Threshold Liability Models
(Ordinal Data Analysis)

Frühling Rijsdijk

MRC SGDP Centre, Institute of Psychiatry,
King’s College London
Ordinal data

• Measuring instrument discriminates between two or a few ordered categories e.g.:
 – Absence (0) or presence (1) of a disorder
 – Score on a single Q item e.g. : 0 - 1, 0 - 4

• In such cases the data take the form of counts, i.e. the number of individuals within each category of response
Analysis of ordinal variables

• The session aims to show how we estimate correlations from count data (with the ultimate goal to estimate h^2, c^2, e^2)
• For this we need to introduce the concept of ‘Liability’ or ‘liability threshold models’
• This is followed by a more mathematical description of the model
Liability is a *theoretical* construct. It’s the assumption we make about the distribution of a variable which we were only able to measure in terms of a few ordered categories.

Assumptions:

(1) Categories reflect an imprecise measurement of an underlying *normal distribution* of liability.

(2) The liability distribution has 1 or more *thresholds* (cut-offs) to discriminate between the categories.
The risk or liability to a disorder is normally distributed, only when a certain threshold is exceeded will someone have the disorder. Prevalence: proportion of affected individuals.

For a single questionnaire item score e.g:

0 = not at all
1 = sometimes
2 = always

Does not make sense to talk about prevalence: we simply count the endorsements of each response category.
The Standard Normal Distribution

Liability is a latent variable, the scale is arbitrary, distribution is assumed to be a Standard Normal Distribution (SND) or z-distribution:

- Mathematically described by the SN Probability Density function ($\Phi = \text{phi}$), a bell-shaped curve with:
 - mean = 0 and SD = 1
 - z-values are the number of SD away from the mean
- Convenience: area under curve = 1, translates directly to probabilities

![Diagram of the Standard Normal Distribution with 68% between -1 and 1]
Standard Normal Cumulative Probability in right-hand tail
(For negative z values, areas are found by symmetry)

Area = P(z ≥ z_T)
Standard Normal Cumulative Probability in right-hand tail
(For negative z values, areas are found by symmetry)

\[\text{Area} = P(z \geq z_T) \]

\[\int_{Z_T}^{\infty} \Phi(L_1; \mu = 0, \sigma^2 = 1) \, dL_1 \]
Standard Normal Cumulative Probability in right-hand tail
(For negative z values, areas are found by symmetry)

<table>
<thead>
<tr>
<th>Z₀</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.50</td>
</tr>
<tr>
<td>.2</td>
<td>.42</td>
</tr>
<tr>
<td>.4</td>
<td>.35</td>
</tr>
<tr>
<td>.6</td>
<td>.27</td>
</tr>
<tr>
<td>.8</td>
<td>.21</td>
</tr>
<tr>
<td>1</td>
<td>.16</td>
</tr>
<tr>
<td>1.2</td>
<td>.12</td>
</tr>
<tr>
<td>1.4</td>
<td>.08</td>
</tr>
<tr>
<td>1.6</td>
<td>.06</td>
</tr>
<tr>
<td>1.8</td>
<td>.036</td>
</tr>
<tr>
<td>2</td>
<td>.023</td>
</tr>
<tr>
<td>2.2</td>
<td>.014</td>
</tr>
<tr>
<td>2.4</td>
<td>.008</td>
</tr>
<tr>
<td>2.6</td>
<td>.005</td>
</tr>
<tr>
<td>2.8</td>
<td>.003</td>
</tr>
<tr>
<td>2.9</td>
<td>.002</td>
</tr>
</tbody>
</table>

\[
\text{Area} = P(z \geq z_T)
\]

\[
\int_{Z_T}^{\infty} \Phi(L_1; \mu = 0, \sigma^2 = 1) \, dL_1
\]
Two ordinal traits: Data from twins

> Contingency Table with 4 observed cells:

cell a: pairs concordant for unaffected

cell d: pairs concordant for affected

cell b/c: pairs discordant for the disorder

<table>
<thead>
<tr>
<th>Twin1</th>
<th>Twin2</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>c</td>
<td>d</td>
<td></td>
</tr>
</tbody>
</table>

0 = unaffected
1 = affected
Joint Liability Model for twin pairs

- Assumed to follow a **bivariate normal distribution**, where both traits have a mean of 0 and standard deviation of 1, but the **correlation** between them is variable.

