

### **Practical**





### MAGMA

- Tool for gene, gene set and gene property analysis
  - Gene property = 'continuous gene set'
    - Or: gene set = binary gene property
  - Command-line interface (Linux, Mac OS, Windows)
- Today
  - Gene analysis
  - Competitive gene-set analysis
  - Gene property analysis (tissue-specific expression)
  - Using raw genotype data as input



### MAGMA

#### • Other options

- Analysis on SNP p-value input
- Rare variant (and rare + common) analysis features
- Gene x environment analysis
- Etc.

#### • Upcoming release

- Gene-set level interaction analysis
- Partitioning SNPs in genes
  - Eg. by functional SNP type



## **Practical**

- 1. Annotate SNPs to genes
- 2. Perform gene analysis (with 10 PCs as covariates)
- 3. Perform gene-set analysis
- 4. Perform tissue expression analysis
- 5. Perform joint gene-set / tissue expression analysis

#### Data

- Simulated GWAS data and phenotype; 400K SNPs, N = 2,500
- 1011 Reactome gene sets
- Tissue-specific expression data for 11 tissues
  - Simulated, but based on real expression data



## **Practical**

- Open terminal window
- Copy practical files to local drive and move to new folder
  - cp /faculty/christiaan/Boulder2017/magma\_practical.zip .
  - unzip magma\_practical.zip
  - cd magma\_practical
- Folder should contain
  - GWAS data: boulder.bim, boulder.bed, boulder.fam
  - Covariate file: boulder\_pca.cov
  - Gene-set files: reactome.sets, reactome\_signif.sets
  - Tissue expression file: tissue\_gex.cov
  - Gene definition file: NCBI37.3.gene.loc
  - Instructions: practical.pdf
    - Note: MAGMA commands in PDF may run over multiple lines, but should be entered in the terminal as a single command



#### • Step 1: annotation

- Out of 19,427 protein-coding genes in the gene location file, only 13,772 had any SNPs annotated to them
- Restricts any conclusions to the annotated protein-coding genes, we cannot be sure whether the same relations hold in the other genes
  - Use genotype data with better coverage (eg. using imputation) to address this issue
- Step 2: gene analysis
  - 2 genes are genome-wide significant
    - Threshold = 0.05/13,772 = 3.63e-6
  - Only 6.22% of genes have a p-value below 0.05



- Step 3a: basic competitive gene-set analysis
  - Out of 1011, there are 9 significant gene sets
    - Points to the underlying property (known pathway, cell function, biological process, etc.) playing a role in the phenotype
      - NOTE: only competitive gene-set analysis allows this kind of conclusion
    - Looking at the names, probably overlap between these gene sets
      - Use conditional gene-set analysis to improve specificity
  - For first significant gene-set (SIGNALING\_BY\_NOTCH1\_T)
    - Lowest gene p-value: 0.00035
      - Genome-wide significance threshold = 3.7e-6
    - 28.3% of genes have a p-value below 0.05



- Step 3b: conditional competitive gene-set analysis
  - 5 out of 8 gene-sets are no longer significant after conditioning on the Critical Pathway gene-set

| Set                                                                      | Comp. P (step 3a) | Comp. P (step 3b) |
|--------------------------------------------------------------------------|-------------------|-------------------|
| Signaling by Notch1 T                                                    | 9.43e-7           | 8.04e-7           |
| Constitutive Signaling by Notch1 HD + Pest Domain Mutants                | 8.89e-6           | 7.82e-6           |
| Elastic Fibre Formation                                                  | 6.46e-7           | 0.13              |
| Activation of the Phototransduction Cascade                              | 8.04e-6           | 0.051             |
| The Phototransduction Cascade                                            | 4.55e-9           | 0.15              |
| Notch1 Intracellular Domain Regulates Transcription                      | 3.20e-5           | 2.85e-5           |
| Inactivation Recovery And Regulation of the<br>Phototransduction Cascade | 1.26e-9           | 0.060             |
| Molecules Associated with Elastic Fibres                                 | 4.80e-5           | 0.85              |
| Critical Pathway                                                         | 3.17e-12          | -                 |



- Step 3b: conditional competitive gene-set analysis
  - 5 out of 8 gene-sets are no longer significant after conditioning on the Critical Pathway gene-set
  - Conversely, the Critical Pathway remains highly significant when conditioning on any of these 8 sets, suggesting that
    - Of these sets, the Critical Pathway set is most likely to be the true 'causal' gene set
    - The originally observed associations of the 5 sets that are no longer significant are driven entirely by their overlapping with this causal set
  - In practice, the true 'causal' set(s) may not be included in your analysis
    - And are unlikely to be helpfully labeled 'Critical Pathway' if they are



- Step 4a: basic tissue expression analysis
  - All the tissue expression levels are significant, as is the mean expression level across tissues
    - In all likelihood, the associations per tissue are driven by the more general relation between gene expression and genetic association; not very informative
- Step 4b: conditional tissue expression analysis
  - Only the brain-specific expression level remains significant after conditioning on average gene expression level
    - More strongly (specifically) brain-expressed genes also tend to be more strongly associated with our phenotype; suggests that brain expression plays a role in (the genetics of) our phenotype



#### • Step 5

- The p-values remain effectively the same when conditioning on the average gene expression level, as well as when additionally conditioning brain-specific expression level
- This suggests that the gene-set associations are not driven merely by gene expression effects (at least of the tissues we tested), which helps strengthen our interpretation of the gene-set associations

#### • Any further questions?

- MAGMA program, manual and auxiliary files can be found on the MAGMA site: <u>http://ctglab.nl/software/magma</u>
- Contact me for questions, suggestions, etc. at <u>c.a.de.leeuw@vu.nl</u>
- These slides: /faculty/christiaan/Boulder2017/practical\_slides.pdf