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Improved Heritability Estimation from Genome-wide SNPs

Doug Speed,1,* Gibran Hemani,2 Michael R. Johnson,3 and David J. Balding1

Estimation of narrow-sense heritability, h2, from genome-wide SNPs genotyped in unrelated individuals has recently attracted interest

and offers several advantages over traditional pedigree-basedmethods.With the use of this approach, it has been estimated that over half

the heritability of human height can be attributed to the ~300,000 SNPs on a genome-wide genotyping array. In comparison, only 5%–

10% can be explained by SNPs reaching genome-wide significance. We investigated via simulation the validity of several key assump-

tions underpinning themixed-model analysis used in SNP-based h2 estimation. Althoughwe found that themethod is reasonably robust

to violations of four key assumptions, it can be highly sensitive to uneven linkage disequilibrium (LD) between SNPs: contributions to h2

are overestimated from causal variants in regions of high LD and are underestimated in regions of low LD. The overall direction of the

bias can be up or down depending on the genetic architecture of the trait, but it can be substantial in realistic scenarios. We propose

a modified kinship matrix in which SNPs are weighted according to local LD. We show that this correction greatly reduces the bias

and increases the precision of h2 estimates. We demonstrate the impact of our method on the first seven diseases studied by the Well-

come Trust Case Control Consortium. Our LD adjustment revises downward the h2 estimate for immune-related diseases, as expected

because of high LD in the major-histocompatibility region, but increases it for some nonimmune diseases. To calculate our revised

kinship matrix, we developed LDAK, software for computing LD-adjusted kinships.
Introduction

The linear mixed model, long a mainstay of heritability

estimation,1–3 fits a covariance structure specified by

a matrix of kinship coefficients to a vector of measured

phenotypes. The term ‘‘mixed’’ refers to the presence of

both an unobserved random effect, usually interpreted in

terms of a polygenic contribution to the trait, and one or

more fixed effects corresponding to individual SNPs or

other covariates. For association analysis, the SNP effects

are of interest and the random effect is used for over-

coming confounding due to population structure and

cryptic relatedness.4 In plant and animal breeding, estima-

tion of the random effects (‘‘breeding values’’) is of primary

importance because these values reflect a ‘‘true’’ phenotype

adjusted for environmental effects or measurement error.

Narrow-sense-heritability estimates ðbh2Þ are based on the

squared regression coefficient of the random effect.

Mixed-model analysis in quantitative genetics was

developed by animal breeders decades ago, but the advent

of dense genome-wide SNP data has radically enhanced its

applicability, for example, to the use of apparently unre-

lated individuals. This might seem counterintuitive given

that relatedness is central to heritability, but the key

insight made by Yang et al.5 is that dense genotype data

permit the exploitation of small differences in the propor-

tions of genome shared among apparently unrelated

individuals, and this has advantages over the traditional

pedigree-based approaches. Specifically, it is the short

genomic regions passed down to unrelated individuals

from their remote common ancestors that generate linkage

disequilibrium (LD). So, h2 estimated from unrelated indi-

viduals corresponds only to the causal-variant heritability
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that is tagged by the genotyped SNPs (this is sometimes

referred to as the ‘‘chip heritability’’). Investigating the

genetic architecture of complex traits thus becomes

possible through the estimation of h2 components tagged

by different SNP sets, which one can obtain, for example,

by imposing minor-allele-frequency (MAF) thresholds or

restricting attention to specific pathways or genomic

regions (termed ‘‘genomic partitioning’’).6

The usual mixed models in quantitative genetics assume

independent Gaussian effect sizes. The ‘‘thin tails’’ prop-

erty of the Gaussian distribution makes it unrealistic for

individual SNP effect sizes, but we illustrate by simulating

from distributions with thicker tails that bh2
is reasonably

robust to this assumption. Further, the standardization

made by Yang et al.5 and other authors when they

computed SNP-based kinship coefficients implies a specific

relationship between MAF and the variance of effect sizes

such that rarer SNPs tend to have larger effect sizes.

We show that bh2
is somewhat robust to the relationship

between MAF and effect size. A polygenic assumption,

one of many small phenotypic effects distributed

genome-wide, is often employed for justifying a mixed-

model analysis. This assumption proves to be unnec-

essary because bh2
remains unbiased (although precision

is eroded) as the number of causal variants is reduced,

even down to a monogenic model.

Although these results support the use of SNP-based

mixed-model analysis for estimating h2 from unrelated

individuals, we did uncover serious cause for concern:

linkage disequilibrium (LD) can generate large biases.

Contributions to h2 from causal variants tend to be overes-

timated in regions of strong LD and underestimated in

regions of low LD. Of course, SNP-based bh2
cannot capture
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any causal-variation component that is not tagged by

a genotyped SNP, but we show that even when all causal

variants are genotyped and hence fully tagged, SNP-basedbh2
reflects patterns of LD, in addition to causal variation.

Likewise, the contributions to bh2
from untyped causal vari-

ants can be overestimated or underestimated according to

their LD with genotyped SNPs.

Patterns of LD are strongly linked to MAF: on average,

the signals from low-frequency variants are less replicated

than those from high-frequency variants. Therefore, bh2

will be too low for traits with predominantly low-

frequency causal variants and will be too high for those

with predominantly high-frequency causal variants. This

has consequences when one performs genomic partition-

ing to investigate the frequency spectrum of causal

variants for complex traits. Yang et al.5 suggested a transfor-

mation that involves uniformly scaling the usual SNP-

based kinship coefficients; this transformation counteracts

the average bias caused by LD but requires prior knowledge

of the MAF spectrum of causal variants. We propose

a different adjustment in which SNPs are weighted accord-

ing to how well they are tagged by their neighbors. Using

simulated data, we demonstrate that our adjustment

both greatly reduces bias and increases the precision of

SNP-based bh2
.

