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Supplementary Figures 

 
Supplementary Figure 1: Demographic model for simulated European populations. The demographic model includes an 

ancient population bottleneck, recent exponential growth, differentiation and migration. The model parameters were 

calibrated to mimic populations sampled in continental Europe.  
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Supplementary Figure 2: Comparison of test statistics and p-values in meta-analysis and in joint analysis of individual 

data that allows for heterogeneity in nuisance parameters. We considered three different association tests: a simple burden 

test grouping variants with MAF < 1% (burden-1) (Panel A and D), variable threshold tests (VT) (Panel B and E) and 

tests allowing for variants with opposite effects (SKAT) (Panel C and F). Three samples of 1000 European-ancestry 

individuals were simulated. Traits were simulated assuming that 50% of the variants in the gene region are causal and that 

each causal variant increases trait means by 0.125 standard deviations. Scatter plots compare our meta-analysis statistics 

(top row) and p-values (bottom row) with those calculated after pooling individual level data. For the VT test (Panel E), 

we compare both asymptotic (blue circles) and empirical p-values (red triangles). Empirical p-values were obtained using 

our Monte-Carlo procedure to generate replicates until 100 simulated statistics exceeded the original observation or 

40,000,000 statistics were simulated.  
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Supplementary Figure 3: Comparison of statistics and p-values for a simple burden test, variable threshold (VT) and 

sequence kernel association test (SKAT) in analysis of pooled samples (X-axis) and in meta-analysis (Y-axis). Three 

samples of 1000 individuals were simulated. The figure is analogous to Supplementary Figure 1 but allows for variants 

with opposite phenotypic effects to reside within each gene. Traits were generated assuming that 50% of the variants are 

causal and that, among these, 80% of the variants increase the trait values by 0.25 standard deviation units and the 

remaining 20% decrease trait values by the same amount.  

.  
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Supplementary Figure 4: Comparison of statistics and p-values for a simple burden test, variable threshold (VT) and 

sequence kernel association test (SKAT) in analysis of pooled samples (X-axis) and in meta-analysis (Y-axis). This Figure 

is analogous to Supplementary Figures 2 and 3, but assumes a random effect for each causal variant, distributed as 

Normal(0.25, 0.01) in standard deviation units.  
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Supplementary Figure 5: Comparison of our Monte-Carlo estimates of p-values in meta-analysis with permutation-

based p-values estimated after pooling individual level data. Traits were generated assuming that 50% of the variants are 

causal and that each causal variant increases the trait values by 0.25 standard deviation units. Empirical p-values in Panel 

A were obtained using the adaptive Monte Carlo procedure in meta-analysis and using permutation in mega-analysis, 

stopping after 100 simulated statistics were greater than the original statistic or the number of simulations exceeded 

40,000,000. In panel B, we stopped only after 400 simulated statistics exceeded the original observation or 160,000,000 

simulations were carried out (demonstrating that accuracy our p-value estimates increases as more replicates are 

generated, as expected).   
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Supplementary Figure 6: Evaluation of our method in settings where there are many very rare alleles. These quantile-

quantile plots show that p-values calculated using our approach are well calibrated even when only singleton alleles are 

analyzed. We simulated quantitative phenotypes from a standard normal distribution. We then analyzed the association 

between these simulated phenotypes and five singleton variants in a sample of 500 individuals. The empirical distribution 

of –log10 transformed p-values was obtained using 10,000 replicates and plotted against their theoretical expectations. 

Results are displayed for (A) single site association test statistics, (B) burden tests, (C) the variable threshold test and (D) 

the SKAT test.  
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Supplementary Figure 7: Power comparison for our approach, Fisher’s method and the minimal p-value approach. Three 

phenotype models were simulated: half of low frequency variants with MAF < 0.5% are causal, each increasing expected 

trait values by 1/4 standard deviation (Panels A, B, C); half of all variants are causal, irrespective of frequency, and 

increase trait values by 1/4 standard deviation (Panels D, E, F); 50% of the variants are casual, irrespective of frequency, 

and 80% of these increase expected trait values by 1/4 standard deviation, while the remaining 20% decrease trait values 

by the same amount (Panels G, H, I). Between 2 and 100 studies of 1000 individuals each were simulated. Meta-analysis 

for variants with MAF<5% was performed using our approach or using Fisher’s method and the minimal p-value 

approach to combine burden test, SKAT and variable threshold (VT) test statistics. Power was evaluated at threshold 

α=2.5×10
-6

 using 10,000 replicates. Note that differences between our approach and these alternatives become more 

marked when more studies are meta-analyzed. 
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Supplementary Figure 8: Comparison of meta-analysis and analysis of pooled individual data in the presence of between 

study heterogeneity. We evaluated three analysis plans using genotype data from the MDC and HUNT studies and 

simulated phenotype under the null hypothesis. For the MDC study, we simulated phenotypes from the distribution N(0,1) 

and for HUNT study, we simulated phenotypes from a distribution with a shifted mean value, N(0.2,1). Gene-level 

association analysis was performed for variants with MAF < 5% in each gene using burden (Panels A, D, G), variable 

threshold (Panels B, E, H) and SKAT tests (Panels C, F, I). We evaluate our meta-analysis approach (panels A-C), and 

analyses of pooled data that allow for study specific nuisance parameters (panels D-F), both of which performed well. We 

also considered a naïve analysis strategy, where analysis proceeded directly after pooling of individual level data without 

using study specific nuisance parameters (G-I), this resulted in markedly inflated test statistics.   
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Supplementary Figure 9: Power comparison for our approach, Fisher’s method, weighted Fisher’s method and the 

minimal p-value approach. Power was compared using genotype data from the MDC and HUNT studies. In each 

replicate, one gene from the dataset was analyzed. Three phenotype models were simulated: (A) half of low frequency 

variants with MAF < 0.5% are causal, each increasing expected trait values by 1/4 standard deviation; (B) half of all 

variants are causal, irrespective of frequency, and increase trait values by 1/4 standard deviation; (C) 50% of the variants 

are casual, irrespective of frequency, and 80% of these increase expected trait values by 1/4 standard deviation, while the 

remaining 20% decrease trait values by the same amount and  Meta-analysis was performed using either our approach, 

Fisher’s method, a modified Fisher’s method taking into account unequal sample sizes and the minimal p-value approach 

to combine burden test, SKAT and variable threshold (VT) test statistics for variants with MAF<5%.  Power was 

evaluated based upon 16,153 genes in the dataset using a significance threshold of α=3.1×10
-6

.  
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Supplementary Figure 10: Quantile-Quantile plot of p-values for single variant meta-analysis. Log-transformed 

observed and expected p-values are displayed for high density lipoprotein cholesterol (panels A-B), low density 

lipoprotein cholesterol (C-D) and triglyceride levels (E-F), either using all variants (left column) or variants with MAF < 

5% (right column).  
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Supplementary Figure 11 (Part 1 of 3): Quantile-quantile plot of p-values for gene-level meta-analysis. Log-

transformed observed and expected p-values are displayed for high density lipoprotein cholesterol (panels A-E), low 

density lipoprotein cholesterol (F-J) and triglyceride levels (K-O). 
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Supplementary Figure 11 (Part 2 of 3):
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Supplementary Figure 11 (Part 3 of 3):
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Supplementary Figure 12: Comparison of meta-analysis and analysis of pooled individual level data in the Malmö Diet 

and Cancer Study (MDC) and Ottawa Heart Study. LDL-cholesterol values in both cohorts were standardized using an 

inverse-normal transformation. Summary statistics were generated for both cohorts and meta-analyses were performed 

combining summary statistics from the two studies. As a comparison, analysis of pooled individual data was also 

performed. Scatter plots of -log10(p-values) from meta-analysis and mega-analysis of burden, VT and SKAT test are 

shown in panels (A-C), while the scatter plots for the test statistics are shown in panels (D-F). Note that applying the 

inverse-normal transformation to residuals in each study separately guards against potential artifacts due to heterogeneity 

between studies.   
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Supplementary Figure 13: Quantile-quantile (QQ) plot for log-transformed p-values comparing the distribution of p-

values in a conditional analysis (on the left) and an unconditional analysis (on the right). One hundred samples were 

simulated. In each simulation, a single common variant (with MAF>10%) was marked as causal, increasing expected trait 

values by 0.25 standard deviation units. A series of rare variant association analysis were then carried out, with (left) or 

without (right) conditioning on the effect of this common variant, and panels A-B/C-D/E-F displaying QQ plots of –

log10(p-values) form burden/VT/SKAT tests. The result clearly shows that, without conditioning, rare variant association 

test statistics are inflated. 
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Supplementary Figure 14: APOE region: comparison of conditional analysis in our meta-analysis framework and 

conditional analysis using pooled individual level data, in the MDC and Ottawa studies. LDL-cholesterol values in each 

cohort were standardized using an inverse-normal transformation. Summary statistics were generated for MDC and 

Ottawa cohorts. Conditional association analysis was performed in the pooled sample by controlling for the most 

significant single nucleotide polymorphism (rs7412) in APOE. Conditional evidence for association at sixty-six genes 

within 1Mb of rs7412 was evaluated, either using our meta-analysis approach (X axis) or by analyzing pooled individual 

level data directly (Y axis). The genes examined were TOMM40, APOE, OPA3, ERCC1, MARK4, FOSB, PVRL2, CKM, 

