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Exercises from this paper: Effect of the IL6R gene on IL-6R
concentration
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 We measured soluble IL-6R concentration
in blood in ~5000 individuals (from the
Netherlands Twin Register)

sIL-6R concentration in blood is a  Mean=4.17

quantitative trait So00- Hn  Variance=1.35
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Genetics =2 IL-6R concentration = common disease

* |L-6R protein is encoded by the IL6R gene (chromosome 1)

* IL6R gene important for several common diseases
» Asthma'
» Coronary heart disease?
» Type 1 diabetes?

lFerreira M.A. et al Lancet 2011
2|L6R consortium Lancet 2012
SFerreira R.C. et al PLoS Genetics 2013



Analysis N subjects | Mean age (SD), min-max | % Male | Cohort
Heritability analysis and biometrical 4980 42.7 (14.3), 18-89 36.2 NTR

model (MZ and DZ twins, siblings, and

parents)

GWA and GCTA (unrelated + related Ss) | 4846 44.2 (14.4), 18-90 38.7 NTR

GCTA (unrelated Ss) 2875 46.5 (14.4), 18-89 38.8 NTR
Combined linkage and association 1254 48.3 (15.7), 18-89 44.4 NTR

analysis (Nuclear families)

eQTL analysis (unrelated + related Ss) 4467 38.4 (13.0), 25-51 34.4 NTR + NESDA
Correlation between sIL-6R level and 2727 37.5(12.0), 18-79 34.5 NTR

IL6R expression (unrelated + related Ss)




Methods

We measured IL-6R concentration in ~5000 twins & parents & siblings

We estimated Heritability: Variance of sIL-6R level explained by total
genetic effects (Mx)

We measured genome-wide SNP genotypes of the same subjects:

— How much variance is explained by all SNPs in the genome
(Genomewide-complex trait analysis, GCTA)

— How much variance is explained by all genetic variation in the IL6R
gene (linkage analysis)
— How much variance is explained by the SNP rs2228145
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H2 = Broad-sense heritability

a’? = Additive genetic effects

d? = Non-additive genetic effects
c? = Sibling-shared environment
e? = Unique environment
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Variance explained

Variance explained by chromosome-wide SNPs (GCTA)
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SNPs in the IL6R gene on Chromosome 1 (+/- 10MB): 54.7 % (SE=2.5%)



Combined linkage and association analysis (qtdt)

== Chi-squared from linkage test
== Chi-squared from linkage test — while modeling association for individual SNPs
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IL6R region:

1. Variance explained by linkage (Va/Viyia): 69 %
2. Variance explained by linkage after correction for rs2228145: 19%



Thus, we had twin — family data -> heritability
-> linkage

However, when looking at association, we need to adjust
for clustering in the data.



Common Variant family-based GWAS
(clustered data)

Camelia Minica
Conor Dolan Dorret Boomsma
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Sandwich corrected standard errors in family-based
genome-wide association studies
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LETTER TO THE EDITOR
MZ twin pairs or MZ singletons 1n population family-based
GWAS? More power 1n pairs



Why is this important?

Ignoring clustering in the data may lead to wrong conclusions
(point estimates of effects OK, but SE too small)

Focus: family-based Genome-Wide Association Studies
However: these are regression based approaches, hence
relevant for any analysis involving family data

Predictors: GV, polygenic score, other covariates



Why is this important?

 Many GWAS meta-analyses rely heavily on twin registries

« Twin registries have data collected in families readily available



Identification of seven loci affecting mean TELOMERE length and
their association with disease
Veryan Codd et al. (ENGAGE consortium) Nature Genetics, 2013
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Nature genetics
Author Manuscript Europe PMC Funders

Genome-wide meta-analysis identifies new susceptibility loci for migraine

Verneri Anttila, Bendik S. Winsvold, [...], and Aarno Palotie

Study Cases Controls

ALSPAC 3,134 5,103
Australia 1,683
B58C
deCODE

ERF

Finnish MA
FinnTwin <—
German MA
German MO 1,208 2,564
HUNT 1,608
LUMINA MA
LUMINA MO
NFBC1966
NTR&NESDA
Rotterdam
TWINS UK 972 3,837
WGHS 5,122 18,108
Young Finns 378 2,065

13% cases
9%
controls




GWAS of 126,559 Individuals
Identifies Genetic Variants Associated
with Educational Attainment

There are 6 twin cohorts and total of 52 cohorts (11%)
* Finnish twin cohort

* Netherlands twin register

* QIMR (Australian twin register)

* Swedish twin register

* TwinsUK

* Minnesota Twin — family study

Twin registries supplied > 35% of total sample size



Some consortia protocols require
discarding family members

Molecular psychiatry
Author Manuscript NIH Public Access

A mega-analysis of genome-wide association studies for major
depressive disorder

Twin registries supplied iiio cases and 19% controls



MZ pairs
or

MZ singletons?



