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Figure S1. Equalizing the Tagging of SNPs through the Introduction of Weightings 

 

(A) The uneven nature of tagging is demonstrated. The y-axis indicates the tagging (defined by (5) in the main text) for the first 3000 odd-numbered SNPs. 

When using the standard kinship matrix, these values also correspond to the variance effectively assigned to each SNP’s signal – showing how the standard 

method assumes more tagged variants have on average larger effect sizes.  

 

(B) The aim of the weightings is to equalize this tagging / variance. The weightings here have been calculated based on the odd-numbered SNPs, so equalize 

their variance almost perfectly.  

 

(C) Even though the weightings are calculated agnostic of the even-numbered SNPs, they none-the-less equalize their variance fairly well too.  

 

(D) By comparison, the weighting proposed by Zou et al.
1
 is less effective. 
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Figure S2. Increasing the Number of (Redundant) SNPs When Calculating Heritability  

 

All heritability estimates presented in the main text were based on a kinship matrix calculated across 

only the 81,327 SNPs on Chromosomes 1 and 2. Here, we increased the number of SNPs across 

which allelic correlations were calculated. The boxes show the spread of h
2
 estimates across 50 

replicates for each scenario; their colors indicate the simulated h
2
 (red: 0.5; green: 0.8). The x-axis 

indicates the number of chromosomes considered; each block corresponds to including approximately 

85,000 extra SNPs, until the final one for which all 22 autosomal chromosomes (507,444 SNPs) were 

considered. With causal variants chosen only from the first two chromosomes, each block increases 

the number of redundant SNPs, and thus lowers the accuracy of using correlations over all SNPs as 

an estimate of correlations over just causal SNPs. Even so, the effect on the precision of estimates 

appears modest; even when the number of SNPs is increased six-fold, meaning that over 425,000 

SNPs in no way tag any causal variation, mixed model analysis still provides reasonable accuracy, 

with the standard deviation only about twice that observed when just the first two chromosomes are 

considered. 



 

 

 

 

 

 

 

 

 

 

 

Figure S3. Distribution of Effect Sizes 

We test the effect on estimation of h
2
 when effect sizes of causal variants are sampled from 

distributions other than the Gaussian, that assumed by the standard linear mixed model. The Normal 

Exponential Gamma (NEG) can be viewed as a Laplace (exponential) distribution with rate drawn 

from a gamma distribution with fixed shape and scale parameters; decreasing the shape parameter 

increases the thickness of the tails (i.e. makes large magnitude effect sizes more likely). We 

considered three NEG distributions, with shape parameters 10, 2 and 1.  
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(A) How the densities of the three alternative distributions compare to the Gaussian. The black and 

red vertical lines indicate, respectively, the 0.1 & 99.9 percentiles and the 0.01 & 99.99 percentiles; for 

these plots the scale parameters were chosen so the black lines align across distributions. The 

distance between the black and red lines is a measure of the thickness of the tails (for NEG with 

shape 1, the tails are so thick that the red line cannot be shown on the x-axis presented here, and 

also the y-axis is truncated).  

(B) The spread of h
2
 estimates for each distribution; colors indicate simulated h

2
 (red: 0.5; green: 0.8). 

Their precision seems only modestly affected by wrongly assuming a Gaussian distribution of effect 

sizes, and the weighted kinship matrix provides greater precision. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure S4. Distribution of Noise Terms 

(A) How the densities of the five alternative distributions we used for generating noise terms compare 

to that assumed by the mixed model, the Gaussian distribution. In particular, the Exponential and 

Gamma distributions have heavier tails than the Gaussian, making larger noise terms more likely. It 

should not matter than three of the distributions generate positive values only, as it would make no 

difference if a constant value was subtracted off all noise terms to produce negative values as well.  

(B) The results of mixed model analysis using each of the six noise distributions, where once again 

colors indicate the simulated h
2
 (red: 0.5; green: 0.8). Despite the marked differences between the 

shapes of the five alternative distributions and the Gaussian, the estimates of h
2
 still appear reliable, 

with once more, our weighted kinship matrix providing slightly more precision. 
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Figure S5. Relationship between Tagging and MAF 

(A) The trend for lower frequency variants is more poorly tagged (to avoid overcrowding, only 2000 of 

the 507,444 points have been plotted). The red line corresponds to LOWESS regression across all 
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507,444 SNPs, its positive gradient, especially apparent for SNPs with MAF<0.1, indicates that more 

common variants experience, on average, higher levels of LD with their neighbors.  