When we reanalyzed the height data5 with our LD-

adjusted kinship matrix, bh2
changed only slightly, suggest-

ing that any underestimation of contributions to h2 in

low-LD regions is balanced by overestimation elsewhere.

We also analyzed seven traits studied by the Wellcome

Trust Case Control Consortium (WTCCC).7 For both

hypertension and type 2 diabetes, bh2
increased by nearly

a quarter when we used our LD-adjusted kinships instead

of a standard kinship matrix, suggesting that these traits’

causal variants tend to be poorly tagged and thus have

a lower-than-average MAF. By contrast, for rheumatoid

arthritis, bh2
was reduced by one-tenth when we used LD-

adjusted kinships. This disease, along with type 1 diabetes,

hasmajor-histocompatibility-complex (MHC) risk variants

that tend to be well tagged; the estimated heritability

attributed to chromosome 6 was substantially reduced for

both these diseases.
Material and Methods

The Linear Mixed Model
The essence of mixed-model analysis in quantitative genetics is

partitioning the phenotypic variance-covariance matrix between

two (or more) specified matrices. Given phenotypic values

Y ¼ ðY1;.;YnÞ, a typical form is

VarðYÞ ¼ s2
gGþ s2

e I; (Equation 1)

where G is a matrix of kinship coefficients and I is the n 3 n iden-

tity matrix, which implicitly assumes independence across indi-

viduals of environmental effects and measurement error.

Estimates bs2
g and bs2

e are typically obtained via restrictedmaximum
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likelihood (REML).8 Then, h2, the VarðYÞ proportion explained by

additive genetic effects, is estimated by

bh2 ¼ bs2
gbs2

g þ bs2
e

: (Equation 2)

We can derive Equation 1 by assuming

Yi ¼ mþ
Xm
j¼1

Zijuj þ ei; (Equation 3)

in which Zij is the genotype of individual i at the jth of m diallelic

causal loci given an additive coding of genotypes standardized to

have zero mean and unit variance for each j and in which ei and uj
are independently Gaussian with zero mean and variances s2e and

s2g=m, respectively. Then,Y is multivariate Gaussianwith EðYiÞ ¼ m

and

VarðYÞ ¼ s2
g

m
ZZT þ s2

e I;

where Z denotes the matrix of Zij values. We thus have Equation 1

with ZZT=m in place of G. If Z were not column standardized,

Equation 2 might not hold; a more general form is given in

Appendix B.

With Z column standardized, ZTZ=n is a sample correlation

matrix of causal variants. It follows that each ZijZi0 j can be regarded

as an estimator of the population correlation coefficient at locus j

on the basis of just one pair of individuals, i and i0. Therefore, the
ii0 entry of ZZT=m is an average over loci of allelic correlation esti-

mates for i and i0. This average can be interpreted as a measure of

the excess sharing of causal alleles by i and i0 relative to indepen-

dent allele assignments. Equation 3 specifies an additive model,

and so bh2
in Equation 2 is an estimate of h2.

For binary outcomes, the same analysis can be applied, but the

resulting bh2
depends on the case-control ratio, which can be

chosen arbitrarily. One solution is to implement this analysis

with a subsequent transformation of the estimate to an underlying

liability scale adjusted for ascertainment effects.9,10
Pedigree- and SNP-Based Kinship Matrices
Because ZZT=m is unknown, it has traditionally been replaced by

the kinshipmatrixG, whose ii0 entry is the probability that homol-

ogous alleles from i and i0 are identical by descent from common

ancestors within a specified pedigree. Assuming that pedigree

founders are completely unrelated, then G reflects genome-wide

average allelic correlation, which might be a reasonable proxy for

allelic correlation at the causal loci, for example, if little is known

about the genetic architecture of the phenotype. However, the

identity-by-descent (IBD) approach is unsatisfactory because IBD

values depend on the available pedigree, which is always incom-

plete. In any case, the phenomenon of interest is genome sharing,

for which pedigrees only give expected and not realized values.

Nowadays, the proxy for G can be kinship coefficients

computed from genome-wide SNP genotypes rather than from

a known pedigree. There are at least two popular coefficients for

measuring the relatedness of two individuals from genome-wide

SNPs:4 their average allelic correlation and their proportion of

shared alleles. These are sometimes labeled as IBD and IBS (iden-

tity by state) methods, but we avoid this terminology; in the

absence of an explicit pedigree, meaningfully defining IBD is diffi-

cult. If we assume Equation 3, a natural choice is the average allelic

correlation matrix A ¼ XXT=m0, where X is defined in the same
mber 7, 2012



way as Z except that SNP genotypes replace causal-locus genotypes

and m0 is the number of genotyped SNPs. A slight modification of

A was adopted by Yang et al.5 Although A is computed from data,

in practice it is treated as known in Equation 1, as was the case for

pedigree-based G.
Simulation Study
We implemented a simulation study to check four key assump-

tions underlying bh2
obtained via mixed-model analysis in which

G was replaced by A ¼ XXT=m0, as well as to check its sensitivity

to LD. We merged the 2,699 and 2,501 individuals who passed

quality control (QC) from the UK 1958 Birth Cohort samples

and National Blood Service samples, respectively.7 Following

Yang et al.,5 we removed individuals so that jAii0 j < 0.024 for all

pairs ii0, leaving n ¼ 5,127. Unless otherwise stated, results were

obtained with only the m0 ¼ 81,327 SNPs (on chromosomes 1

and 2) that passed QC, which included requiring a MAF > 0.01.