MZ pairs or MZ singletons?

« Compute effective sample size:

N = (2*N) / (1+1)

/ Intraclass correlation

ranges from N (I'=1) to 2* N (I'=0)



Power
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FAMILY-BASED GWAS:
using efficiently
correlated observations



Family-based GWAS

(continuous phenotype)

_ x
Vi =Dy + b, *X; + &,

where | is indicator of family (i=1..Nfam) and j is subjects (j=1..N)

Y, D and € are vectors

X-(1 ] b=(p) oyl



Family-based GWAS

(model in matrix notation)
y = Xb + &
e=y-XDb

g|X ~ N(O, V)



Family-based GWAS

e|X ~ N(O, V)
VvV O O
O V, O
\#
0 O Vi,




Family-based GWAS

g|X ~ N(O, V)

V(o)
©=[0°,, 0%, O]



V modeled as an ACE
V(@) =A® 6%, +C® 2+ 1 ® o,
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genome shared | B D

”

Genetic Relationship Matrix

e.g., 2 parents + 2 DZ twins

27



V(@) =A®c?, +C®c%+1|Qc?%

What other genetic information A could contain?

#1) The actual genome-wide relationship, defined as the observed
proportion of the genome that two relatives share IBD, varies

around its expectation because of Mendelian segregation, except for MZ
twins and parent-offspring pairs. (Genotypic info: microsatellites).

Why bother?

o TESS Freely available online =~ PLOS

ssumption-Free Estimation of Heritability
from e-Wide ldentity-by-Descent Sharing
between Full Siblings

Peter M. Visscher , Sarah E. Medland, Manuel A. R. Ferreira, Katherine 1. Morley, Gu Zhu, Belinda K. Cornes,
Grant W. Montgomery, Nicholas G. Martin



2) GCTA (Yang et al 2011; Speed et al 2012) and variations (Zaitlen et al 2013,

V(@) =A®c?, +CQ®c%.+1® o

What other genetic information could A contain?

GCTA: average allelic correlations between the individuals,
where the alleles are observed in the measured SNPs



V modeled as an ACE

V(@) =AQ®c%, +C®c2+|®c?
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ESTIMATION?



Maximum Likelihood

(x V(S xj X'V(0)y

var(b,, ) = (Xt V() 2X)L



Maximum Likelihood

—1
= (X VI e X) X V(@) \Y
correct model
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What if my model for Vis
misspecified?

e.gd.. model an ACE trait but ignore C



Maximum Likelihood
- (x Vvié x) x'Vv(®)'y

SANDWICH misspecification?

correction /

V(O) = [0?,, 2]

var (B )= (x v(6, )1x) XV(O, ) (y - XbYy - Xb) V{6, )1X(Xtv(@m)lxj_l



What if the degree of
misspecification is even larger?

e.d.. model an ACE trait but ignore AC



V modeled as an E

V(O)=1® o2

You assume there is no significant covariance between family members.



V modeled as an E

V(O)=1® o2
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ESTIMATION?



Unweighted Least Squares
b, s = (X'X) X'y
var(b) s = (X'X)™* 62

V(O) = 2.1



Unweighted Least Squares

by.s = (X'X) X’y

var(b) s = (X'X) ™ 62

— misspecification
V@)=6217




Unweighted Least Squares
b, s = (X'X)X’y

sanowich Var(b)ys = (X'X)™ 62

correction

l <0>-@/

var (B, s )= (X' X)X (y - Xb)y — Xb)' X(X!

misspecification

x)*



ML or ULS?

LEAST SQUARES: - non-iterative, very fast;

- correct standard errors; . e .
' misspecification
- E model for the covariance matrix

ML : - iterative;

- fast; misspecification for ACE traits
- AE model for the covariance matrix



ML or ULS?

Two different estimators may be consistent, but they are
not necessarily equally efficient.

so as N-> Large, bl-est tends to bl-true.

but given N, one estimator may be more efficient:
I.e., have a smaller standard error (regardless whether

the standard error is based on asymptotic theory or on a
permutation test).



CONCLUSIONS
(quantitative traits)

Full correct modeling (RareMetal Worker (practical Sarah), OpenMx,
Linear Mixed, Merlin, Mendel)

AE type modeling standard (CGTA, FastLMM)
(you probably can add the C coded matrix to GCTA if you are
modeling close relateds)

CE/AE/E type of modelling with sandwich correction (GEE)

E type of modeling (Plink - - equivalent to GEE with independence
correlation matrix) — low power (generally not recommended).



