
detecting the ORM given allele frequencies and r2.
Programs used to generate the results replicated the
results of Zondervan and Cardon (2004) when D’ was
used as the measure of LD rather than r2.

When an association study is conducted, it is the
association at the marker locus (i.e., ORM) that is
observed. Interpretation of the detected association
requires us to consider the possible range of effects at
the underlying causal locus (i.e., ORT ) for a range of
possible pT and r2 between the marker and disease loci.
To illustrate this and to allow comparison with exam-
ples a–d, we have considered four examples: e) pM  =
.85, ORM  = 1.23; f) pM  = .5, ORM  = 2.5; g) pM  = .15,
ORM  = 3.3; h) pM  = .03, ORM  = 3.8) and have esti-
mated ORT using a rearrangement of equation [1]:

Results
The relationship between allele frequencies and r2 is
demonstrated in Figure 1a, where pA is plotted against

vmax for t = r2 = .2, .5, .8. Figure 1b plots pA against the
minimum and maximum values for pB for a given r2 =
.2, .5, .8 so that all possible combinations of allele fre-
quencies for these r2 are contained within the ellipses
bounded by the minima and maxima. 

The relationship between the allele frequency at the
marker locus and the r2 between marker and causal
locus and the size of association that can be detected is
examined in Figure 2 (a–d) in which ORM is presented
for the possible range of pM given the r2 between the
disease and marker loci for a range of r2. For each
example, the maximum value of ORM occurs when
ORM  = ORT when pM  = pT and r2 = 1. In Figure 2, con-
tours of r2 = .2, .5, .8 show that ORM is always less than
ORT (as expected from definition in equation 1) and
the length of the contours is shorter the higher the r2,
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Figure 1
1a: Maximum difference (vmax) between allele frequency at locus 2 (pB)
given the allele frequency at locus 1 (pA), pB = pA + vmax and the LD
between the two loci (r2), for r2 ≥ .8 (_), .5 (_) and .2 (__).
1b: Possible range of allele frequencies at two loci given the LD
between the two loci (r2). All possible combinations of allele 
frequencies are contained within the ellipses for r2 ≥ .8 (_), .5 (_)
and .2 (__).
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reflecting the limitation on the range of pM given the r2

(Figure 1). From the shape of the contours, we see that
for a given r2 the observed ORM is not highest when pM

= pT; when pT  < .5 (examples c and d), the ORM is
highest for any given r2 relationship when pM is the
minimum that is possible. When pT  > .5 (examples a
and b) the ORM is highest for any given r2 relationship
when pM is the maximum that is possible; in this case
the minor allele could be considered to be the protective
allele, and the frequency of the minor allele is the
minimum possible given the r2 relationship. The shape
of the contours also reflects the definition of the odds
ratio: ORM = {pMD/(1 – pMD)}/{pM/(1 – pM)}, where pMD is
the allele frequency of the associated marker allele in
cases, and results in the nonsymmetry of the r2 contours
in pM about pM = pT when pT = .5. Figure 3 presents the
power of detecting the ORM shown in Figure 2; the
sample size (N = number of cases = number of controls)
in each example was chosen to be the minimum possi-
ble to achieve 80% power assuming a Type I error of, 5
× 10–5 when pM  = pT and r2 = 1. These examples show
that if a study is designed to have 80% power to detect
an association between a causal variant and disease,
even under favorable circumstances (high LD, r2 = .8,
between genotyped and causal variant, and therefore a
maximum difference between the frequencies of the
coupled alleles of .06), the power for detecting the asso-
ciation may only be 60%. For these examples, if the
sample size is set to achieve 99.9% power (results not
shown), then the r2 between genotyped and causal vari-
ants must be at least .5, maximum coupled allele
frequency difference of .1, to achieve 80% power for
detecting an association. Figure 2 (e, f, g, h) presents
ORT for the possible range of pT given the observed
pM and ORM for a range of r2 between marker and
disease loci.

Discussion
We have quantified the relationship between r2 and
allele frequency and have shown that the constraints
on the difference in frequency of the coupled loci are
severe if a high r2 between the loci is desired (Figure
1). For example, for r2 ≥ .8, the maximum difference
in allele frequency is ± .06 which occurs when one
locus has allele frequency .5. For r2 ≥ .8 and allele fre-
quency at one locus of .1, the maximum difference in
allele frequency at the second locus is only ± .02. We
can utilize these results to consider some aspects of
design and interpretation of association studies.