We generated 50 replicate phenotype vectors Y for each

scenario. Except where specified otherwise, we chose for each

scenario 100 causal variants and simulated Gaussian effect sizes

to achieve h2 equal to either 0.5 or 0.8. Because SNP-based bh2

only measures the h2 proportion that is tagged by the SNPs, the

true value of h2 is usually unknown. To allow us to assess the

bias and precision of bh2
, for the simulations reported here, we

chose causal variants from among the genotyped SNPs so that h2

was known. Given Y and the kinship matrix, estimates bs2
g andbs2

e , as well as estimates of their SDs, were obtained with the

REML algorithm incorporated in the software GCTA (Genome-

wide Complex Trait Analysis).11

SNP-Based bh2
: Implicit Assumptions

First, using A ¼ XXT=m0 in place of G in Equation 1 supposes

a polygenic model in which all SNPs contribute to Y. We investi-

gated this assumption by varying the numbers of causal SNPs for

fixed h2.

Second, assigning a common variance to the standardized effect

sizes uj in Equation 3 implies an equal contribution to h2 from

each causal locus. Under the assumption of Hardy-Weinberg equi-

librium, this implies that vj, the per-allele effect size at the j
th causal

locus, has variance

Var
�
vj
�
f

1

pj
�
1� pj

�; (Equation 4)

where pj is the population MAF. A corresponding relationship

applies to the SNP effect sizes when ZZT=m is replaced with A. A

similar assumption is implicit in many tests of genetic associa-

tion,12 and a tendency for alleles of greater effect to have lower

MAF is expected under a range of evolutionary models.13 Using

known susceptibility loci, Park et al.14,15 found empirical evidence

for this trend in all eight traits that they studied, even after adjust-

ing for power to detect, and this relationship was significant for

three of the traits. To investigate the impact of assuming Equation

4, we considered four relationships of the form

Var
�
vj
�
f
�
pj
�
1� pj

��a
; (Equation 5)

which can be implemented in the computation of A by appro-

priate scaling of the column-centered genotypes (the standard

scaling, dividing each column by the square root of its variance,

corresponds to a¼ �1). When a < 0, per-allele effect sizes increase

as theMAF decreases, whereas they decrease when a> 0.We simu-
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latedY by assuming a¼�2,�1, 0, and 1, and for each Y, we calcu-

lated bh2
by assuming each of the four effect-size models when

calculating A. Here, it was important to use the full equation for

calculating bh2
(Appendix B) because Equation 2 only applies

when A is computed with a2 ¼ �1.

The third implicit assumption that we checked is that of

a Gaussian distribution for genetic effect sizes. This can be criti-

cized because the ‘‘thin tails’’ of the Gaussian means that larger-

than-usual effect sizes are strongly penalized. The normal expo-

nential gamma (NEG) has been proposed as more realistic for

SNP effects16 in that it has thicker tails than both the Gaussian

and (when the shape parameter is small) the Laplace (double expo-

nential) distributions. It can be modeled as a Laplace distribution

with a gamma-distributed rate. Decreasing the gamma shape

parameter leads to thicker tails, whereas increasing it recovers

the Laplace distribution. We simulated Y by assuming NEG effect

sizes with shape parameters of 10, 2, and 1, and we adjusted the

scale parameter in each case to obtain the desired h2.

In a similar vein, our fourth test was to investigate the Gaussian

assumption for the noise term ei in Equation 3. We did this by esti-

mating h2 when ei was simulated from five other distributions,

including both heavier-tailed and skewed distributions (see

Figure S4A, available online).
The Effect of LD on bh2

If a causal variant is tagged by multiple genotyped SNPs, then

some or all of its signal can be replicated, and this can lead to over-

estimation of its contribution to h2. For the dense SNP sets used in

current genome-wide association studies, LD induces strong corre-

lations between SNPs, and SNP-based bh2
reflects patterns of LD, in

addition to the architecture of causal variants. This problem does

not depend on the total amount of tagging: if all SNPs were dupli-

cated exactly once, the amount of tagging would double, yet A,

and hence bh2
, would remain unchanged. Instead, the problem

concerns relative amounts of tagging: some of the causal variants

are tagged more than others, distorting their estimated contribu-

tions to h2.

Pruning (or ‘‘thinning’’) the columns of X is a common

approach to reducing correlation among SNPs.17 Pruning has

limited consequences for identifying relatedness because genomic

segments shared from a recent common ancestor will usually

extendwell beyond the usual range of LD.However, it is not a satis-

factory solution for the problemof uneven tagging in obtaining bh2

from unrelated individuals because these share short genomic

segments and so tagging of causal variation will be lost. Instead,

we propose to overcome the problem by scaling SNP genotypes ac-

cording to local patterns of LD. The goal of the scaling is that the

signal from each SNP is downweighted so that replication of its

signal by neighboring SNPs can be compensated for. We denote

by A* the weighted allelic correlation matrix, which is defined

the same as A except that each column Xj of X is replaced byffiffiffiffiffi
wj

p
Xj and the denominator m0 is replaced by

P
j

wj. The wj’s are

chosen so that

wj þ
X
j0

wj0 r
2
jj0 e

�ldjj0 (Equation 6)

is constant over j. Here,r2jj0 denotes the squared correlation between

SNPs j and j0, a standardmeasure of LD, and the summation is over

SNPs j0 such that e�ldjj0 > 0.125, where l is a constant and djj0

denotes the base-pair distance between SNPs j and j0. The motiva-

tion for requiring constancy of Equation 6 is that it (almost)
rnal of Human Genetics 91, 1011–1021, December 7, 2012 1013
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Figure 1. Investigation of the Robustness of bh2
to Assumptions of Polygeneity