USEFUL SOFTWARE:

PLINK1.7 + R-GEE+sandwich:
http://pngu.mgh.Harvard.edu/~purcell/plink/rfunc.shtmi
https://www.cog-genomics.org/plink2/

see EXAMPLE GEE: http://cameliaminica.nl/scripts.php

MERLIN and MERLIN-offline:
http://genepi.gimr.edu.au/staff/sarahMe/merlin-offline.html

GCTA-MLM-LOCO:
http://www.complextraitgenomics.com/software/gcta/mimassoc.html

FAST-LMM:https://github.com/MicrosoftGenomics/FaST-LMM



PRACTICAL



Association analysis, family data

We will compare 3 options

* Plink1 --family } E model
* gee, with option correlation structure=“independence”

* gee, with option correlation structure="exchangeable” CE model



/faculty/jenny/2017/tuesday

mkdir practical_family
cp -r /faculty/jenny/2017/tuesday/* practical _family
cd practical family



Note on --family in plink = use plink1!

* the option -- family is currently not implemented in plink2
* If you do use -- family in plink2, incorrect output is returned



Plink —association analysis

e Data

plink_covar.txt
rs2228145 plink.map
rs2228145 plink.ped

e Covariates (plink_covar.txt)

zage = z-score of age
PC1 NLPC2 NLPC3 NL = Dutch ancestry PCs
PC3_chip_effect PC5_ chip_effect PC1_buccal = PCs to correct for chip and DNA source

* Run association test (1 SNP) - sIL6R, correcting for relatedness and 7 covariates
*  We use plink version 1.07

plink1 --file rs2228145 plink --covar plink_covar.txt --linear --family --mperm 1000

The results are in plink.assoc.linear = have a look at this file




Output plink

e plink.assoc.linear

CHR SNP BP Al  TEST NMISS BETA STAT P

1 rs2228145 154426970 ADD 2572 1.226 47.22 0

1 rs2228145 154426970 covil 2572 0.171 10.16 8.626e-24
rs2228145 154426970 COv2 2572 -2.564 -1.307 0.1913
rs2228145 154426970 COv3 2572 -3595 -1.393 0.1638
rs2228145 154426970 cCov4 2572 0.2612 0.09378  0.9253
rs2228145 154426970 CoOv5 2572 -3.73  -2.457 0.01407
rs2228145 154426970 COvVe 2572 -0.9417 -0.5481  0.5837
rs2228145 154426970 COV7 2572 9.234 0.943  0.3458

N T S S S S =
OO O OO 0O O0OO6NO



Gee — association analysis

 We will now use the R-package gee to test the association between our
SNP and sIL-6R

« We are going to read in the plink ped file and covariate file in R.
We will use gee, with 2 options:

— Correlation structure="independence”

— Correlation structure= “exchangeable”

- Compare the results obtained with these 2 options — are they the same?
* Open the R-script association rs2228145 gee.r (click on it, it will open in

R-studio)
* Run the script line by line



>

Output gee

Correlation structure “independence”

(Intercept)
genonum
zage
PC1 NL
PC2_NL
PC3 NL

PC3 chip effect
PC5 _chip effect -0.9416699

PCl_buccal
>

Estimate Naive S5.E. Naive z Robust S5.E. Robust z
3.2082952 0.03652159 B87.84653889 0.03154167 101.71605306
1.2257800 0.02389002 51.309259293 0.025595836 47.221016867
0.1710237 0.01675720 10.20598431 0.01683764 10.15722428

-2.5636709 1.85036718 -1.31445552 1.96137938 -1.30707548
-3.509852193 2.431776le -1.47843347 2.58089455 -1.39295887
0.2611566 2.62472212 (0.09949875 2.78476265 0.09378055
=3.7285217 1.51768531 -2.45737482 1.51776706 -2.45724245
1.545974148 -0.60763031 1.71813103 -0.54807804

9.2342455 10.99356713 0.83996809 9.79244696 0.94295674

Correlation structure “exchangeable”

coeff

Intercept)

genonum

Z
P
P
P

PC3_chip effect
PCS> chip effect

P
>

age
C1 NL
C2_NL
C3 NL

Cl_buccal

Estimate
3.20039476
1.22708542
0.17856674
-2.2268T489
-3.45332650

0.03283707
-3.62243989
-1.04564505
11.61605341

Naive 5.E.
0.03739698
0.02400555
0.016593659
2.02532967
2.51218708
2.71043312
1.53635530
1.58955286
11.21512815

Identical estimates
slightly larger Robust Z-statistics

Naive z Robust 5.E.