- The **shape** of a bivariate normal distribution is determined by the **correlation** between the traits.

\[r = 0.00 \quad r = 0.90 \]
• The observed cell proportions relate to the proportions of the BND with a certain correlation between the latent variables (y_1 and y_2), each cut at a certain threshold

• i.e. the joint probability of a certain response combination is the volume under the BND surface bounded by appropriate thresholds on each liability
Expected cell proportions

Numerical integration of the BND over the two liabilities e.g. the probability that both twins are above T_c:

$$\int_{T_{c1}}^{\infty} \int_{T_{c2}}^{\infty} \Phi(y_1, y_2; \mu = 0, \Sigma) dy_1 dy_2$$

Φ is the bivariate normal probability density function, y_1 and y_2 are the liabilities of twin1 and twin2, with means of 0, and Σ the correlation between the two liabilities T_{c1} is threshold (z-value) on y_1, T_{c2} is threshold (z-value) on y_2.
Expected cell proportions

\[
\begin{align*}
&T_{c1} \quad T_{c2} \\
&\int_{-\infty}^{T_{c1}} \int_{-\infty}^{T_{c2}} \Phi(y_1, y_2; \mu = 0, \Sigma) \, dy_1 \, dy_2 \\
&T_{c1} \quad \infty \\
&\int_{-\infty}^{T_{c1}} \int_{T_{c2}}^{\infty} \Phi(y_1, y_2; \mu = 0, \Sigma) \, dy_1 \, dy_2 \\
&\infty \quad T_{c2} \\
&\int_{T_{c1}}^{\infty} \int_{T_{c1}}^{T_{c2}} \Phi(y_1, y_2; \mu = 0, \Sigma) \, dy_1 \, dy_2 \\
&T_{c1} \quad -\infty \\
&\int_{T_{c1}}^{\infty} \int_{-\infty}^{T_{c1}} \Phi(y_1, y_2; \mu = 0, \Sigma) \, dy_1 \, dy_2
\end{align*}
\]
Estimation of Correlations and Thresholds

• Since the BN distribution is a known mathematical distribution, for each correlation (\sum) and any set of thresholds on the liabilities we know what the expected proportions are in each cell.

• Therefore, observed cell proportions of our data will inform on the most likely correlation and threshold on each liability.

<table>
<thead>
<tr>
<th></th>
<th>y1</th>
<th>y2</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>.87</td>
<td>.05</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>.05</td>
<td>.03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\text{r} = 0.60$

$T_{c1} = T_{c2} = 1.4$ (z-value)
Bivariate Ordinal Likelihood

• The likelihood for each observed ordinal response pattern is computed by the expected proportion in the corresponding cell of the BN distribution.

• The maximum-likelihood equation for the whole sample is
\[-2 \log \text{likelihood of each vector of observation, and summing across all observations (pairs)}\]

• This -2LL is minimized to obtain the maximum likelihood estimates of the correlation and thresholds.

• Tetra-choric correlation if \(y_1\) and \(y_2\) reflect 2 categories (1 Threshold); Poly-choric when >2 categories per liability.
Twin Models

- Estimate correlation in liabilities separately for MZ and DZ pairs from their Count data
- Variance decomposition (A, C, E) can be applied to the liability of the trait
- Correlations in liability are determined by path model
- Estimate of the heritability of the liability
ACE Liability Model

\[
\begin{align*}
E & \rightarrow C \\
C & \rightarrow A \\
A & \rightarrow C
\end{align*}
\]

\[
\begin{align*}
1 & \\
1/0.5 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
1 & \\
\end{align*}
\]

\[
\begin{align*}
\text{Unaf} & \\
\text{Aff} & \\
\text{Unaf} & \\
\text{Aff}
\end{align*}
\]

\{ Variance constraint \}
\{ Threshold model \}

Twin 1

Twin 2
Summary

• OpenMx models ordinal data under a threshold model
• Assumptions about the (joint) distribution of the data (Standard Bivariate Normal)
• The relative proportions of observations in the cells of the Contingency Table are translated into proportions under the SBN
• The most likely thresholds and correlations are estimated
• Genetic/Environmental variance components are estimated based on these correlations derived from MZ and DZ data
Power issues

• Ordinal data / Liability Threshold Model: less power than analyses on continuous data

Neale, Eaves & Kendler 1994

• Solutions:
 1. Bigger samples
 2. Use more categories
Practical

R Script: ThreshLiab.R
Data File: CASTage8.csv
Sample & Measures

- Simulated data based on CAST data collected at age 8 in the TEDS sample
- Parent report of CAST: Childhood Autism Spectrum Test (Scott et al., 2002)
- Twin pairs: 501 MZ & 503 DZ males
The CAST score dichotomized at around 98% (i.e. scores of >15), is the clinical cut-off point for children at risk for Autism Spectrum Disorder.