CLPTM1, RTN2, ZNF155, ZNF230, ZFP112, ZNF225, ZNF223, ZNF221, ZNF222, DMPK, ZNF45, CEACAM19, 

CLASRP, BCL3, EML2, SIX5, GEMIN7, PPP1R13L, FBXO46, PVR, CBLC, LOC100379224, ZNF227, ZNF235, ZNF285, 

CEACAM20, ZNF296, NKPD1, TRAPPC6A, BLOC1S3, KLC3, PPM1N, IRF2BP1, MYPOP, ERCC2, ZNF226, CD3EAP, 

GIPR, ZNF180, DMWD, BCAM, SYMPK, ZNF229, RSPH6A, ZNF234, VASP, APOC4, APOC1, FOXA3, EXOC3L2, 

RELB, ZNF224, APOC4-APOC2, APOC2, CEACAM16, ZNF284, QPCTL, ZNF233. Scatter plots of -log10(p-values) from 

meta-analysis and mega-analysis of burden, VT and SKAT tests are shown in panels (A-C), while the scatter plots for the 

test statistics are shown in panels (D-F). 
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Supplementary Figure 15: LDLR region: comparison of conditional analysis in our meta-analysis framework and 

conditional analysis using pooled individual level data, in the MDC and Ottawa studies. LDL-cholesterol values in each 

cohort were standardized using an inverse-normal transformation. Summary statistics were generated for MDC and 

Ottawa cohorts. Conditional association analysis was performed in the pooled sample conditional on three common single 

nucleotide polymorphism (rs6511720, rs2228671 and rs72658855) in gene LDLR that attain significant evidence for 

association. A total of 59 genes within 1Mb of these top 3 SNPs were analyzed, either using our meta-analysis approach 

(X axis) or by analyzing pooled individual level data directly (Y axis). Test statistics were evaluated at DNM2, S1PR5, 

LOC55908, ZNF844, CCDC151, TYK2, ZNF440, ZNF491, CNN1, SLC44A2, SMARCA4, KEAP1, ICAM3, KANK2, 

ICAM1, RAVER1, EPOR, ICAM4, ZNF439, ILF3, DNMT1, PRKCSH, TMED1, KRI1, QTRT1, C19orf38, C19orf52, 

SPC24, TMEM205, C19orf39, ECSIT, ZNF441, ZNF69, ZNF700, ZNF433, AP1M2, TSPAN16, ACP5, RGL3, LDLR, 

YIPF2, CDKN2D, S1PR2, ZGLP1, ZNF653, LPPR2, DOCK6, PDE4A, ZNF627, CCDC159, ATG4D, RAB3D, CARM1, 

ICAM5, MRPL4, ZNF823, FDX1L, ZNF763, ZNF878. Scatter plots of -log10(p-values) from meta-analysis and mega-

analysis using burden, VT and SKAT tests are shown in panels (A-C), while the scatter plots for the test statistics are 

shown in panels (D-F). 
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Supplementary Tables 

 

Supplementary Table 1: Evaluation of type I error rates for meta-analysis methods. Type I error rates were evaluated for 

three rare variant tests (burden-1: a simple burden test group variants with <1% frequency, VT: a variable threshold 

association test, SKAT-1: a sequence kernel association test focused on variants with frequency <1% and allowing for 

variants with opposite effects to reside in the same gene). Significance levels α=0.001, 0.0001, and 2.5×10
-6

 were 

considered. Data were generated for meta-analysis of 3, 6 and 9 samples of 1000 individuals. The type I error estimates 

are based upon 5×10
7 
null simulations. 

  

Number of Studies Burden-1 VT SKAT-1 

α=1×10
-3 

3 9.9×10
-4

 1.0×10
-3

 9.4×10
-4

 

6 1.0×10
-3

 1.0×10
-3

 9.8×10
-4

 

9 1.0×10-3 1.0×10-3 1.0×10-3 

α=1×10
-4

 

3 9.9×10
-5

 1.1×10
-4

 9.2×10
-5

 

6 1.1×10
-4

 1.2×10
-4

 9.9×10
-5

 

9 1.0×10
-4

 1.1×10
-4

 9.9×10
-5

 

α=2.5×10
-6

 

3 2.2×10
-6

 2.6×10
-6

 2.5×10
-6

 

6 2.4×10
-6

 2.6×10
-6

 2.6×10
-6

 

9 2.2×10
-6

 1.6×10
-6

 2.2×10
-6
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Supplementary Table 2: Summary trait and variant information. In each study, medians and interquartile ranges are tabulated for age, sex and lipid traits, 

together with the number of genotyped non-synonymous and loss-of-function variants. Participating studies were the Malmo Diet and Cancer (MDC) study, the 

Ottawa Heart study, the Women’s Health Initiative Sequencing Project (WHISP), Procardis and HUNT. Genotyped samples in Procardis and HUNT are separated 

into heart disease cases and controls.   

 

Study 

Age HDL LDL TG 

Total 

Number of 

Individuals 

Proportion 

of Males 

Number of Variants 

Median (Interquartile Range) Lipids Level (mg/dL) All 

Nonsynonymous 

+ 

Loss of Function 

Nonsynonymous 

+ 

Loss of 

Function, MAF 

<1% 

Malmo Diet and Cancer 58 (10.4) 51.4 (18.9) 158.3 (50.2) 102.7 (65.5) 4924 40.8% 130,621 111,127 90,317 

Ottawa Heart Study 72 (13.1) 50.6 (20.9) 139.4 (48.3) 121.2 (100.0) 2938 60.0% 116,173 97,628 77,866 

WHISP European 

Americans 
68 (7.0) 56.0 (22.0) 140.2 (48.1) 139.0 (87.0) 2031 0.0% 110,678 91,998 70,421 

PROCARDIS (Cases) 58 (10.0) 46.0 (17.0) 142.0 (54.3) 159.0 (120.0) 2070 48.9% 97,887 79,551 58,864 

PROCARDIS (Controls) 66 (7.0) 53.9 (20.5) 129.9 (42.2) 123.1 (88.5) 1299 62.1% 105,255 86,639 66,114 

HUNT (Cases) 66(18.0) 46.3(15.4) 162.2(57.9) 177 (123.9) 2659 65.5% 90,340 72,866 52,133 

HUNT (Controls) 65(19.0) 50.2(19.3) 154.4(54.1) 141.6 (86.7) 2778 66.1% 91,902 74,366 53,682 
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Supplementary Table 3 Variants sites shared between studies, by frequency. The number of shared variant nucleotide sites are displayed respectively for each 

pair of studies and for variant sites with MAF > 1% and with MAF≤ 1%. Tabulated studies include the Malmo Diet and Cancer (MDC) study, the Ottawa Heart 

Study (Ottawa), European American Samples from the WHISP study, and case and control samples from Procardis and HUNT. 

 

 

MDC Ottawa 

WHISP 

European 

Americans 

PROCARDIS 

(Cases) 

PROCARDIS 

(Controls) 

HUNT 

(Cases) 

HUNT 

(Controls) 

 Variants with MAF > 1% 

MDC  36,520   33,546   34,414   34,925   34,903   34,263   34,251  

Ottawa     34,981   34,472   34,311   34,265   33,178   33,183  

WHISP European Americans        37,256   35,090   35,020   33,942   33,929  

PROCARDIS (Cases)           36,484   35,609   34,370   34,390  

PROCARDIS (Controls)              36,283   34,317   34,327  

HUNT (Cases)                 36,140   35,516  

HUNT (Controls)        36,098  

 Variants with MAF ≤ 1% 

MDC  94,101   57,932   53,613   48,682   53,051   44,583   45,773  

Ottawa     81,192   55,396   47,528   52,283   39,414   40,493  

WHISP European Americans        73,422   43,892   47,858   36,627   37,614  

PROCARDIS (Cases)           61,403   45,837   35,867   36,670  

PROCARDIS (Controls)              68,972   38,204   39,061  

HUNT (Cases)                 54,200   45,054  

HUNT (Controls)        55,804  
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Supplementary Table 4: Results for single variant meta-analysis. Loci that are statistically significant after Bonferroni correction (with p < 3×10
-7

) are shown. In 

each locus, p-value, annotation, reference and alternative allele, alternative allele frequency as well as genetic effect estimate and standard deviation are displayed 

for the variant with the most significant p-value.  