(A) The distribution of bh2
for different numbers of causal variants, from one up to ‘‘ALL’’ (all 81,327 SNPs), with the use of the standard

kinshipmatrixA (left) and the weighted kinshipmatrixA* (right). Boxes indicate interquartile ranges, colors correspond to simulated h2

(red, 0.5; green, 0.8), and whiskers span the full range except for outliers, indicated with circles.
(B) The layout matches that of (A), but now the boxes correspond to the REML SD estimates calculated by GCTA, and the purple lines
mark the empirical SD estimates based on the 50 replicates.
represents the total replication of the signal from SNP j (after

weighting). Identifying wj’s satisfying this requirement is a linear

programming problem (see Appendix A, where we also discuss

appropriate values for l). For example, a set of k SNPs all in perfect

LD but in linkage equilibrium (LE) with all other SNPs would each

be assigned (approximately) wj ¼ 1/k, so the signal from a causal

variant tagged by these SNPs would be counted once overall.

Zou et al.,18 when considering a similar problem, suggested

weights satisfying

1

wj

¼ 1þ
X

r2jj0 ; (Equation7)

which also reduces to 1/k in this simple setting but provides a less

satisfactory solution for incomplete LD (see Figure S1D). The value

of
P

j0 r
2
jj0e

�ldjj0 can be viewed as ameasure of the tagging of SNP j; for

the simulations of Figure 3, weakly and very weakly tagged causal

variants were those in the bottom 40% and 20%, respectively, of

values for this sum, whereas strongly and very strongly tagged

causal variants were those in the top 40% and 20%, respectively.
Results

Polygenic Assumption

Figure 1A shows that bh2
remained approximately unbiased

in our simulations as the number of causal variants m

decreased down to one. A polygenic assumption is thus

not required for bh2
to be useful, and even a large bh2

does

not, taken alone, indicate a polygenic component to the

genetic architecture of a trait. Intuitively, it seems reason-

able that A remains a good proxy for ZZT=m even for

a single, randomly placed locus. As expected, the precision

of bh2
reduced as m declined; this effect was largely elimi-

nated when A was replaced with A*.

Figure 1B compares the REML estimates of SD provided

by GCTA with the empirical SD based on the 50 replicates

for each scenario. GCTA never reported SD > 0.04, which

greatly exaggerated the precision of bh2
when m was small.
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In contrast, when using our LD-adjusted kinship matrix,

GCTA always gave an SD within 0.01 of the empirical esti-

mate, even for small m.

When m is small, many SNPs do not tag any causal

variant, so estimation could be improved by the removal

of redundant SNPs from X.19 As an illustration of the

potential gain, in a further simulation (Figure S2), we

found that when m0 included five times as many redun-

dant SNPs as SNPs tagging causal variants, the empirical

standard deviation of bh2
was approximately twice as

much as when only the nonredundant SNPs were used.

In practice, it would be challenging to identify SNPs that

do not tag any causal variation. However, these results

would suggest that inclusion of the redundant SNPs has

limited consequence.

Relationship between Effect-Size Variance and MAF

Considering relationships between MAF and causal effect-

size variance of the form of Equation 5, Figure 2 shows

that, as expected, bh2
was most accurate when the analysis

assumption (a2) matched that of the simulation (a1).

However, the standard choice of a2 ¼�1 (the second block

of eight boxes) appeared to give the most stable bh2
among

the models considered here and would therefore seem the

most prudent choice when the correct relationship is

uncertain. A similar pattern was observed when A* was

used instead of A (results not shown).

The Assumption of Gaussian Effect Sizes and Noise

Terms

The four panels of Figure S3A show the densities of the

Gaussian and the three NEG distributions. Despite the

important differences in the tails, the distribution of bh2

was only modestly affected by the choice of effect-size

distribution (Figure S3B): some precision was lost by

a wrong Gaussian assumption, but little bias appeared to
mber 7, 2012



Figure 2. Investigation of the Robust-

ness of bh2
to Assumptions of the Relation-

ship between Effect-Size Variance and
MAF
Phenotypes were simulated with each of
four models (indexed by a1) for the rela-
tionship between effect-size variance and
MAF (Equation 5). Analysis was performed
with each of the same four models (in-
dexed by a2) when allele counts were stan-
dardized. Boxes indicate interquartile

ranges of bh2
. Colors correspond to simu-

lated h2 (red, 0.5; green, 0.8), and gray
boxes indicate that the analysis model
matches the simulation model (a1 ¼ a2).
be introduced. These findings are consistent with the

robustness to violations of the polygeneity assumption dis-

cussed above because when effect sizes are sampled from

the NEG with low shape parameter, h2 is dominated by

a few large effects. Once again, A* outperformed A by

showing lower variance and little, if any, bias.

Similarly, when we generated phenotypes by using five

alternative distributions for ei in Equation 3, we observed

little effect on bh2
(Figure S4).