SNP Selection

In the design of association studies SNPs are selected so
that the LD landscape of the region under study is ade-
quately represented when testing for association with
disease status. Figure 1a illustrates that methods that
eliminate SNPs only if they make r2 greater than some
threshold t with a retained SNP are also imposing very
severe restrictions on allele frequencies on eliminated
SNPs. For the criterion t = .8 as investigated by Carlson

et al. (2004), a ‘bin’ in which every eliminated SNP
must have r2 ≥ .8 with a selected SNP implies that the
maximum range in allele frequency occurs when the
selected SNP has frequency of .5 and the eliminated
SNPs have frequencies of the coupled alleles in the
range .50 ± .06. For a selected SNP with minor allele
frequency .10, the range in allele frequencies of the
eliminated SNPs is limited to the very narrow range of
.10 ± .02. Estimates of the number of SNPs required to
represent the LD landscape of the whole genome (for
European Americans) based on this SNP selection
method are as high as 250,000 (Carlson et al., 2004),
which is partly a reflection of the underlying severe
restriction on difference in allele frequencies between
loci as well as the imposed restriction on the LD
between them. Recognition that the use of pairwise r2

as a criterion for SNP selection results in high numbers
of SNPs selected has motivated methods that utilize LD
information from more than two SNPs at a time. The
haplotype tagging SNP method proposed by Clayton
(2002) selects SNPs (‘haplotype tagging SNPs’ or
‘htSNPs’) on the basis of the proportion of diversity of
all haplotypes (in a linear regression) explained by the
selected set of SNPs (i.e., coefficient of determination or
haplotype r2). This method has resulted in estimates of
up to 50% fewer SNPs required to represent the whole
genome compared to estimates using pairwise measures
of LD (Goldstein et al., 2003). The relationship
between the power of an association study and the r2

between a genotyped SNP and a causal SNP (Pritchard
& Przeworski, 2001; Risch & Teng, 1998) extends to
the haplotype r2 between a set of htSNPs and a causal
variant (Goldstein et al., 2003). The properties of hap-
lotype r2 have been much investigated (e.g., Goldstein et
al , 2003; Ke et al., 2004; Meng et al., 2003; Weale et
al., 2003), but the conclusions are similar to those that
have compared the use of microsatellites to SNPs in
association studies, where combinations of htSNPs are
analogous to the use of microsatellites: Xiong and Jin
(1999) found that because microsatellites have more
alleles, the probability of a microsatellite having an
allele (or set of alleles) whose frequency is close to and
is in coupling with the unknown causal variant is
higher than for a SNP. There are usually many sets of
htSNPs that all explain a similar proportion of diversity
of a full set of genotyped SNPs (Johnson et al., 2001),
but it is the low minor allele frequency SNPs from high
|D’| blocks that are likely to be consistently eliminated
when htSNPs are selected, because combinations of
alleles in an htSNP haplotype (or sets of haplotypes) are
likely to achieve similar frequency to the minor allele of
the eliminated SNP. Therefore, if the desired level of
haplotype r2 is set too low, rare haplotypes may not be
represented by the set of htSNPs because the required
matching of coupled haplotype frequencies has not
been achieved (Ke et al., 2004).

Size of Effect That Can be Detected

The second aspect of association studies for which we
consider the impact of the relationship between r2 and
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Figure 2

a, b, c, d. The allelic odds ratios (ORM) at possible marker loci that are in LD with an underlying causal variant and the frequency of the associated
allele (pM). The causal locus has associated allele frequency pT and allelic odds ratio ORT. The LD contours are for r2 = .8 (_), .5 (_) and .2 (__).

e, f, g, h. The underlying allelic odds ratios at the causal locus (ORT) and the frequency of the associated allele at the causal locus (pT) that could
explain the observed allelic odds ratio at a genotyped locus (ORM) given the observed associated allele frequency observed at the genotyped
locus (pM) and the LD between the causal and genotyped loci. ORT truncated at limit of axis. The LD contours are for r2 = .8 (_), .5 (_) and .2 (__).
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allele frequencies is the size of the association effect of
a causal locus that can be detected given both the
marker SNPs genotyped and the sample size of the
study and thus given the power of the study. The size of
association effect at the marker locus, as expressed by
the odds ratio ORM was investigated (Figure 2a–d). The
results are not unsurprising: a smaller range of ORM for
higher r2, highest ORM when min (pM, 1 – pM) is at its
smallest value given pT and r2, nonsymmetry of the r2

contours in pM about pM = pT when pT = .5. These results
partly reflect the relationship between the allele fre-
quencies pM and pT, and the definition of the odds ratio
as a ratio of ratios, ORM = {pMD/(1 – pMD)}/{pM/(1 – pM)}.
Nonetheless, without the quantification of the relation-
ship between allele frequencies and r2, these results may
have been underappreciated.