 

Gene 

Gene 

Positiona P-value rs# Annotation Ref/Alt 

Frequency 

for 

Alt Allele 

Estimated Effect 

Size for Alt Allele 

(in standard 

deviation units) 

Standard Error 

for  

Estimated Effect 

(in standard  

deviation units) 

HDL 

LPL chr8:19.8Mb 1.17×10-18 rs268 Nonsynonymous A/G .025 -0.296 .001129 

ANGPTL4 chr19:8.4Mb 3.61×10-18 rs116843064 Nonsynonymous G/A .026 0.281 .001045 

LIPG chr18:47.1Mb 7.26×10-15 rs77960347 Nonsynonymous A/G .013 0.348 .002006 

CD300LG chr17:41.9Mb 3.00×10-10 rs72836561 Nonsynonymous C/T .033 -0.182 .000830 

LIPC chr15:58.9Mb 5.10×10-10 rs113298164 Nonsynonymous C/T .0037 0.536 .007425 

APOB chr2:21.2Mb 2.24×10-9 rs533617 Nonsynonymous T/C .040 0.159 .000709 

HNF4A chr20:43.0Mb 2.64×10-7 rs1800961 Nonsynonymous C/T .041 -0.134 .000680 

LDL 

PCSK9 chr1:55.5Mb 2.60×10-28 rs11591147 Nonsynonymous G/T .013 -0.511 .002146 

BCAM chr19:45.3Mb 2.64×10-24 rs28399653 Nonsynonymous G/A .035 -0.290 .000810 

CBLC chr19:45.3Mb 2.99×10-22 rs3208856 Nonsynonymous C/T .037 -0.270 .000774 

PVR chr19:45.2Mb 1.71×10-9 rs1058402 Nonsynonymous G/A .049 -0.146 .000586 

APOB chr2:21.2Mb 6.70×10-9 rs5742904 Nonsynonymous C/T .00063 1.211 .043597 

TG 

ANGPTL4 chr19:8.4Mb 8.55×10-24 rs116843064 Nonsynonymous G/A .027 -0.325 .001043 

LPL chr8:19.8Mb 1.70×10-19 rs268 Nonsynonymous A/G .025 0.302 .001120 

APOB chr2:21.2Mb 1.81×10-10 rs533617 Nonsynonymous T/C .040 -0.170 .000708 

a. Gene position is defined based upon hg19, GRCh37 Genome Reference Consortium Human Reference 37 
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Supplementary Table 5 (Part 1 of 3): Comparison of meta-analysis and analysis of individual studies for gene-level tests. Results for six rare variant tests are 

shown (burden-5: a simple burden test group variants with <5% or <1% frequency, VT: a variable threshold association test, SKAT-5: a sequence kernel 

association test focused on variants with <5% or <1% frequency and allowing for variants with opposite effects to reside in the same gene). For tests that assume 

that model the average effect of variants in a gene, a + or – sign indicates whether these variants raised (+) or lowered (-) trait levels on average. Overall, the 

results show that, for these genes, meta-analysis results in a substantially stronger signal than analysis of any single sample and that the direction of effect for these 

top signals is generally consistent across studies. Study abbreviations are as in previous tables. 

 

Gene 
Meta 

Analysis 
MDC Ottawa WHISP 

PROCARD

IS (Cases)  

PROCARD

IS 

(Controls) 

HUNT  

(Cases) 

HUNT 

(Controls) 

Burden-5 

HDL 

LPL 2×10-24/- 5×10-11/- 4×10-5/- 0.007/- 5×10-4/- 0.004/- 0.002/- 0.001/- 

ANGPTL4 3×10-19/+ 2×10-5/+ 2×10-6/+ 0.04/+ 0.1/+ 0.006/+ 0.03/+ 4×10-6/+ 

LIPG 6×10-19/+ 1×10-8/+ 0.03/+ 0.2/+ 0.003/+ 0.04/+ 5×10-7/+ 0.001/+ 

HNF4A 3×10-7/- 0.009/- 5×10-4/- 0.003/- 0.7/+ 0.002/- 0.8/- 0.08/- 

LIPC 4×10-7/+ 8×10-4/+ 0.4/+ 0.4/+ 0.5/+ 0.3/+ 0.007/+ 9×10-4/+ 

CD300LG 8×10-7/- 0.04/- 0.002/- 0.1/- 0.8/+ 0.09/- 0.7/- 1×10-4/- 

LDL 

PCSK9 7×10-19/- 5×10-5/- 1×10-9/- 5×10-7/- 0.02/- 0.001/- 0.02/- 0.06/- 

BCAM 2×10-18/- 6×10-6/- 0.4/- 0.02/- 0.01/- 0.01/- 0.03/- 3×10-6/- 

CBLC 2×10-15/- 3×10-7/- 0.1/- 0.3/- 0.2/- 5×10-5/- 0.002/- 2×10-4/- 

PVR 3×10-10/- 2×10-5/- 0.02/- 0.05/- 0.01/- 0.2/- 0.1/+ 0.3/- 

TG 

ANGPTL4 1×10-24/- 3×10-6/- 9×10-6/- 2×10-6/- 0.01/- 0.005/- 0.002/- 2×10-6/- 

LPL 8×10-20/+ 1×10-9/+ 0.001/+ 5×10-4/+ 0.001/+ 0.2/+ 0.04/+ 5×10-5/+ 
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Supplementary Table 5 (Part 2 of 3). 

Gene 
Meta 

Analysis 
MDC Ottawa WHISP 

PROCARD

IS (Cases)  

PROCARD

IS 

(Controls) 

HUNT  

(Cases) 

HUNT 

(Controls) 

SKAT-5 

HDL 

ANGPTL4 3×10-19/+ 5×10-5/+ 2×10-6/+ 0.03/+ 0.02/+ 0.03/+ 0.04/+ 7×10-6/+ 

LPL 5×10-13/- 8×10-6/- 0.003/- 0.08/- 0.07/- 0.1/- 0.1/- 0.05/- 

LIPG 3×10-9/+ 3×10-4/+ 0.04/+ 0.4/+ 0.03/+ 0.2/+ 0.002/+ 0.07/+ 

HNF4A 3×10-7/- 0.009/- 4×10-4/- 0.003/- 0.8/+ 0.003/- 0.8/- 0.08/- 

LDL 

PCSK9 6×10-17/- 8×10-4/- 4×10-7/- 3×10-9/- 0.003/- 3×10-5/- 0.2/- 0.1/- 

TG 

ANGPTL4 4×10-25/- 4×10-6/- 8×10-6/- 8×10-6/- 0.006/- 0.02/- 0.005/- 1×10-5/- 

LPL 2×10-11/+ 5×10-7/+ 0.02/+ 0.02/+ 0.1/+ 0.3/+ 0.2/+ 0.02/+ 
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Supplementary Table 5 (Part 3 of 3). 

VT 

HDL 

LPL 1×10-23/- 1×10-10/- 2×10-4/- 0.02/- 0.002/- 0.02/- 0.006/- 0.003/- 

ANGPTL4 2×10-18/+ 1×10-4/+ 2×10-5/+ 0.1/+ 0.4/- 0.02/+ 0.07/+ 2×10-5/+ 

LIPG 4×10-18/+ 6×10-8/+ 0.04/- 0.4/- 0.01/+ 0.1/+ 1×10-6/+ 0.003/+ 

LIPC 4×10-12/+ 0.003/- 0.2/- 0.5/- 0.8/- 0.7/- 1×10-4/- 4×10-7/- 

LDL 

PCSK9 2×10-28/- 2×10-5/- 3×10-9/- 2×10-6/- 0.001/- 9×10-6/- 0.08/- 0.008/- 

BCAM 3×10-17/- 9×10-5/- 0.7/- 0.007/- 0.01/- 0.003/- 0.07/- 4×10-6/- 

CBLC 1×10-14/- 7×10-7/- 0.4/- 0.06/+ 0.06/- 3×10-4/- 0.01/- 0.001/- 

PVR 1×10-9/- 8×10-5/- 0.08/- 0.2/- 0.06/- 0.3/- 0.3/+ 0.7/+ 

LDLR 2×10-7/+ 0.1/- 0.001/- 0.2/- 5×10-4/- 0.1/- 0.03/- 0.008/- 

TG 

ANGPTL4 7×10-24/- 1×10-5/- 5×10-5/- 6×10-6/- 0.04/+ 0.01/- 0.005/- 7×10-6/- 

LPL 5×10-19/+ 4×10-9/+ 0.006/+ 0.001/+ 0.005/+ 0.6/+ 0.06/- 2×10-4/+ 

 

Burden-1 

HDL 

LIPC 1×10-12/+ 0.004/+ 0.05/+ 0.2/+ 0.7/+ 0.8/+ 4×10-5/+ 1×10-7/+ 

 

SKAT-1 

HDL 

LIPC 2×10-9/+ 0.07/+ 0.1/+ 0.08/+ 0.7/+ 0.8/+ 0.001/+ 3×10-5/+ 
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Supplementary Table 6: Comparison of gene-level test results with single variant association tests. For each locus identified using gene-level association tests, 

we show the rs number, ref/alt allele, alt allele frequency and p-value for the variant site that displays the most significant p-value. The loci where one or more 

gene-based association signal exceeds the top single variant association signal are labeled with an asterisk.  