 

(B) The distribution of h
2
 estimates; colors indicating the simulated h

2
 (red: 0.5; green: 0.8). As a 

consequence of the relationship between tagging and LD, when causal variants are of either higher or 

lower than average frequency, mixed model analysis using the standard kinship matrix will tend to 

under- or over-estimate h
2
 (left half). However, this bias is neutralized using our LD-adjusted matrix 

(right half). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure S6. Recognizing Heritability Contributions from Untyped Causal Variants  
 

By masking every alternate SNP in our simulation data, we considered scenarios where the causal 

variants were untyped, so were only partially tagged by the genotyped SNPs. For each untyped SNP, 

we calculated the proportion of its variance that could be explained by a linear combination of all 

genotyped SNPs within 1Mbp. We then divided SNPs according to these proportions: weakly (very 

weakly) tagged SNPs were those with values in the bottom 40% (20%), while strongly (very strongly) 

tagged SNPs were those with values in the top 40% (20%). Intuitively, we would expect the proportion 

of heritability from an untyped causal variant that is recognized by mixed model analysis, to depend 

on the proportion of that SNP’s variance which is tagged by the genotyped SNPs. The boxes show 

the spread of h
2
 estimates, where color indicates the simulated h

2
 (red: 0.5; green: 0.8). For each box, 

the horizontal purple line indicates how much heritability we would expect to recognize based on the 

average tagging of the SNPs considered causal. For example, the gray box corresponds to causal 

variants picked at random from all untyped SNPs; on average, an untyped variant will have 88% of its 

variance tagged by the genotyped SNPs, so we would expect 88% of the total heritability to be 

captured (0.44 if h
2
=0.5 or 0.70 if h

2
=0.8). We see that when using the standard kinship matrix (left 

half) the average heritability captured can be noticeably higher or lower than these values. This is 

because, for example, when the causal SNPs are poorly tagged, the genotyped SNPs tagging these 

are themselves on average poorly tagged relative to other genotyped SNPs, so mixed model analysis 

using standard kinships is liable to under-estimate their heritability contribution. By contrast, when 

using our LD-adjusted kinship matrix (right half) the proportion of total heritability recognized more 

closely matches the proportion we would expect. We believe that the reason why the realized 

heritability is slightly less than the expected heritability owes to the fact that each untyped SNP will 

have different components of its variation tagged by different genotyped SNPs. When we carried out 

a study where each untyped variant was tagged by only one genotyped SNP, the realized heritability 

matched exactly the value we expected (results not shown). 

 



 

 

Figure S7. Testing for Inflation Due to Cryptic Relatedness  

Browning and Browning
2
 constructed a toy example, derived from the WTCCC control datasets,

3
 to 

demonstrate that heritability estimates could be dramatically affected by population structure. We 

recreate their example, but show how genomic partitioning
4
 can be used as a simple test to assess 

the inflation of h
2
 estimates caused by population structure (or more accurately, cryptic relatedness, 

as residual relatedness between individuals can also contribute to this inflation). The test involves 

estimating first h
2
L, the heritability from the “left half” of the genome (say, Chromosomes 1-8), then 

h
2
R, the heritability from the remaining chromosomes, then the total heritability. If the estimates are 

accurate (i.e. there is no inflation), we would expect the sum of the first two estimates to equal the 

third, as the estimate from a particular region should only pick up heritability contributions from the 

causal variants it contains. However, the presence of cryptic relatedness will induce long-range 

genome sharing, so that causal variants from, say, the left half, will be correlated with variants on the 

right half, and thus the estimate of h
2
L will include more than just the contribution of left half causal 

variants. As both the left and right halves of the genome should be sufficiently long to capture the full 

effects of cryptic relatedness (as these effects should be relatively strong), the three estimates should 

be inflated equally. Therefore, it is possible to estimate inflation by subtracting the estimate for h
2
 from 

the sum of the estimates for h
2
L and h

2
R.  

(A) Plots of the three estimates for 25 replicates (black points for total; red points for left half; green 

points for right half). As found by Browning and Browning
2
 we also get large heritability estimates, 

which considering how the dataset was constructed, must result entirely from the population-specific 
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ascertainment bias rather than true causal variation. However, it is also clear that there is very little 

difference between the estimates from the whole genome and those from either half.  