85.57896946
51.11715551
10.76112051
-1.09851230
-1.37462851

0.01211506
-2.35781390
-0.65782339

1.03574861

0.031011e0
0.02568134
0.016828357
1.91838437
2.57648882
2.74004517
1.49974450
1.69688607
9.75924743

Robust =z
103.19993373
47 .78159138
10.61092506
-1.16080746
-1.34032272
0.01198414
-2.41537134
-0.61621406
1.19026119



 Compare the results obtained in gee to those
obtained in plinkl (plink.assoc.linear)

= Do you notice any difference?



* Notice that the results (estimate and Robust Z) from gee with
option “independence” are identical to those obtained in
plink1

* - Gee with option corst="independence” does the same as
plink1 with option --family



Biometrical model



Rs2228145: Large effect on sIL-6R level (allele C increases slL-6R concentration)

sIL-6R concentration
d
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Exercise: Effect of the IL6R gene on IL-6R concentration

INFORMATION

 The SNP (single nucleotide polymorphism) has 2 alleles:
— Minor allele: C, frequency: p=0.39
— Major Allele: A, frequency: q =0.61
 Mean IL-6R concentration of each genotype:
— CC:5.698 (108 g/mL)
— CA:4.418 (10®g/mL)
— AA:3.238  (10®g/mL)
e Total Variance of IL-6R concentration=1.35

QUESTIONS (Falconer & MacKay; 1996: Introduction to quantitative genetics)
Calculate genotypic values (a and d) (page 109)

[Calculate the average effect of the alleles (page 113)]

Calculate the genotype frequencies (page 7)

Calculate the mean IL6-R concentration in the population (page 110)
Calculate how much of the variance is explained by this SNP

(Variance= Sum of squared deviations from the mean)

6. Calculate heritability

e wnh e




Model: gene with 2 alleles A and a
and 3 genotypes AA, Aa and aa

The difference on a quantitative scale between AA and aa is 2a.
The middle (m) is zero and the value of Aa is O (no dominance).



Model: gene with 2 alleles A and a
and 3 genotypes AA, Aa and aa

a

The deviation from m (middle) of the heterozygote Aa is d:
partial dominance.



Genotype (i) AA Aa aa
Frequency (f) | p2 2p(q 0°
Genotypic a d -a
effect (x)

Mean?




Genotype (i) AA Aa aa

Frequency (f) | p? 2pQ 0°

Genotypic a d -a

effect (x)

f* x p2 a 2pqd - g% a

mean: p?a + 2pqd - g2 a = (recall p+q =1)

a(p?—0g°) + 2pqd =
a(p-q)(p+q) + 2pqd =

Mean = a(p-q) + 2pqd

a(p-q) : attributable to homozygotes
2pqd : attributable to heterozygotes



Genotype (i) AA Aa aa
Frequency (f) | p? 2pQ 0°
Genotypic a d -a
effect (x)

f*x p2a |2pqd -Qg°a

mean: p° a + 2pqd - g% a = a(p-q) + 2pqd
Variation: 2pg[a+d(g-p)]? + (2pgd)?
Population variation depends on ‘a’ (difference between

homozygote individuals), ‘d’ (deviation of heterozygote persons
from zero) and on allele frequency (p & Q).



Average effect
(associated with genes and not with genotypes)

The average effect of a gene (allele) is the mean
deviation from the population mean of individuals
which received that gene from one parent, the
gene received from the other parent having come
at random from the population.

Falconer (p112):The concept of average
effect Is not easy to grasp.



Average effect is related to genotypic values a and d

qgla+d(g—-p)l=a,

-pla+d(g-p)l=a,

Average effect of gene substitution is a, - a, =a. This is the
difference between the average effect of the 2 alleles:

a =a + d(g-p)



CC:5.698 /CA:4.418 /AA:3.238 (108 g/mL)
Total Variance of IL-6R concentration=1.35 N
Frequencies: C, frequency: p=0.39 / A, frequency: q =0.61 (I

{
lmean
AA A|C | CC
-a do a
< - =

_ AA AC CC
Mean IL-6R concentration of each genotype: |

QUESTIONS (Falconer & MacKay; 1996: Introduction to quantitative genetics)

Calculate genotypic values (a and d) (page 109)

Calculate the average effect of the alleles (page 113)

Calculate the genotype frequencies (page 7)

Calculate the mean IL6-R concentration in the population (page 110)
Calculate how much of the variance is explained by this SNP
(Variance= Sum of squared deviations from the mean)

6. Calculate heritability

e wnh e