However, for the purpose of this exercise, we use 2 cut-offs to create 3 categories:

- <9: unaffected (0)
- 9-15: sub-clinical (1)
- >15: ASD (2)
Inspection of the data

CAST score categorized (0,1,2), the proportions:

<table>
<thead>
<tr>
<th>CAST</th>
<th>Freq.</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>804</td>
<td>80.08%</td>
</tr>
<tr>
<td>1</td>
<td>158</td>
<td>15.74%</td>
</tr>
<tr>
<td>2</td>
<td>42</td>
<td>4.18%</td>
</tr>
<tr>
<td>Total</td>
<td>1,004</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

Z-values

Z-value Th1 = .84
Z-value Th2 = 1.75
CTs of the MZ and DZ group

table(mzData$Ocast1, mzData$Ocast2)

table(dzData$Ocast1, dzData$Ocast2)
Castdata <- read.table('CASTage8.csv', header=T, sep='"', na.strings='.

selVars <- c('Ocast1', 'Ocast2')

Declare variables to be ordered Factors for OpenMx
Castdata$Ocast1 <- mxFactor(Castdata$Ocast1, levels=c(0:2))
Castdata$Ocast2 <- mxFactor(Castdata$Ocast2, levels=c(0:2))

Select Data for Analysis
mzData <- subset(Castdata, zyg==1, selVars)
dzData <- subset(Castdata, zyg==2, selVars)

get CT for Ordinal variable
table(mzData$Ocast1, mzData$Ocast2)
table(dzData$Ocast1, dzData$Ocast2)
1) Specify Saturated Model (max number of parameters: 2 cor, 8 TH)
Matrices for expected Means (SND) & Tetrachoric correlations

```r
meanL <- mxMatrix( type="Zero", nrow=1, ncol=ntv, name="M" )
```

```r
corMZ <- mxMatrix(type="Stand", nrow=ntv, ncol=ntv, free=T, values=.8,
                  lbound=-.99, ubound=.99, name="expCorMZ")
```

```r
CorDZ <- mxMatrix(type="Stand", nrow=ntv, ncol=ntv, free=T, values=.8,
                  lbound=-.99, ubound=.99, name="expCorDZ")
```
Matrices & Algebra for expected Thresholds

Tmz <- mxMatrix (type="Full", nrow=nth, ncol=ntv, free=TRUE,
values=c(.8, 1, .8, 1),
lbound=c(-3, .001, -3, .001),
ubound=(3),
labels=c("Tmz11","imz11", "Tmz12","imz12"),
name="ThMZ")
A multiplication is used to ensure that any threshold is higher than the previous one. This is necessary for the optimization procedure involving numerical integration over the MVN.

Expected Thresholds:

\[
\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \quad \left(\begin{bmatrix} T_{MZ11} & T_{MZ12} \\ i_{MZ11} & i_{MZ12} \end{bmatrix} \right) = \left(\begin{bmatrix} T_{MZ11} \\ T_{MZ21} \end{bmatrix} + i_{MZ11} \right) \left(\begin{bmatrix} T_{MZ12} \\ T_{MZ22} \end{bmatrix} + i_{MZ12} \right)
\]

Note: this only works if the increments are **POSITIVE values**, therefore a **BOUND** statement around the increments are necessary.
\[
\begin{pmatrix}
\text{T}_{\text{MZ11}} & \text{T}_{\text{MZ12}} \\
\text{i}_{\text{MZ11}} & \text{i}_{\text{MZ12}}
\end{pmatrix} =
\begin{pmatrix}
.8 & .8 \\
1 & 1
\end{pmatrix}
\begin{pmatrix}
\text{(-3 to 3)} & \text{(-3 to 3)} \\
\text{(.001 to 3)} & \text{(.001 to 3)}
\end{pmatrix}
\]

The positive bounds on the increments stop the thresholds going ‘backwards’, i.e. they preserve the ordering of the categories.