The Effect of LD on bh2

The effects of uneven tagging are visible in the left half of

Figure 3. In the underlying simulation, the causal variants

were chosen only from areas of either high LD or low LD

(see Material and Methods for definitions). When the

causal variants were in regions of high LD and were there-

fore tagged better than average by neighboring SNPs, their

contributions to the phenotype tended to be overesti-

mated: bh2
> h2. Conversely, in regions of low LD, we typi-

cally found bh2
< h2. The degree of tagging is strongly

correlated withMAF, and so we observed that the contribu-

tion to h2 of low-MAF causal variants tended to be under-

estimated, whereas that of high-MAF causal variants was

overestimated (Figure S5).

The right half of Figure 3 illustrates the reduction in bias

and increase in precision of bh2
when it is based on A*

rather than A. When A* was used, the median bh2
in each

scenario was within 2% of h2, whereas for A, it ranged

from 50% to 133% of h2. Using the weights defined by

Equation 7 instead gave results intermediate between

those based on A and A* (results not shown, but follow

from Figure S1D). Even if causal variants are drawn at

random so that bh2
is approximately unbiased for h2 (as

for the gray boxes in Figure 3), individual causal variants

can still be affected by uneven tagging, and this can reduce

the precision of ch2 . This effect is particularly evident in

Figure 1 when there are few causal variants; in this case,ch2 based on A* is much more precise than when it is

based on A.

The wj’s are constructed to equalize the tagging of geno-

typed SNPs, but the tagging of untyped variants will not

necessarily be equalized. However, in a simulation study

in which only alternate SNPs were considered to be geno-
The American Jou
typed, we found that wj’s also greatly reduced the variation

in the tagging of untyped SNPs (Figure S1C).

Comparison with the Approach of Yang et al.

The impact of LD and MAF on bh2
was considered by Yang

et al.5 They proposed a transformation that can be used for

negating the average bias caused by variable LD and also

for estimating h2
C, the total heritability due to common

variation. They examined the accuracy of using the

sharing of genotyped SNPs to estimate the sharing of

causal variants by regressing ZZT=m� I on A � I. A slope

coefficient b < 1 indicates that kinships are being overesti-

mated by A (which typically leads to bh2
< h2

C), and the

opposite occurs when b > 1. By observing the results of

simulations, they obtained for b an empirical formula

that takes into account the MAF spectrum of the causal

variants and the total number of genotyped SNPs, and

they proposed replacing A in the mixed-model analysis

with b (A � I) þ I. Although this approach can reduce

the bias due to variable LD in bh2
, the fact that it requires

knowledge of the MAF spectrum of causal variants is not

usually feasible. In any case, the bias is caused by levels

of LD at the causal variants, and MAF is an imperfect indi-

cator of such levels.

On can also use the proposal of Yang et al.5 to estimatebh2
=h2

C by taking into account the expected overestimation

of kinship values caused by incomplete tagging of causal

alleles. When our weighted kinship matrix A* is used,

this fraction can be estimated more directly by the calcula-

tion of the average proportion of untyped variation

captured by the genotyped SNPs (Figure S6).

A Test for Inflation Due to Population Structure

A criticism of SNP-based bh2
is its potential sensitivity to

population structure. The danger was highlighted by

Browning and Browning,20 who constructed a pseudo

case-control association study by using the UK controls

of the original WTCCC;7 when treating 90% of English

individuals as controls and 90% of Scottish and Welsh

individuals as cases, they obtained a highly significant

value of bh2
(7 SDs above 0). The inflation due to popula-

tion structure for bh2
can be estimated by the difference

between the sum of bh2
obtained from disjoint halves of
rnal of Human Genetics 91, 1011–1021, December 7, 2012 1015



Figure 3. Distributions of bh2
with and

without Adjustment for LD
The x axis indicates the relative levels of
tagging of the causal variants. The boxes

indicate interquartile ranges of bh2
under

SNP-based mixed-model analysis using A
(left) or A* (right). Colors correspond to
simulated h2 (red, 0.5; green, 0.8), and
gray boxes indicate that causal variants
were chosen at random without regard to
tagging.
the genome (say, chromosomes 1–8 and 9–22) and bh2

calculated from the whole genome.6 In Figure S7, we apply

this approach to a replicate of the study of Browning and

Browning and show that it is effective in overcoming the

problem they highlighted.
Guarding against Genotyping Errors

Our simulation study avoided any problem arising from

genotyping errors by using called SNP genotypes as causal

variants. For real case-control studies, bh2
can be sensitive to

different genotyping error rates in cases and controls; care-

ful QC can reduce, but not eliminate, the problem. Replac-

ing A with A* could exacerbate the problem because

poorly genotyped SNPs tend to have lower LD with neigh-

boring SNPs, and this leads them to receive a relatively

high weighting. To overcome this danger, we suggest

calculating r2jj0 separately in cases and controls and then

using the larger of the two values during computation of

wj. Then, if a SNP is, say, poorly genotyped in cases, its wj

will not artificially be increased provided that it is correctly

genotyped in controls. We show in Figure S8 that bh2

remains approximately unbiased under this approach. An

even more cautious approach would be to compute

weightings from a completely independent (but ethnically

matched) data set, which would not be affected by geno-

typing anomalies in the analysis data set.
Application to Height and WTCCC Data Sets

We repeated the analysis of human height (MIM 606255)

by using the post-QC data of Yang et al.5 Using A as the

kinship matrix, we obtained bh2 ¼ 0.44 (0.09 SD), which

was almost unchanged (bh2 ¼ 0.45, 0.10 SD) when we re-

placed A with the LD-adjusted A*. The lack of change inbh2
suggests that, when A is used, any underestimation of

heritability from poorly tagged variants is compensated

for by an overestimation of heritability from well-tagged

variants. Yang et al.5 suggested that the difference between

their bh2
and the accepted value of h2 z 0.8 could be ex-

plained by a model in which all causal variants have

a MAF in the range [0.01, 0.1]. However, given that our

LD-adjusted kinships better appreciate the contribution

of low-MAF variants, explaining the gap between bh2
and
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h2 in terms of common (MAF> 0.01) causal variants would

require them to have an even narrower range of MAF.