Gene Burden-1 
Burden-

5 
SKAT-1 SKAT-5 VT 

MAF 

Cutoff 

Top Single Variant Association(MAF<5%) 

rs Number Ref/Alt p-value AF 

HDL 

LIPC* 1.4×10-12 3.5×10-7 1.8×10-9 1.4×10-2 4.5×10-12 3.7×10-3 rs113298164 C/T 5.1×10-10 3.68×10-3 

LPL* 0.97 2.5×10-24 0.35 5.0×10-13 1.5×10-23 0.025 rs268 A/G 1.2×10-18 0.025 

ANGPTL4* 0.022 2.9×10-19 0.022 3.0×10-19 1.8×10-18 0.026 rs116843064 G/A 3.6×10-18 0.027 

LIPG* 2.2×10-5 6.4×10-19 2.1×10-5 2.9×10-9 4.4×10-18 0.013 rs77960347 A/G 7.3×10-15 0.014 

HNF4A 0.74 2.8×10-7 0.68 2.5×10-7 1.5×10-6 0.041 rs1800961 C/T 2.6×10-7 0.041 

CD300LG 0.49 8.5×10-7 0.52 1.0×10-5 3.1×10-6 0.033 rs72836561 C/T 3.0×10-10 0.033 

LDL 

PCSK9* 1.8×10-2 7.4×10-19 0.081 5.5×10-17 2.0×10-28 0.013 rs11591147 G/T 2.6×10-28 0.013 

BCAM 0.17 1.6×10-18 0.15 3.0×10-5 2.6×10-17 0.036 rs28399653 G/A 2.6×10-24 0.035 

CBLC 0.94 2.0×10-15 0.44 1.5×10-4 1.0×10-14 0.044 rs3208856 C/T 3.0×10-22 0.037 

PVR 0.061 3.0×10-10 0.048 0.063 1.1×10-9 0.049 rs1058402 G/A 1.7×10-9 0.049 

LDLR* 1.8×10-3 4.7×10-5 0.038 0.25 2.4×10-7 5.2×10-4 rs139791325 G/A 7.68×10-4 5.2×10-4 

TG 

ANGPTL4* 0.026 1.2×10-24 0.037 3.9×10-25 7.1×10-24 0.026 rs116843064 G/A 8.6×10-24 0.027 

LPL* 0.68 7.7×10-20 0.26 1.8×10-11 4.6×10-19 0.025 rs268 A/G 1.7×10-19 0.025 
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Supplementary Table 7: Results of meta-analysis of gene-level association using our approach and Fisher’s method for combining p-values. Meta-analysis were 

carried out for a simple burden test, for a SKAT test using 1% and 5% allele frequency cutoffs, and for the variable threshold (VT) test that analyzes variants with 

MAF<5%. Significant p-values (using a threshold of 3.1×10-6) are displayed in bold.  

 

Gene 

Burden-1 Burden-5 SKAT-1 SKAT-5 VT 

Fisher 

Our 

Approach Fisher 

Our 

Approach Fisher 

Our 

Approach Fisher 

Our 

Approach Fisher 

Our 

Approach 

HDL 

LIPC 8.0×10
-10

 1.4×10
-12

 .05 3.5×10
-7

 2.1×10
-7

 1.8×10
-9

 .16 .014 1.2×10
-8

 4.5×10
-12

 

LPL .41 .97 7.9×10
-21

 2.5×10
-24

 .49 .35 3.6×10
-8

 5.0×10
-13

 .22 1.5×10
-23

 

ANGPTL4 .14 .022 2.7×10
-16

 2.9×10
-19

 .39 .022 2.3×10
-14

 3.0×10
-19

 .11 1.8×10
-18

 

LIPG 5.5×10
-4

 2.2×10
-5

 2.2×10
-16

 6.4×10
-19

 3.5×10
-3

 2.1×10
-5

 2.2×10
-6

 2.9×10
-9

 1.9×10
-3

 4.4×10
-18

 

HNF4A .73 .75 1.1×10
-6

 2.8×10
-7

 .72 .68 1.7×10
-6

 2.5×10
-7

 .72 1.5×10
-6

 

CD300LG .99 .49 2.1×10
-5

 8.5×10
-7

 .99 .52 4.0×10
-3

 1.0×10
-5

 1.0 3.1×10
-6

 

LDL 

PCSK9 5.8×10
-3

 .018 2.3×10
-16

 7.4×10
-19

 5.6×10
-3

 .081 5.4×10
-7

 5.5×10
-17

 5.7×10
-4

 2.0×10
-28

 

BCAM .46 .17 5.6×10
-16

 1.6×10
-18

 .67 .15 3.8×10
-3

 3.0×10
-5

 .62 2.6×10
-17

 

CBLC .056 .94 2.0×10
-13

 2.0×10
-15

 .23 .44 .05 1.5×10
-4

 .19 1.0×10
-14

 

PVR .045 .061 1.5×10
-3

 3.0×10-10 .054 .048 .63 .063 .24 1.1×10-9 

LDLR 2.9×10
-5

 1.8×10
-3

 2.3×10
-3

 4.7×10
-5

 7.5×10
-4

 .038 .92 .25 3.5×10
-5

 2.4×10
-7

 

TG 

ANGPTL4 .28 .026 1.6×10
-21

 1.2×10
-24

 .24 .037 7.7×10
-21

 3.9×10
-25

 .18 7.1×10
-24

 

LPL .60 .68 2.7×10
-17

 7.7×10
-20

 .13 .26 8.5×10
-9

 1.8×10
-11

 .12 4.6×10
-19

 

Nature Genetics: doi:10.1038/ng.2852



10 

 

Supplementary Table 8: Results of meta-analysis of gene-level association using our method and a weighted version of Fisher’s method. P-values are displayed 

for meta-analysis of a simple burden test, the SKAT test using 1% and 5% allele frequency cutoffs, and a variable threshold (VT) test that analyzes variants with 

MAF<5%. Significant p-values (using a threshold of 3.1×10-6) are displayed in bold.  

 

Gene 

Burden-1 Burden-5 SKAT-1 SKAT-5 VT 

Weighted 

Fisher 

Our 

Approach 

Weighted 

Fisher 

Our 

Approach 

Weighted  

Fisher 

Our 

Approach 

Weighted 

Fisher 

Our 

Approach Weighted Fisher 

Our 

Approach 

HDL 

LIPC 1.5×10
-9

 1.4×10
-12

 .057 3.5×10
-7

 1.2×10
-5

 1.8×10
-9

 .052 .014 2.7×10
-7

 4.5×10
-12

 

LPL .50 .97 2.3×10
-21

 2.5×10
-24

 .58 .35 2.6×10
-9

 5.0×10
-13

 8.2×10
-19

 1.5×10
-23

 

ANGPTL4 .12 .022 8.4×10
-16

 2.9×10
-19

 .42 .022 7.8×10
-14

 3.0×10
-19

 2.5×10
-13

 1.8×10
-18

 

LIPG 1.3×10
-4

 2.2×10
-5

 5.7×10
-17

 6.4×10
-19

 1.2×10
-3

 2.1×10
-5

 1.2×10
-5

 2.9×10
-9

 3.6×10
-14

 4.4×10
-18

 

HNF4A .74 .75 1.6×10
-5

 2.8×10
-7

 .75 .68 1.7×10
-5

 2.5×10
-7

 1.9×10
-4

 1.5×10
-6

 

CD300LG .97 .49 3.7×10
-5

 8.5×10
-7

 .95 .52 1.7×10
-3

 1.0×10
-5

 5.1×10
-4

 3.1×10
-6

 

LDL 

PCSK9 .0054 .018 7.2×10
-15

 7.4×10
-19

 2.6×10
-3

 .081 2.2×10
-5

 5.5×10
-17

 1.0×10
-18

 2.0×10
-28

 

BCAM .47 .17 4.5×10
-15

 1.6×10
-18

 .66 .15 4.3×10
-3

 3.0×10
-5

 2.0×10
-11

 2.6×10
-17

 

CBLC .11 .94 2.5×10
-14

 2.0×10
-15

 .26 .44 .027 1.5×10
-4

 4.1×10
-12

 1.0×10
-14

 

PVR .13 .061 1.5×10
-4

 3.0×10
-10

 .11 .048 .5 .063 1.5×10
-3

 1.1×10
-9

 

LDLR 2.3×10
-4

 1.8×10
-3

 2.3×10
-3

 4.7×10
-5

 1.4×10
-3

 .038 .89 .25 1.5×10
-5

 2.4×10
-7

 

TG 

ANGPTL4 .32 .026 3.3×10
-19

 1.2×10
-24

 .28 .037 3.4×10
-19

 3.9×10
-25

 1.4×10
-16

 7.1×10
-24

 

LPL .68 .68 7.5×10
-18

 7.7×10
-20

 .18 .26 1.1×10
-10

 1.8×10
-11

 8.4×10
-16

 4.6×10
-19

 

  

Nature Genetics: doi:10.1038/ng.2852



11 

 

Supplementary Table 9: Results of meta-analysis of gene-level association using our approach and the minimum p-value approach. P-values are displayed for 

meta-analysis of a simple burden test, a SKAT test using 1% and 5% allele frequency cutoffs, and a variable threshold (VT) test that analyzes variants with 

MAF<5%. Significant p-values (using a threshold of p<3.1×10-6) are displayed in bold. 