Z-value Th1 = .84
Z-value Th2 = 1.75
RUN SUBMODELS

SubModel 1: Thresholds across Twins within zyg group are equal

```r
Sub1Model <- mxModel(SatModel, name="sub1")
Sub1Model <- omxSetParameters( Sub1Model, 
labels=c("Tmz11", "imz11", "Tmz12", "imz12"), newlabels=c("Tmz11", "imz11", "Tmz11", "imz11"), ...
```

SubModel 3: Thresholds across Twins & zyg group are equal

```r
Sub3Model <- mxModel(Sub1Model, name="sub3")
Sub3Model <- omxSetParameters( Sub3Model, 
labels=c("Td1z11", "idz11", "Td1z12", "idz12"), newlabels=c("Tmz11", "imz11", "Tmz11", "imz11"), ...
```

omxSetParameters: function to modify the attributes of parameters in a model
Without having to re-specify the model
ACE MODEL with one overall set of Thresholds
pathA <- mxMatrix(type="Full", nrow=1, ncol=1, free=TRUE, values =.6, label="a11", name="a")
pathC <- mxMatrix(type="Full", nrow=1, ncol=1, free=TRUE, values =.6, label="c11", name="c")
pathE <- mxMatrix(type="Full", nrow=1, ncol=1, free=TRUE, values =.6, label="e11", name="e")

Algebra for Matrices to hold A, C, and E Variance Components
covA <- mxAlgebra(expression=a %*% t(a), name="A")
covC <- mxAlgebra(expression=c %*% t(c), name="C")
covE <- mxAlgebra(expression=e %*% t(e), name="E")
covP <- mxAlgebra(expression=A+C+E, name="V")

Constrain Total variance of the liability to 1
matUnv <-mxMatrix(type="Unit", nrow=nv, ncol=1, name="Unv")
varL <-mxConstraint(expression=diag2vec(V)==Unv, name="VarL")
Practical

• Run first part of the script up to sub3Model
 • What are the conclusions about the thresholds, i.e. what is the best model?
 • What kind of Genetic model would you run on this data given the correlations?

• Run the ACE model and check the parameter estimates (with 95% CI)
<table>
<thead>
<tr>
<th>MODEL</th>
<th>ep</th>
<th>-2LL</th>
<th>df</th>
<th>Δχ²(df)</th>
<th>P-val</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 All TH free</td>
<td>10</td>
<td>2202.7</td>
<td>1998</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2 Sub1: TH tw1=tw2 in MZ</td>
<td>8</td>
<td>2203.8</td>
<td>2000</td>
<td>1.01 (2)</td>
<td>.61 ns</td>
</tr>
<tr>
<td>3 Sub2: TH tw1=tw2 in DZ</td>
<td>8</td>
<td>2206.0</td>
<td>2000</td>
<td>3.24 (2)</td>
<td>.20 ns</td>
</tr>
<tr>
<td>4 Sub3: One overall TH</td>
<td>4</td>
<td>2211.1</td>
<td>2004</td>
<td>8.40 (6)</td>
<td>.21 ns</td>
</tr>
</tbody>
</table>

1 Thresh/Inc: MZ tw1 = .94, .84
DZ tw1 = .75, .91

2 Thresh/Inc: MZ = .95, .78
DZ tw1 = .75, .91

3 Thresh/Inc: MZ tw1 = .94, .84
DZ = .80, .81

4 Thresh/Inc: .86, .79

The Twin correlations for model 4 are:

\[r_{MZM} = 0.82 \, (0.74 - 0.87) \quad r_{DZM} = 0.44 \, (0.30 - 0.56) \]
ACE Estimates for the ordinalized CAST score in Boys at age 8

<table>
<thead>
<tr>
<th></th>
<th>h²</th>
<th>c²</th>
<th>e²</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE</td>
<td>0.76</td>
<td>0.06</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>(0.48/0.87)</td>
<td>(0/0.31)</td>
<td>(0.13/0.26)</td>
</tr>
</tbody>
</table>

Model 1: Name ep -2LL df AIC
ACE 5 2211.14 2004 -1796.86
Age Effects on Thresholds

• The effect of covariates like Age can be modelled in the Threshold model, similarly to the means model.
• An example script is added to the folder in which Age is incorporated and its effects modelled in the thresholds (Age Regression on TH.R).

\[
\begin{pmatrix}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{pmatrix} + \begin{pmatrix}
\text{BageTH}*\text{Age1} \\
\text{BageTH}*\text{Age2}
\end{pmatrix}
\]

\[
\begin{pmatrix}
T_{11} \\
T_{21} \\
T_{12} \\
T_{22}
\end{pmatrix}
\]