Next, we applied our method to the seven traits of the

original WTCCC study:7 bipolar disorder (BD [MIM

125480]), coronary artery disease (CAD [MIM 608320]),

Crohn disease (CD [MIM 266600]), hypertension (HT

[MIM 145500]), rheumatoid arthritis (RA [MIM 180300]),

type 1 diabetes (T1D [MIM 222100]), and type 2 diabetes

(T2D [MIM 125853]). For each study, approximately

2,000 patients were combined with a set of 3,004 common

controls sourced from the 1958 Birth Cohort (58BC; 1,504

individuals) and the National Blood Service (NBS; 1,500

individuals). Three of these traits (BD, CD, and T1D)

have been previously studied with the same WTCCC

data by Lee et al.,10 whereas RA and T1D have been exam-

ined with different data.21 We also followed Lee et al.10 in

contrasting the 58BC and NBS samples in a pseudo case-

control study, for which we expect h2 ¼ 0. Although these

studies involve binary outcomes, for the purpose of

comparing the standard and weighted kinship matrices,

it suffices to estimate h2 on the observed scale rather

than convert to the liability scale.

Because of the potential inflation caused by population

structure andgenotyping errors for bh2
, Lee et al.10 employed

stricter QC criteria than did the WTCCC,7 and we applied

similarly strict QC. Specifically, we first filtered out individ-

uals with >2.5%missing genotypes or with heterozygosity

(calculated across a pruned set of high-quality SNPs) not

within [0.295, 0.345]. Next, for each of the seven case and

two control data sets, we removed SNPs that had either

a MAF < 0.01 or call rate < 0.99 or that were significant at

5% for Hardy-Weinberg equilibrium. Then, for each study,

we rejected SNPs significant at 5% for differential missing-

ness between cases and controls. Finally, for each study,

we computed (unweighted) allelic-correlation kinship coef-

ficients by using a set of about 50,000 SNPs in approximate

LE.Apparent populationoutlierswere removedon the basis

of the first two principal components. Following Yang

et al.,5 we selectively removed individuals so that no pair re-

mained with kinship greater than the absolute value of the

smallest observed value (between 2.5% and 3.6%) for that

data set. For the pseudo case-control study, 2,834 individ-

uals and 297,894 SNPs remained; for each of the other
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Table 1. Analysis of WTCCC Traits

Trait or Study

Total Heritability bh2
(SD) Chromosome 6 Heritability bh2

6 (SD)

Standard Weighted Difference Standard Weighted Difference

Bipolar disease 59 (6) 69 (8) þ10 4 (2) 5 (2) 0

Coronary artery disease 39 (6) 41 (8) þ3 2 (2) 1 (2) �1

Crohn disease 54 (6) 58 (8) þ5 5 (2) 6 (2) þ1

Hypertension 42 (6) 52 (8) þ10 5 (2) 8 (2) þ4

Rheumatoid arthritis 57 (6) 52 (8) �6 19 (2) 17 (2) �2

Type 1 diabetes 73 (6) 74 (8) 0 37 (2) 35 (2) �2

Type 2 diabetes 35 (6) 44 (8) þ9 4 (2) 5 (2) þ1

Pseudo case-control study 11 (10) 7 (14) �4 0 (2) 1 (3) þ1

The variance explained by all SNPs and by just those on chromosome 6 with the use of both the standard and the weighted kinship matrix for the seven traits and
the pseudo case-control study. The SD is the value given by the GCTA software.
studies, between 4,415 and 4,690 individuals and between

278,772 and 285,989 SNPs remained. For each study, we

included the top 20 axes from principal-component anal-

ysis of the kinshipmatrix used above for identifying related

individuals. We also assessed the inflation caused by popu-

lation structure, and because cases and controls were geno-

typed separately, we implemented the procedure described

above in ‘‘Guarding against Genotyping Errors.’’

For the seven traits and the pseudo case-control study,

Table 1 presents bh2
(calculated with both the standard

and the LD-adjusted kinship matrices) for each case, eval-

uated either across all SNPs or across just those on chromo-

some 6 (Table S1 provides additional details, including im-

plementation of the above test for inflation due to

population structure and an assessment of the impact of

genotyping errors). The largest differences in bh2
when A

was used instead of A* occurred for BD (þ1.6 SDs), HT

(þ1.6 SDs), RA (�0.9 SD), and T2D (þ1.5 SDs). Note that

these are differences between statistics computed with

the same data and which estimate the same quantity, so

it does not make sense to test for significance of these

differences. An increased bh2
provides evidence that BD,

HT, and T2D are predominantly affected by variants of

lower MAF, and this causes the standard analysis to under-

estimate their SNP-based heritability. RA and T1D both

have their strongest (marginal) associations in a region of

high LD in HLA-DRB1 (MIM 142857) at 6p21 in the

MHC region and have estimated odds ratios of 2.36 and

5.49, respectively (see Figures S9–S16 for the results of

marginal analyses). Unsurprisingly, the contribution tobh2
from chromosome 6 is reduced for these two conditions

when A* is used in place of A.
Discussion

The two leading explanations for the ‘‘missing heritability’’