 

 Burden-1 Burden-5 SKAT-1 SKAT-5 VT 

Gene Minimal-P 

Our 

Approach Minimal-P 

Our 

Approach Minimal-P 

Our 

Approach Minimal-P 

Our 

Approach Minimal-P 

Our 

Approach 

HDL 

LIPC 8.7×10
-7

 1.4×10
-12

 .073 3.5×10
-7

 4.1×10
-6

 1.8×10
-9

 .091 .014 4.0×10
-6

 4.5×10
-12

 

LPL .72 .97 3.2×10-
10

 2.5×10
-24

 .87 .35 3.7×10
-5

 5.0×10
-13

 1.1×10
-9

 1.5×10
-23

 

ANGPTL4 .45 .022 1.5×10
-6

 2.9×10
-19

 .51 .022 3.7×10
-5

 3.0×10
-19

 6.6×10
-6

 1.8×10
-18

 

LIPG .012 2.2×10
-5

 9.2×10
-8

 6.4×10
-19

 .06 2.1×10
-5

 2.2×10
-3

 2.9×10
-9

 5.5×10
-7

 4.4×10
-18

 

HNF4A .43 .75 3.8×10
-3

 2.8×10
-7

 .44 .68 3.2×10
-3

 2.5×10
-7

 .013 1.5×10
-6

 

CD300LG .54 .49 2.8×10
-3

 8.5×10
-7

 .62 .52 .028 1.0×10
-5

 .01 3.1×10
-6

 

LDL 

PCSK9 2.2×10
-5

 .018 1.6×10
-5

 7.4×10
-19

 .011 .081 3.4×10
-3

 5.5×10
-17

 8.4×10
-8

 2.0×10
-28

 

BCAM .60 .17 3.7×10
-6

 1.6×10
-18

 .64 .015 .18 3.0×10
-5

 4.5×10
-5

 2.6×10
-17

 

CBLC .11 .94 7.8×10
-7

 2.0×10
-15

 .39 .44 .22 1.5×10
-4

 2.2×10
-6

 1.0×10
-14

 

PVR .23 .061 8.2×10
-4

 3.0×10
-10

 .28 .048 .77 .063 4.5×10
-3

 1.1×10
-9

 

LDLR 3.2×10
-3

 1.8×10
-3

 .019 4.7×10
-5

 .02 .038 .92 .25 8.2×10
-4

 2.4×10
-7

 

TG 

ANGPTL4 .38 .026 1.0×10
-5

 1.2×10
-24

 .44 .037 1.4×10
-6

 3.9×10
-25

 5.0×10
-5

 7.1×10
-24

 

LPL .15 .68 8.8×10
-9

 7.7×10
-20

 .20 .26 8.7×10
-7

 1.8×10
-11

 2.6×10
-8

 4.6×10
-19
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Supplementary Table 10: Results of conditional association analysis for LDL and variants in LDLR. We performed conditional association analysis for variants 

in LDLR, conditioning on 3 common variants (rs6511720, rs2228671 and rs72658855) that are strongly associated in single variant analyses (i.e. with p-value 

<3×10-7). The rs number, reference and alternate alleles, minor allele frequencies, p-values before and after conditioning, estimates of effect size per copy of the 

alternative alleles, and annotation information are displayed for non-synonymous and loss-of-function variants. Gene level association test results are at the bottom 

of the table. 

Single Variant Association Analysis 

RS Ref Alt MAF 
Original 

 P-value  

Conditional 

P-value 

Original 

Effect 

Estimatea 

Conditional 

Effect 

Estimatea 

Annotation 

rs6511720 G T .11 2×10-38 - -0.22 - Intron 

rs2228671 C T .11 4×10-22 - -0.16 - Synonymous 

rs2738459 A C .49 4×10-8 - -0.06 - Intron 

rs11669576 G A .046 8×10-4 0.201 0.08 0.03 Nonsynonymous 

rs139624145 G A .0001 8×10-4 0.001 1.68 1.61 Nonsynonymous 

rs139791325 G A .0005 8×10-4 0.002 0.77 0.7 Nonsynonymous 

rs199774121 C A 3×10-5 0.004 0.002 2.88 3.14 Stop_Gain 

rs144172724 G A 3×10-5 0.024 0.037 2.26 2.11 Nonsynonymous 

rs141673997 G A 3×10-5 0.048 0.056 1.98 1.92 Nonsynonymous 

rs150673992 C T 6×10-5 0.056 0.031 1.35 1.54 Nonsynonymous 

rs28942084 C T 6×10-5 0.151 0.158 1.02 1.01 Nonsynonymous 

rs139043155 T A .0001 0.21 0.241 0.63 0.59 Nonsynonymous 

rs139361635 G A 3×10-5 0.266 0.2 1.11 1.29 Nonsynonymous 

rs143992984 G A 8×10-5 0.358 0.233 0.53 0.7 Nonsynonymous 

rs137853963 G A .0018 0.391 0.212 -0.11 -0.16 Nonsynonymous 

rs13306505 C T 6×10-5 0.511 0.47 0.47 0.51 Nonsynonymous 

rs148698650 G A .0001 0.539 0.585 0.27 0.25 Nonsynonymous 

rs200727689 G A 3×10-5 0.603 0.667 0.52 0.43 Nonsynonymous 

rs5928 G A 3×10-5 0.892 0.851 -0.14 -0.19 Nonsynonymous 

rs146200173 C G .0002 0.997 0.99 0 0 Nonsynonymous 

Gene-level Test 

Gene 
P-value before 

Conditioning 

P-value after 

Conditioning 

MAF cutoff 

before 

conditioning 

MAF cutoff after 

conditioning 

Estimate of Genetic 

Effect Before 

Conditioning
a
  

Estimate of Genetic Effect 

After Conditioning
a 

LDLR 2.4×10-7 4.6×10-7 5.2×10-4 5.2×10-4 0.75 0.73 

a. In standard deviation units. 
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Supplementary Table 11: Results of conditional association analysis for trait LDL and genes BCAM, CBLC and PVR near the APOE locus. We performed 

conditional association analysis conditioning on the top variant (rs7412) in the locus. The p-values before and after conditional analysis for burden test and SKAT 

tests with 5% MAF cutoff and a variable threshold (VT) test that analyzes variant with MAF<5% are shown. The rs number, reference, alternative alleles, p-values 

before and after conditioning on rs7412 were also displayed for each gene.  

Gene 

Burden-5 

 

SKAT-5 

 

VT 

 Top SNP 

Original 

P-value 

Conditional 

P-value 

Original 

P-value 

Conditional 

P-value 

Original 

P-value 

Conditional 

P-value RS# Ref Alt 

Original 

P-value 

Conditional 

P-value 

BCAM 1.57×10-18 .89 3.01×10-5 .42 2.61×10-17 .80 rs28399653 G A 2.64×10-24 .67 

CBLC 1.98×10-15 .02 1.47×10-4 .41 9.99×10-15 .09 rs3208856 C T 2.99×10-22 .76 

PVR 2.97×10-10 .14 6.30×10-2 .62 1.13×10-9 .39 rs1058402 G A 1.71×10-9 .27 

 

  

Nature Genetics: doi:10.1038/ng.2852



14 

 

Supplementary Table 12: Additional conditional association analyses in the APOE and LDLR loci. For the top variant (rs7412) in APOE, we repeated association 

analysis conditioning on rare non-synonymous variants with MAF< 5% in BCAM, CBLC, and PVR. For the top variants (rs6511720, rs2228671 and rs2738459) in 

LDLR, we repeated association analysis conditioning on rare non-synonymous variants in LDLR with MAF<5%. The p-values before and after conditional analysis 

are shown. The rs number, p-values before and after conditional analyses and the variant genotypes that are controlled for are displayed for each gene.  

Gene Variant 
Conditional 

P-Value 

Unconditional 

P-Value 
Variants Conditioned On 

APOE rs7412 3.5×10
-181

 8.2×10
-214

 

BCAM: rs28399653, rs28399654, rs200421757, rs143379896, rs200458600, 

rs199854072, rs139610351, rs138302587, rs199600463, rs149302547, 

rs200947707, rs199922856, rs145626518, rs117737673, rs150798131, 

rs200634102, rs139746192, rs144124876, rs28399626, rs148391498, 

rs28399630, rs9967601, rs141133602 

CBLC: rs3208856, rs35106910, rs149074838, rs114569424, rs116023028, 

rs115775900, rs35457630, rs137908794 

PVR: rs1058402, rs35365841, rs139267469, rs139528439, rs149458939, 

rs142546426 

LDLR rs6511720 4.9×10
-39

 2.0×10
-38

 LDLR: rs139791325, rs11669576, rs139624145, rs144172724, rs141673997, 

rs150673992, rs28942084, rs139043155, rs139361635, rs143992984, 

rs137853963, rs13306505, rs148698650, rs200727689, rs5928, rs146200173 

LDLR rs2228671 9.6×10
-23

 4.1×10
-22

 

LDLR rs2738459 5.3×10
-8

 3.8×10
-8
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Supplementary Note 

 

We describe a framework for meta-analysis of rare variant association tests. The approach starts with meta-analysis of 

single variant association test statistics and then uses these to construct test statistics for genes or other functional units. 

We describe the implementation of several rare variant association tests and strategies for conditional analysis, which can 

provide a useful means of disentangling nearby signals. Finally, we propose a Monte Carlo simulation based strategy to 

evaluate significance levels empirically. The document also includes a brief summary of the simulations carried out in 

preparing our manuscript. 