If a study is designed to have 80% power to detect
an association between a causal variant and disease,
even under favorable circumstances (of high LD, r2 = .8,
between genotyped and causal variant, and therefore a
maximum difference between the frequencies of the
coupled alleles of .06) the power for detecting the asso-
ciation may only be 60% (Figure 3). These results are
not inconsistent with those of Risch and Teng (1998)
and Pritchard and Przeworksi (2001) that a study must
be of size N/r2 to retain the same power when a marker
locus is genotyped compared to size N when the causal
locus is genotyped, where r2 is the LD between marker
and causal locus. In practice, the study size is often
limited by the number of samples available and so
Figure 3 illustrates the loss of power for a fixed sample
size and reflects the relationship between allele frequen-
cies and odds ratio. Zondervan and Cardon (2004,
Figure 2) investigated the power of association studies
under high, moderate and low allelic odds ratios each
considered in the presence of low, moderately low and
high |D’|, for all combinations of causal and marker
variant. The ellipsoid shape of their graphs with highest
power along the diagonal where allele frequencies are
equal is a reflection of the r2 relationship presented in
Figure 1b. Where power is low when |D’| is high (their
bottom right graph) is when the difference between fre-
quencies of the causal variant and its correlated marker
allele is high, and so r2 is low.

Size of Causal Effect

The final aspect of association studies for which we
consider the consequences of the boundaries on allele
frequencies imposed by the r2 between them is the
interpretation of an association once it is detected.
When an association study is conducted, it is the asso-
ciation at the marker locus (i.e., ORM) that is
observed. Interpretation of the detected association
requires us to consider the possible range of effects at
the underlying causal (i.e., ORT ) for a range of possi-
ble pT and r2 between the marker and disease loci. This
was examined in Figure 2e–h) and allows us to give
quantification to the usual statement made in associa-
tion studies: ‘the genotyped variant, or something in
tight LD with it, is associated with …’. When a true
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Figure 3
The power of detecting the ORM shown in Figure 2a–d, when Type I
error is 5 × 10–5 and for N cases and N controls, chosen so that 80%
power is achieved for the situation when pM = pT and r2 = .8 (_), 
.5 (_) and .2 (__).
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allelic association is detected, the limits on the under-
lying causal variant are that it is likely to be r2 > .5
with the genotyped variant and allele frequency differ-
ence of .1 or less. Design of a replication study based
on these results would also need to account for sam-
pling of the cases and controls from the population
(Dahlman et al., 2002).

In conclusion, we have quantified the boundaries on
allele frequencies at two loci as constrained by the r2

LD between them. The r2 relationship between a causal
variant and a marker variant has impact on three
important aspects of association studies, namely, i)
selection of SNPs that are representative of the LD
landscape; ii) power calculations and what we can
expect to detect in an association study; and iii) inter-
pretation of an association once detected. In each of
these aspects, boundaries on the allele frequencies at the
two loci, given the r2 between them, have been recog-
nized qualitatively, but the lack of quantification may
have led to underappreciation of the importance and
impact of these constraints. Our results reiterate that r2

is a complex and, perhaps, not an ideal measure of LD
as shown by Hedrick (1987), nonetheless it has some
useful properties and remains a commonly used
measure. We have shown that the constraints on the
difference in frequency of the coupled loci are severe if
a high r2 between the loci is desired. For example, for r2

≥ .8, the maximum difference in allele frequency is ±
.06 which occurs when one locus has allele frequency
.5. For r2 ≥ .8 and allele frequency at one locus of .1, the
maximum difference in allele frequency at the second
locus is only ± .02. For studies designed to have 80%
power to detect an association between a causal variant
and disease, even under favorable circumstances (of
high LD, r2 = .8, between genotyped and causal variant,
and therefore a maximum difference between the fre-
quencies of the coupled alleles of .06), the power for
detecting the association may only be 60%. Finally,
when a true allelic association is detected in an associa-
tion study, the limits on the underlying causal variant
are that it is likely to have r2 > .5 and maximum allele
frequency difference of .1 with the genotyped variant.
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