of complex phenotypes have been (1) many rare variants

of small or modest effect size and (2) many common vari-
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ants of weak effect.22 SNP-based mixed-model analysis of

unrelated individuals has been used for providing support

for the latter explanation,5,6,21,23–25 thus pointing

researchers in the direction of, for example, pathway anal-

yses for assisting in the identification of common variants

with small effect sizes. SNP-based mixed-model analyses

can help further by estimating h2 components attributable

to pathways, genomic regions, or MAF classes.6

We have examined the assumptions that underlie the

use of SNP-based mixed-model analysis for estimating h2,

and we have illustrated through simulation that the result-

ing bh2
is reasonably robust to four underpinning assump-

tions but is vulnerable to uneven LD. Use of the standard

allelic-correlation kinship coefficients overestimates the

contribution to h2 from causal variants that are well tagged

and underestimates that from poorly tagged variants. This

observation is particularly pertinent for traits where many

of the causal variants have an intermediate MAF (say,

between 0.01 and 0.1). For example, in a simulation with

causal variants restricted to SNPs with a MAF in this range,

(unadjusted) bh2
was typically 25% smaller than h2. When

variants were selected from the 20% of SNPs with the

lowest LD with neighboring SNPs, we observed bh2
/ h2 as

small as 0.5.

We have proposed estimating h2 instead with the use of

A*, a kinship matrix adjusted for local patterns of LD. This

largely eliminates the biases based on the standard kinship

matrix A in bh2
and increases its precision. This adjustment

improves current methods for investigating the architec-

ture of complex traits with the use of SNP-based genomic

partitioning, and we expect that using A* will provide

benefits for other applications of themixedmodel in quan-

titative genetics, such as association analysis and predic-

tion of phenotype.
Computational demands

Solving Equation 6 is computationally demanding for

reasonably sized problems, but in Appendix A, we describe
rnal of Human Genetics 91, 1011–1021, December 7, 2012 1017



a good approximation obtained by a partitioning of the

genome into regions. With this approximation, the time

needed for computing the weightings is similar to that

required for computing the standard kinship matrix A.

Once the wj’s are available, calculating the weighted

kinship matrix A* can be significantly faster than calcu-

lating A because in a dense SNP set, many SNPs are as-

signed wj ¼ 0 and can be ignored. Our LDAK software,

which calculates both the wj’s and A*, is freely available

(see Web Resources below).
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Appendix A: Calculating Weights for the LD-

Adjusted Kinship Matrix

To explain the problems caused by LD, suppose that SNP 1

and SNP 2 are perfectly correlated. Use of the standard

kinship matrix A in mixed-model analysis implicitly

assumes the same effect-size distributions for all SNPs, so

the analysis would be unchanged by the removal of SNP

1 but would double the prior effect-size variance for SNP

2. A similar effect arises if the two SNPs are correlated less

than perfectly. As such, the effect of any causal allele,

and its contribution to bh2
, can be exaggerated by multiple

tagging SNPs. Conversely, the contribution will be under-

stated if the causal allele is tagged by relatively few SNPs.

To offset this effect of LD, we propose introduction of

wj’s > 0 and the replacement of A ¼ XXT=m0 with

a weighted kinship matrix A*, computed in the same

way except that Xj (the allele counts for SNP j, scaled and

centered) is replaced with

X�
j ¼

ffiffiffiffiffiffi
w�

j

q
Xj where w�

j ¼ wj

m0P
j

wj

:

Therefore, a Nð0; s2g=m0Þ prior distribution for the effect

size for Xj is equivalent to a Nð0;w�
j s

2
g=m

0Þ prior for the

effect size ofX�
j . We seekwj’s that equalize the implied prior

effect-size distributions of causal variants, irrespective of

their tagging by SNPs. With genotypes standardized to

have variance 1, the amount of a causal signal tagged by

both X1 and X2 is r12, the correlation between SNPs 1

and 2. In a similar fashion, r13 will represent the extent

to which a causal signal tagged by X1 is replicated by X3.

Under the linear model, the combined phenotypic effect

of X1, X2, and X3 is X1u1 þ X2u2 þ X3u3. Therefore, the
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contribution in the direction of X1 is u1 þ r12u2 þ r13u3,

which has prior variance

�
w�

1 þ r212w
�
2 þ r213w

�
3

� s2
g

m0:

We can obtain similar expressions for the signals repre-

sented by X2 and X3 and similarly extend this to consider

allm0 genotyped signals. Our aim is that the variance terms

for all these prior distributions are equal, which we can

achieve by solving a matrix equation of the form Cw ¼ 1:
where for the moment, Cðj; j0Þ2 represents the correlation

squared between variants j and j0. Requiring wj > 0 means

that there is usually no (exact) solution to this equation,

and we instead seek the best achievable approximate solu-

tion in the sense of least absolute error. That is, we seek to

minimize X
j

j1� Cjw j ;

where Cj denotes the jth row of C. Equivalently, we mini-

mize
P

jaj, subject to

�aj%1� Cjw%aj and ajR0 for all j;

which is a linear programming problem that could, in

theory, be solved with the simplex algorithm.

The approach above considers global correlations and

could, if solvable, be used for addressing the effects of

both short- and long-range LD. However, if we assume

that long-range LD due, for example, to population struc-

ture has been addressed with other measures, we can

restrict attention to local LD. Let djj0 represent the distance

in base pairs between variants j and j0 and be set toN if the

two SNPs are on different chromosomes. We define the

elements of matrix C as

Cðj; j0Þ2¼
�
e�ldjj0 r2jj0 if e�ldjj0 > 0:125 and r2jj0 > 0:01
0 otherwise:

The exponential term attempts to model the scope of

LD, and l reflects its rate of decay. We fix l so that

expð�ldjj0 Þ ¼ 0.125 when djj equals 3 Mbp. The require-

ment that r2jj0 > 0.01 corresponds loosely to requiring

that r2jj0 be significantly above zero for typical sample sizes.