 

Notation  

We consider constructing joint analysis statistics of rare variant association tests using multiple studies. For simplicity, we 

describe our strategy for analysis of a single gene, but the approach naturally extends to multiple genes. Let J  be number 

of variant nucleotide sites genotyped (using arrays or sequencing) in at least one of the studies. For study k , let 
kN  

denote the number of samples phenotyped and genotyped,
 
and let the vector ( )1, ,, ,

kk N k
Y Y=ky �  denote the quantitative 

trait (or quantitative trait residuals) each with variance 2

kσ . In all analyses reported here, we applied an inverse normal 

transformation to trait residuals prior to analysis. In our preliminary analyses, this transformation reduced the impact of 

non-normally distributed phenotypes and led to better-behaved quantile-quantile plots.  

Within each study, we encode genotype information in a matrix: 

1,1, 1, , 1, ,

,1, , , , ,

,1, , , , ,k k k

k j k J k

i k i j k i J k

N k N j k N J k

X X X

X X X

X X X

 
 
 
 =
 
 
 
 

� �

� � � � �

� �

� � � � �

� �

k
X   

Each entry in matrix 
kjiX ,,  represents the genotype individual i  at site j , coded as the number of alternative alleles 

carried by the individual. We encode missing genotypes in the dataset as the average number of alternative alleles in 

individuals who are genotyped for that marker; alternatively, more advanced imputation algorithms (as implemented in 

MaCH
1
, IMPUTE2

2
 or BEAGLE

3
) could be used. 
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The multi-site genotype for individual i is denoted by the row vector , ,i k•x , and the genotypes for all kN  individuals at 

site j are given by column vector , ,j k•x . For ease of presentation, we define the mean genotype matrix 
k

X , where the 

),( ji -th element is ( ) ki kji NX∑ ,,  and the centered genotype matrix is -
k k

X X .  

 

Summary Statistics 
 

For each study, we first calculate a vector of score statistics ( )
T

=k ku y
k k

X - X  and a corresponding variance-

covariance matrix ( ) ( ) ( )2 2ˆ ˆcov
T

k k k
Nσ σ= =

k k k k k k
V X X - X X - X . Then, to enable meta-analysis, we share the 

following summary statistics between studies: 

a) Score statistics 
ku , which can be meta-analyzed across studies and then combined into gene-level statistics. 

b) The covariance matrix for single variant score statistics 
k

V . This variance-covariance matrix will later allow us 

to calculate the distribution of gene-level statistics that result from combining several single variant score statistics. In 

principle, sharing the full matrix would allow the most flexibility when grouping variants into genes during meta-analysis 

and when executing conditional analyses. In practice, we make two simplifications. First, because the matrix is 

symmetric, we share only its upper triangle. Second, because most gene level tests group nearby variants, we share only 

covariance information for markers <1 Mb apart.  

c) Estimated alternative allele frequencies for each marker ki kjikj NXp 2,,, ∑= , which can be used to decide 

which variants to analyze based on frequency. 

d) Mean and variance for the quantitative trait residuals, for debugging purposes and for quality control in multi-

sample analyses. As usual, these are ki kik NY∑= ,µ̂  and ( ) ki kkik NY∑ −=
2

,

2 ˆˆ µσ . 

e) Genotype call rate and p-values for testing Hardy-Weinberg equilibrium at each variant site, for quality control 

and to aid in variant filtering.  

 

Meta-analysis of Single Variant Association Test Statistics 
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We first combine single variant association test statistics across studies using the Cochran-Mantel-Haenszel method. 

Specifically, we calculate a score statistic at each site as: 

 

••• = ,,,, jjjj VUT  

 

where ∑=• k kjj UU ,,  and ∑=• k kjjjj VV ,,,, . Cochran-Mantel-Haenszel statistics deal gracefully with very rare variants 

because 
kjU , . and 

kjjV ,, remain defined (as zero) even when a variant is monomorphic or missing in a study. For ease of 

presentation, we denote the vector of single variant association tests after meta-analysis as 
k

=∑ ku u . Under the null, 

this vector is distributed as multivariate normal ( )
k

~ MVN ,∑u 0
k

V . 

 

Meta-Analysis of Gene-level Rare-Variant Association Tests 

We consider two major types of rare variant association methods: (i) burden tests that assume all variants in a gene 

influence the trait in the same direction, such as the GRANVIL test by Morris and Zeggini
4
 and (ii) methods that allow 

variants with opposite effects to reside in the same gene, such as the variance component score test implemented in SKAT 

by Wu et al
5
. Below, we show that both types of method can be derived in a regression model, which allows adjusting for 

covariates. Furthermore, we illustrate how the corresponding gene level statistics can be derived from single site meta-

analysis statistics and how the information stored in the variance-covariance matrix is used when evaluating statistical 

significance. 

 

Burden Tests That Assume Variants Have Similar Effect Sizes 

For a simple burden test in study k, the impact of multiple rare variants in a region can be modeled using a shared 

regression coefficient BURDENβ  in a regression model that takes the form:  

 

( ), 0, ,i k k BURDEN BURDEN i kY Cβ β ε•= + +i, ,kx , where ( )2

, ,0~ kki σε Ν   
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( )BURDENC •i, ,kx  is a function that takes genotypes for a single individual as input and returns the rare variant burden for 

the gene being examined. Popular definitions for ( )BURDEN
C •i, ,k

x  include a simple sum statistic and a weighted sum 

statistic ( ) , ,BURDEN j i j kj
C Xω• =∑i, ,kx , where 

jω  is the weight assigned to variant j according to its allele frequency or 

its computationally predicted functional impact
6,7

. Note that in this regression model, we allow the intercept 
k,0β and 

residual error 
2

kσ  to vary between studies, but assume that BURDENβ  is shared across studies. For convenience of notation, 

we define a vector of nuisance parameters ( )2

0, ,
k k

β σ=kθ  and ( ), ,= 1 Kθ θ�θθθθ , which are used in the likelihood 

function below. 

 

As usual, the likelihood factors into a product of per study likelihoods: 

 

( ) ( ), , , ,BURDEN BURDENk
L Lβ β= ∏ ky y

k
X Xθ θθ θθ θθ θ   

 

In joint analysis with individual level data, the score statistic is thus a sum for per study score statistics: 

 

( )

( )

,

log , ,

log , ,

BURDEN

BURDEN

BURDEN

BURDEN

k
BURDEN

BURDEN kk

L
U

L

U

β

β

β

β

∂
=

∂

∂
=

∂

=

∑

∑

k k

y

y
k

X

X

θθθθ

θθθθ

 

 

Its variance can be derived using the Fisher information matrix,  and following the derivations in Lin and Tang
7
 (who 

studied a general framework for performing rare variant association tests), it can be shown that the variance for the score 

statistic in joint analysis of all individuals equals the sum of variances in each individual study ∑=
k kBURDENBURDEN VV ,

. 

Therefore, when nuisance parameters are allowed to vary between studies, a score test for joint analysis of individual level 
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data (and allowing for study specific nuisance parameters) is equivalent to combining per study score statistics via the 

Cochran-Mantel-Haenszel method.  

 

The arguments above show that the joint analysis statistic for gene-level tests can be constructed when a per-study 

kBURDENU ,  statistic is shared. But, because of the simple relationship between burden and single variant score statistics in 

each study (specifically, ,BURDEN kUβ = T

kω u ), the joint analysis statistic for gene-level association tests can also be 

calculated when only single marker statistics are shared. Specifically, the burden test score statistics becomes: 

,BURDEN BURDEN kk k
U U= = =∑ ∑ T T

kω u ω u  

Under the null, this statistic is approximately normally distributed with mean 0 and variance ( )BURDEN k
V = ∑T

ω ω
k

V , 

enabling significance tests. Note that the regression coefficient BURDENβ  can be interpreted as a weighted average of 

single variant effects
8
. 

 

Variable Threshold Tests with an Adaptive Frequency Threshold 

In variable threshold tests, rare variant burden statistics are calculated for each potential definition of “rare variant” and 

significance is evaluated for the maximum of these statistics. Typically, to calculate these statistics, all unique variant 

frequencies observed in a gene are listed and each of these frequencies is used as a potential frequency threshold. 

Frequency thresholds can be defined in terms of the pooled minor allele frequency or, sometimes, the pooled minor allele 

count (the two can differ depending on whether samples where a variant is missing are assumed to be wild type or 

unknown).   

 

Given a specific variant frequency threshold F we define a corresponding burden score statistic as: 

 

( )BURDEN FU = T

Fv u . 
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Here, 
Fv  is a vector of indicators where the jth element equals 1 if the pooled minor allele frequency at variant site j is less 

than F  and zero otherwise. For convenience of presentation and without loss of generality, we also define a matrix of 

indicators ( )
1 2
, , ,=

JF F Fv v v�Φ . The covariance between burden score statistics 
)(φBURDEN

U  and *)(φBURDENU  calculated 

for thresholds F and F
*
, is equal to ( )* *( ), ( )BURDEN F BURDEN F k

Ω = ∑T

F F
v v

k
V . After burden statistics are calculated for 

each potential frequency threshold, they are standardized, dividing each statistic by its corresponding variance, and the 

maximum statistic is identified: 

 

{ },max )(FBURDENFVT TT =  where 
)(),()()( FBURDENFBURDENFBURDENFBURDEN UT Ω= . 