(B) The derived estimate of inflation (“left + right - whole”) as a proportion of the total heritability 

estimate. If we were to obtain an estimate of inflation close to zero, we could be satisfied that cryptic 

relatedness was not significantly contributing to the heritability estimates. By contrast, here it is clear 

that inflation is responsible for almost all the observed heritability, signaling that the experimental 

design was flawed and the estimates were not to be trusted. We make use of this test when analyzing 

the WTCCC data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Figure S8. Guarding against Genotyping Errors  

 

Heritability estimates will be inflated by differential genotyping errors. This can be especially 

problematic when analyzing binary outcomes when cases and controls have been genotyped 

separately. Our weightings have the potential to increase this inflation, as a poorly genotyped SNP 

will typically display lower levels of LD with its neighbors, so receive a higher weighting in calculation 

of the LD-adjusted kinship matrix. To protect against this occurrence, when computing 

, the weighted correlation between a pair of SNPs, we suggest calculating  

across cases and controls separately, then setting  equal to the higher of the two values 

observed. In this way, if a genotyping error in, say, the case samples has caused SNP j to be poorly 

tagged by its neighbors, provided this genotyping error has not affected the control samples also, a 

realistic correlation squared value can be obtained from those and the weighting should not be 

adversely affected. The first two blocks of this figure are identical to those in the main text, 

demonstrating how use of our LD-adjusted kinship matrix corrects for the biases introduced when 

causal variants come from areas of lower or higher than average tagging. There does not appear to 

be a drop in performance when using the ad-hoc LD-adjusted kinship matrix described above (third 

block). Therefore, when analyzing a binary outcome where subsets of samples have been genotyped 

separately, we recommend use of this fix. An even more conservative approach, if resources are 

available, is to calculate the weightings using an entirely independent genotype dataset. Assuming 

once more that it is unlikely genotyping errors in the independent dataset will coincide with those in 

the dataset under consideration, then the weightings for unreliable SNPs should not artificially be 

inflated. None-the-less, even if using one of these fixes, it remains crucial that thorough quality control 

is performed before analysis. 

 

 

 

 

 



 
 

 

Figure S9. Pseudo Case-Control Study – Tagging of Top Hits from Association Study 

Shown in (A) are the –log10 p-values from testing each SNP marginally for association. SNPs 

significant at 10
-6

 are marked in blue. The coloring carries over to (B), which shows the variable 

tagging of SNPs throughout the genome and indicates the tagging of the top hits. 
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Figure S10. Bipolar Disorder – Tagging of Top Hits from Association Study 

 

Shown in (A) are the –log10 p-values from testing each SNP marginally for association. SNPs 

significant at 10
-6

 are marked in blue. The coloring carries over to (B), which shows the variable 

tagging of SNPs throughout the genome and indicates the tagging of the top hits. 
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Figure S11. Coronary Artery Disease – Tagging of Top Hits from Association Study 

 

Shown in (A) are the –log10 p-values from testing each SNP marginally for association. SNPs 

significant at 10
-6

 are marked in blue. The coloring carries over to (B), which shows the variable 

tagging of SNPs throughout the genome and indicates the tagging of the top hits. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 

B 



 
 

 

Figure S12. Crohn Disease – Tagging of Top Hits from Association Study 

 

Shown in (A) are the –log10 p-values from testing each SNP marginally for association. SNPs 

significant at 10
-6

 are marked in blue. The coloring carries over to (B), which shows the variable 

tagging of SNPs throughout the genome and indicates the tagging of the top hits. 
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Figure S13. Hypertension – Tagging of Top Hits from Association Study 

 

Shown in (A) are the –log10 p-values from testing each SNP marginally for association. SNPs 

significant at 10
-6

 are marked in blue. The coloring carries over to (B), which shows the variable 

tagging of SNPs throughout the genome and indicates the tagging of the top hits. 
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Figure S14. Rheumatoid Arthritis – Tagging of Top Hits from Association Study 

 

Shown in (A) are the –log10 p-values from testing each SNP marginally for association. SNPs 

significant at 10
-6

 are marked in blue. The coloring carries over to (B), which shows the variable 

tagging of SNPs throughout the genome and indicates the tagging of the top hits. 
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Figure S15. Type 1 Diabetes – Tagging of Top Hits from Association Study 

 