We experimented with varying l to achieve window

sizes between 1 Mbp and 10 Mbp, as well as with setting
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the r2jj0 threshold to 0 and 0.05, and observed little

change in bh2
, except when we used the minimum window

size of 1 Mbp, which seemed insufficient to account for

the full effects of LD.

Now that matrix C is sparse (typically with only tens of

nonzero elements in each row), solving the linear-

programming problem becomes more manageable. In

particular, solving for wj decomposes into independent

solutions for each chromosome. Even with this shortcut,

for our simulation study data, the largest C matrix, which

contained about 40,000 rows for chromosome 2, and the

corresponding optimization problem could still require

a few days to be solved on a standard processor. There-

fore, we further subdivided the C matrices to include at

most 3,000 SNPs at a time and allowed a buffer of 500

SNPs at each boundary to minimize the effect of the

subdivision. We checked the weights for the 1,000 SNPs

in common between a pair of adjacent windows and

found that the concordance between the central 500 of

these SNPs was almost perfect. Typically, disruption was

noticeable only for the last few tens of SNPs of each

window, indicating that a buffer of 500 SNPs was suffi-

cient.

When we used windows of size 3,000 SNPs (plus buffers

of 500 SNPs), calculating the weights for the entire

genome took approximately 40 computer hours for the

simulation sample size of 5,127 (this process can be spread

across multiple processors if desired). A potential future

improvement of the method could allow for data-depen-

dent l that reduces window sizes in regions of low LD to

reduce computing time but that expands them for high

LD; this might improve h2 estimation, for example, in

the MHC.
Appendix B: Calculating Heritability from

Estimates of s2g and s2e

Let VT denote the total phenotypic variance, and let VR

denote the residual variance (which equals the phenotypic

variance when all genetic effects are correctly included in

the model). Assuming that the phenotype has been

centered to have mean of zero, we can write

VT ¼
P
i

�
y2i
�

n
�
0@
P
i

yi

n

1A2

and VR ¼
P
i

ðeiÞ2

n
�
0@
P
i

ei

n

1A2

:

To calculate the expected values of VT and VR, consider

that

E
�
ujuj0

� ¼ 0 for jsj0; E
�
u2
j

	
¼ s2

g for j ¼ 1;2;.;m;

Eðeiei0 Þ ¼ 0 for isi0; E
�
e2i
� ¼ s2

e for i ¼ 1;2;.;n;

and E
�
ujei
� ¼ 0;cj; i:

Considering the expectation of the terms in the first

summation in VT, we obtain
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E
�
y2i
� ¼ E

h
ðzi1u1 þ zi2u2 þ.þ zimum þ eiÞ2

i
� �
¼ E z2i1u

2
1 þ z2i2u

2
2 þ.þ z2imu

2
m þ e2i

¼ �z2i1 þ z2i2 þ.þ z2im
�
s2
g þ s2

e ;

whereas the expected value required for the second

summation is

E
h�
y1 þ y2 þ.þ yn

�2i ¼ E
h
ðZ11u1 þ.þ Z1mum þ e1 þ.

þ Zn1u1 þ.þ Znmum þ enÞ2
i

¼ E


X
ii0

Zi1Zi01u1 þ.

þ
X
ii0

ZimZi0mumþe21þ e22þ.þe2n

�

¼
 X

j

X
ii0

ZijZi0 j

!
s2
g þ ns2

e :

rEðVTÞ ¼ traceðZZTÞ
n

s2
g þ s2

e �
sumðZZTÞ

n2
s2
g �

1

n
s2
e :

For the residual variance, calculation of the expectation

is more straightforward:

EðVRÞ ¼
E
�
e21 þ e22 þ.þ e2n

�
n

�
E
h
ðe1 þ e2 þ.þ enÞ2

i
n2

¼ s2
e �

1

n
s2
e :

Although the expected heritability is 1 � EðVR=VT Þ,
because the fraction is bottom heavy, it should be reason-

able to approximate this value with 1 � EðVRÞ=EðVTÞ,
from which we obtain

E
�
h2
�
z1� EðVRÞ

EðVTÞ

¼
1�

�
1� 1

n


s2
e�

traceðZZTÞ
n

s2
g �

sumðZZTÞ
n2

s2
g þ

�
1� 1

n


s2
e

:
(Equation B1)

With the usual column standardization, the genotype

matrix has trace n and sum 0. Therefore, the heritability

estimate will take the simpler form

bh2 ¼ 1�

�
1� 1

n

bs2
e�bsg þ

�
1� 1

n

bs2
e

 ¼ bs2
gbs2

g þ
�
1� 1

n

bs2
e

;

which, for large n, tends to the form provided in the main

text. However, for all other transformations, it is important

to use the complete form, Equation B1. In particular,

dividing the kinship matrix by a constant will lead to an

estimate of s2g multiplied by that constant. When the full

form is used, bh2
will be invariant to any such scaling (or,

indeed, shifting) of the kinship matrix; however, with
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the simple form, the heritability estimate would be unjus-

tifiably affected.
Supplemental Data

Supplemental Data contain 16 figures and 1 table and can be

found with this article online at http://www.cell.com/AJHG.
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