 

Significance for this statistic can be evaluated using the cumulative distribution function for multivariate normal 

distribution. Specifically, given the definition of the covariance between burden statistics calculated using different allele 

frequency thresholds, we have: 

 

( ) ( )( )
1( ) ( ), , ~ MVN ,

MBURDEN F BURDEN F k
T T ∑0�

T

k
Φ V Φ . 

 

Significance tests can be calculated using standard methods for calculating multivariate normal integrals
9
: 

( ) ( )( )( )
( ) ( )( )( )

1

1 1

( ) ( )

( ) ( ) ( ) ( )

Pr | , , ~ MVN ,

Pr , , | , , ~ MVN ,

J

J J

VT BURDEN F BURDEN F k

BURDEN F BURDEN F BURDEN F BURDEN F k

T t T T

T t T t T T

< =

< <

∑

∑

0

0

�

� �

T

k

T

k

Φ V Φ

Φ V Φ

 

 

In practice, the covariance matrix for burden score statistics calculated using different frequency thresholds can be 

singular or nearly so, even when the variants are not in linkage disequilibrium. This occurs because 
)(φBURDEN

U  and 

*)(φBURDENU  will typically be strongly correlated whenever φ and *φ  are similar and small. Evaluating the corresponding 

integrals can be numerically challenging. Thus, we recommend verifying analytical p-values using simulations (described 

later in this document).    
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Gene-level Tests that Assume a Distribution of Variant Effect Sizes (e.g. SKAT tests) 

The simple burden test and variable threshold test described above can be underpowered when variants with opposite 

effects on the phenotype reside in the same gene and are grouped together, because the shared regression coefficient can 

average close to zero in that situation. One option in this setting would be to model the effects of each rare variant 

individually – but that strategy consumes many degrees of freedom and thus loses efficiency. Instead, we assume an 

underlying distribution of rare variance effect sizes with mean zero and test whether the variance of this distribution, 
2τ , 

is greater than zero. 

 

Specifically, we consider the model:  

 

( )2

,,,,,0, ,0~  where, kkikij kjijkki XY σεεββ Ν++= ∑ , 
 
  

 

and make inferences about rare variant effect sizes ( )1 2, , , Jβ β β=β �  by assuming these follow a common distribution 

with mean zero and variance 
2τ . Under the null β = 0 , which is equivalent to 02 =τ . Following Wu et al

5
, we consider 

the likelihood: 

( ) ( ) ( )

( ) ( )

( )( )( ) ( )

, , , ,

, ,

exp log , ,

k

k

L Y L p d

L p d

L p d

τ θ τ

τ

τ

=

=

=

∫

∏∫

∑∫

k k

k k

β θ y β β

β θ y β β

β θ y β β

� �

k

k

X

X

X

XXXX
 

 

In order to derive the variance component score statistics for this likelihood, we apply a Laplace transformation to the 

marginal likelihood function, as suggested by Lin10. If repeating this calculation, please note that the integrand satisfies:  

 

Nature Genetics: doi:10.1038/ng.2852



 

 

( )( ) ( )( )

( ) ( ) ( )
( )

2

2

2

ˆ ˆexp log , , exp log , ,

ˆ ˆ ˆlog , , log , , log , ,
1

T

T

L L

L L L
tr oβ β

= ×

    ∂ ∂ ∂    + + +    ∂ ∂ ∂          

k k k k

k k k k k k

β θ y 0 θ y

β θ y β θ y β θ y
β

β β β

� �

k k

k k k

X X

X X X  

Then, following the argument in Lin
10

, it can be shown that the variance component score statistics in the joint analysis 

with individual level data for testing 0=τ  is:   

 

( ) ( )

( ) ( )

ˆ ˆlog , , log , ,
T

k k

T

k k

L L
Q

   ∂ ∂
   =
   ∂ ∂
   

=

∑ ∑

∑ ∑

k k k k

k k

β θ y β θ y
K

β β

u u

k k
X X

 

 

Therefore, gene level statistics that allow for a distribution of rare variant effect sizes (rather than assuming a shared 

regression coefficient) can also be constructed after meta-analysis of single variant statistics. In this test, Q is a quadratic 

function of single site meta-analysis statistics, in contrast to burden statistics defined in previous sections, which were 

linear functions of single site statistics. In practice, weights can also be assigned in the variance component score 

statistics, and the test statistic takes the form of ( ) ( )
T

k k
Q = ∑ ∑k ku uK . The matrix K is the kernel that compares 

multi-site genotypes. A default choice is ( )1 2, , , Jdiag ω ω ω= �K , with 
jω  being the weight assigned to variant site 

j 5
. The statistic Q  follows a mixture chi-square distribution

11
, with mixture proportions given by the eigenvalues for the 

matrix ( ) ( )
1/2 1/ 2

k k∑ ∑k k
V K V .  

 

Monte Carlo Method for Empirical Assessment of Significance 

The previous sections describe how a series of gene-level test statistics can be calculated and, for each one, proposes a 

strategy for evaluating significance. In practice, evaluating the required numerical integrals can be challenging, because 

variance-covariance matrices describing the relationship between single variant statistics or burden scores evaluated at 

different thresholds can be singular or nearly so. In this section, we describe a simple strategy for re-sampling plausible 

sets of single marker test statistics. Gene level statistics can then be evaluated for each of these simulated vectors of single 
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marker test statistics and used to assess significance empirically, avoiding some of the problems inherent with numerical 

integration. 

 

Recall that test statistics are distributed as: 

 

( ) ( )~ MVN ,
k k k

= −∑ ∑ ∑T

k ku y 0
k k k

X X V  

 

To evaluate significance empirically, we sample random vectors from the distribution ( )MVN ,
k∑0

k
V  and calculate 

gene level rare variant test statistics for each of these sampled random vectors, allowing us to obtain an empirical 

distribution for any gene-level statistic
12

. As usual, p-values can then be evaluated by comparing the test statistics for the 

original data with those in this empirical distribution. For computational efficiency, we use an adaptive algorithm where a 

larger number of vectors are sampled when assessing small p-values and fewer vectors are sampled when assessing larger 

p-values
13

. Specifically, we continue sampling new vectors until the number of sampled statistics that are greater than the 

statistic in the original data exceeds a particular threshold (100, unless noted otherwise) or the total number of sampled 

vectors exceeds a predefined limit (40,000,000; unless noted otherwise).  

 

Conditional Analyses 

It is well known that, due to linkage disequilibrium, one or more common causal variants can result in shadow association 

signals at other nearby common variants. As illustrated in our analysis of the APOE locus in the text, common variant 

association signals can also result in shadow rare variant association signals at nearby genes. In unpublished data, we have 

observed many other examples where rare variant signals are shadows of other nearby common or rare variants. 

Conditional analysis provides a useful procedure for disentangling neighboring association signals in this setting, by 

checking whether weaker signals remain significant after conditioning on nearby stronger signals.  

 

For common variants, Yang et al
14

 have shown that linkage disequilibrium relationships between variants, estimated from 

external reference panels, can be used to enable conditional analysis in meta-analysis settings. For rare variants and gene-

level tests, accurately describing relationships between variants is crucial and we recommend against the use of external 
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reference panels. Instead, we recommend using linkage disequilibrium relationships estimated in the samples being 

analyzed and summarized in the variance-covariance matrix of single variant score statistics.  

 
To describe our strategy for conditional analyses, we first decompose the genotype matrix into two components: a matrix 

of genotypes k
X  for variants to be tested for independent association and a matrix of genotypes k

Z for variants that 

should be included as covariates in the null regression model (and thus controlled for). In order to facilitate presentations, 

we denote ( )=
k k k

W X ,Z .  

 

Conditional Analysis for Gene Level Tests That Use A Shared Regression Coefficient for Rare Variants 

When individual level data is available, conditional analysis considers a model similar to: 

 

( ) kiki

T

kkiBURDENkki ZXCY
BURDEN ,,,,,0, εαββ +++= •

���
 

 

This analysis could be readily carried out by repeating analysis and re-calculating score statistics for each study, but this is 

not required. Instead, the score statistics that result from the conditional analysis described above can be readily estimated 

using summary information.  