Shown in (A) are the –log10 p-values from testing each SNP marginally for association. SNPs 

significant at 10
-6

 are marked in blue. The coloring carries over to (B), which shows the variable 

tagging of SNPs throughout the genome and indicates the tagging of the top hits. 
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Figure S16. Type 2 Diabetes – Tagging of Top Hits from Association Study 

 

Shown in (A) are the –log10 p-values from testing each SNP marginally for association. SNPs 

significant at 10
-6

 are marked in blue. The coloring carries over to (B), which shows the variable 

tagging of SNPs throughout the genome and indicates the tagging of the top hits. 
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Table S1. Full Results from Analysis of WTCCC
3
 Data 

 
 

Trait 
 

n 
 

m’ 
Total Heritability (SD) Chromosome 6 Heritability  (SD) 

Standard Weighted Difference Standard Weighted Difference 

Pseudo Case-Control 2947 297,894 11 (10) 7 (14) -4 0 (2) 1 (3) +1 

Bipolar Disorder 4802 278,772 59 (6) 69 (8) +10 5 (2) 6 (2) +1 

Coronary Artery Disease 4858 282,170 39 (6) 41 (8) +3 2 (2) 1 (1) -1 

Crohn’s Disease 4709 285,989 54 (6) 58 (8) +5 5 (2) 6 (2) +1 

Hypertension 4878 280,461 42 (6) 52 (8) +10 5 (2) 8 (2) +4 

Rheumatoid Arthritis 4777 281,401 57 (6) 52 (8) -6 19 (2) 17 (2) -2 

Type 1 Diabetes 4913 282,212 73 (6) 74 (8) 0 37 (2) 35 (2) -2 

Type 2 Diabetes 4843 280,653 35 (6) 44 (8) +9 4 (2) 5 (2) +1 

 
 

Trait 
Left Half 

Heritability 
Right Half 
Heritability 

Cryptic Rel. 
Inflation, P 

Heritability Based on Call Rate Tranches 

Quarter 1 Quarter 2 Quarter 3 Quarter 4 

Pseudo Case-Control 0 13 2 1 13 1 17 

Bipolar Disorder 30 29 1 33 45 23 43 

Coronary Artery Disease 17 22 1 25 20 29 32 

Crohn’s Disease 33 24 4 31 40 41 42 

Hypertension 21 23 3 26 31 30 33 

Rheumatoid Arthritis 41 16 0 43 41 41 41 

Type 1 Diabetes 59 16 1 56 46 47 56 

Type 2 Diabetes 20 16 1 19 21 29 28 

 

n and m’ denote the numbers of individuals and SNPs, respectively. To calculate P, the extent by 

which the estimate of total heritability is inflated due to cryptic relatedness, we separately computed 

heritability from “Left Half” SNPs (Chromosomes 1-8) and “Right Half” SNPs (Chromsomes 9-22). We 

would expect each of these two estimates to also be inflated by an amount P. Therefore, we can 

estimate P as the Left Half heritability plus the Right Half heritability, minus the Total Heritability. The 

figures would suggest this inflation is modest. 

 

To assess the inflation due to genotyping errors, we divided the SNPs into four quarters according to 

call rate – which statistic we treated as a proxy for SNP reliability – then estimated the heritability from 

each subset of SNPs separately. If genotyping errors were cause for concern, we would expect the 

heritability estimates from the less reliable SNPs (Quarters 3 and 4) to be typically greater than those 

from the more reliable SNPs (Quarters 1 and 2). As no trend is noticeable across studies, this 

suggests the inflation caused by genotyping errors is at most slight. 

 

 

 

 

 
References 

 

1. Zou, F., Lee, S., Knowles, M., and Wright, F. (2010). Quantification of population structure using 

correlated SNPs by shrinkage principal components. Hum. Hered. 70, 9-22. 

2. Browning, S. and Browning, B. (2011). Population structure can inflate SNP-based heritability 

estimates. Am. J. Hum. Genet. 89, 191-193. 

3. Wellcome Trust Case Control Consortium (2007). Genome-wide association study of 14,000 cases 

of seven common diseases and 3,000 shared controls. Nature 447, 661-678. 

4. Yang, J., Manolio, T., Pasquale, L., Boerwinkle, E., Caporaso, N., Cunningham, J., de Andrade, M., 

Feenstra, B., Feingold, E., Hayes, M., et. al. (2011). Genome partitioning of genetic variation for 

complex traits using common SNPs. Nat. Genet. 43, 519-525. 