 

Let 
kk BURDENBURDEN

UT ,,

~
,

~
ββ  and 

kBURDENBURDEN
V ,,

~
ββ  denote test statistics, score statistics and their variances from conditional 

analysis; analogous to statistics previously defined for unconditional analysis. As usual, 

kkk BURDENBURDENBURDENBURDEN
VUT ,,,,

~~~
ββββ = . To derive the component statistics, we use the approach of Lin and Tang

7
, to 

show that: 

( ) ( )( ),
ˆ

BURDEN

T

k kU Yβ = − − −k ky α�
k k k

Z Z X
 

with ( ) ( )( ) ( )
1

ˆ
−

= − − −k kα y
k k k k k k

Z Z Z Z Z Z
T TT TT TT T

, 

 

and that: 
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( ) ( )( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( )

2

, ,

2

ˆ

ˆ

BURDEN BURDEN k
Vβ β φ

φ

= − −

− − − − − − −

T

T

ω ω

ω ω

�
T

k k k k

-1
T T T

k k k k k k k k k k k k

X X X X

X X Z Z Z Z Z Z Z Z X X

 , 

with ( ) ( )( ) ( ) ( )( )2ˆ ˆ ˆ1
T

k k kN Y Yφ = × − − − − − −k k k ky α y α
k k k k

Z Z Z Z  

 

Now, we can verify that 
kBURDEN

U ,

~
β  and 

kBURDENBURDEN
V ,,

~
ββ  can be calculated using shared summary level statistics, because all 

key terms in the above equations can be extracted from the list of single variant score statistics and from the variance-

covariance matrix of single marker association test statistics (which we have shared), since 

 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

 − − − −
 − − =
 

− − − − 

T T

k k k k k k k k

k k k k T T

k k k k k k k k

X X X X X X Z Z
W W W W

Z Z X X Z Z Z Z

TTTT
 . 

 

Finally, meta-analysis burden score statistics can be calculated as: 

 

∑∑=• k kk k BURDENBURDENBURDENBURDEN
VUT ,,,,

~~~
ββββ . 

 

Thus, conditional meta-analysis statistics can be calculated from shared single variant statistics and their variance-

covariance matrix, as desired.  

 

Conditional Analysis for Tests that Assume a Distribution of Rare Variant Effect Sizes (e.g. SKAT) 

Similar arguments can be used to derive formulae for conditional analysis of rare variant association tests in settings 

where direction of effect and effect sizes are allowed to vary between markers. In that setting, we follow the approach of 

Wu et al
5
. The variance component score test takes the form: 

( ) ( )( ) ( ) ( )( )ˆ ˆ
T

k kQ Y Yk k k ky α K y α= − − − × × − − −� T

k k k k k k
Z Z X X Z Z  

Following the derivation for unconditional analysis, the meta-analysis test statistic is given by : 
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( ) ( )( )( ) ( ) ( )( )( )ˆ ˆ
T

k kk k
Q Y Yk k k ky α y α= − − − × × − − −∑ ∑� T

k k k k k k
Z Z X K X Z Z  

Then, noting that the single variant score statistics ( ) ( )( )ˆ
T

kk
Y− − −∑ k ky α

k k k
Z Z X  follow a multivariate normal 

distribution with mean zero and variance-covariance matrix 
k∑ �

k
V , where 

( ) ( )( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( )

2

2

ˆ

ˆ

φ

φ

=

−

�
T

k k k k k

-1
T T T

k k k k k k k k k k k k

V X - X X - X

X - X Z - Z Z - Z Z - Z Z - Z X - X

  

It is straightforward to show that Q
~

 follows a mixture chi-square distribution with mixture proportions being the 

eigenvalues of ( ) ( )
1/2 1/2

∑ ∑� �
k kk k

V K V . Therefore, score statistics and the variance-covariance matrix for single marker 

statistics, are sufficient to enable derivation of the test statistics and p-values for conditional meta-analysis.  

 

Extension to Analyze Samples with Known or Cryptic Relateness 

Using linear mixed models, our methods and tools can also be used to perform meta-analysis of studies that include 

related samples. The linear mixed model for analyzing single variant associations takes the form  

, 0, , , , , , ,i k k i j k i j k i k i kY X g eβ β= + + + , 

where 
,i kg  and 

,i ke  are the polygenic and non-shared residual variance component, respectively. For two individuals with 

a shared genetic background, the unobserved polygenic variance component can be correlated and modeled as 

( )2
~ MVN , gσ•,kg 0 K , where the kinship matrix K can be inferred from available pedigree structure or deduced from 

available genotype data. The non-shared residual variance component is assumed to be independent between individuals 

and satisfies  ( )2~ MVN 0,
e

σ
�

I•,ke .  

The covariance matrix for the quantitative trait is given by  

2 2

g eσ σ= +
k
Σ K I . 

Then, we defined the single variant score statistics to be shared as ( )-
T

k k
u y-1

k k k
X X Σ=  and their variance-covariance 

matrix as ( ) ( )
T

= -1

k k k k k k
V X - X Σ X - X . These statistics can be readily incorporated in all the previous formulae for 
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burden tests, variable threshold tests, sequence kernel association tests, and conditional analysis. Furthermore, just like 

with unrelated individuals, meta-analysis of studies that include related individuals, remains equivalent to an analysis that 

pools individual level data and allows for study specific nuisance parameters, provided no related or duplicated 

individuals are present across studies.  

 

Analysis of Binary Traits 

For binary trait analyses, it is common to use logistic regression: 

( )
( )

,

0, , , , , , ,

,

Pr 1
log

Pr 0

i k

k j k i j k l k i l kl

i k

Y
X C

Y
β β γ

 =
= + + 

 = 
∑  

In this setting, single variant statistics for marker j are defined as: 

( ), . , ,
ˆ

j i j k i k i ki
U X Y Y= −∑ , where 

( )
( )

0, , , ,

,

0, , , ,

ˆ ˆexp
ˆ

ˆ ˆ1 exp

k l k i l kl

i k

k l k i l kl

C
Y

C

β γ

β γ

+
=

+ +

∑
∑

, and the parameters 
0,

ˆ
k

β , 
,

ˆ , 1, ,l k l Lγ = �  are 

estimated using the null model 

( )
( )

,

0, , , ,

,

Pr 1
log

Pr 0

i k

k l k i l kl

i k

Y
C

Y
β γ

 =
= + 

 = 
∑  

The variance-covariance matrix between single variant statistics ( )1, ,, ,
k J k

U U=ku �  has the form  

 

( )( ) ( )
1−

= − � � � �T T T T

k k k k k k k k k k k k k
V X P X X P C C P C C P X , where  

 

( ) ( )( )1, 1, , ,
ˆ ˆ ˆ ˆ1 , , 1

k kk k N k N k
diag Y Y Y Y= − −�

k
P , and �

k
C  is the matrix of covariates augmented by a column of 1’s.  

 

Burden, variable threshold and SKAT tests can then be implemented the same way as in the analysis of quantitative traits. 

An important caution is that when the total number of rare variants carriers is small or the number of cases and controls in 

each study is very unbalanced, asymptotic distributions for the burden, variable threshold and sequence kernel association 

tests may not be accurate. Because it assumes a continuous distribution for test statistics, we do not recommend 
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application of our current Monte-Carlo framework to binary trait analyses. This is concordant with observations by Lin 

and Tang 
7
and Lee et al 

11
.   

 

Simulation of Population Genetic Data 

We simulated haplotypes using a coalescent model and the program ms
15

. We chose a demographic model consistent with 

European demographic history
16

, including an ancestral bottleneck followed by more recent population differentiation and 

exponential growth (Supplementary Figure 1). Model parameters were based upon estimates from large scale 

sequencing studies17, tuned such that measures of genetic diversity between simulated sub-populations match estimates 

from European samples
18

. The simulated haplotypes had an average pairwise sequence difference of 001.0=π  and an 

average 004.0=STF . Furthermore, when 5000 haplotypes were sampled, a typical simulated 5000 base pair region 

included ~100 variant sites, of which 80% had MAF<1% and ~49% were singletons. For any two pools of 5000 

haplotypes sampled from different subpopulations, ~3% of variants with MAF<1% and 35% of the variants with 

MAF>1% are shared, consistent with expectations from population genetics and observations from real data
17,19

. 

 

Our model assumes an ancestral population with effective population size of 000,101 =N  where an instantaneous 

bottleneck event 3,000 generations in the past reduced population size to Nbottleneck = 75. Then, our simulations assume that 

this population simultaneously split into present day populations 500 generations before the present. Following the 

divergence from the ancestral population, the present-day populations underwent recent exponential growth, each growing 

to a present day effective population size of 
6

0 101×=N  over 400 generations. We assume equal, symmetric migration 

rates between the sub-populations with a per-haplotype, per-generation migration rate of 5×10
-4

. We also assume a per-

basepair, per-generation mutation rate of 2.5×10
-8

 and a recombination rate equivalent to 1cM/Mb. 

  

Type I Error Rate and Power 

Using simulated genetic data, we estimated power and type I error for each of the methods described here. We considered 

three representative rare variant tests association tests: a simple burden test (with MAF thresholds of 1% and 5%), a 

variable threshold association test, and the SKAT test. First, we generated 50,000,000 null replicates to evaluate type I 
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error rates in meta-analyses of 3, 6 and 9 samples of 1000 individuals at significance level α=0.001, 0.0001, or 2.5×10
-6

. 

As shown in Supplementary Table 1, the type I error rates are well controlled.  

 

Next, the power for different rare variant tests in meta-analysis was evaluated for a series of genetic models. Three 

phenotype models were simulated: 1.) half of low frequency variants with MAF < 0.5% are causal, each increasing 

expected trait values by 1/4 standard deviation; 2.) half of all variants are causal, irrespective of frequency, and increase 

trait values by 1/4 standard deviation; 3.) 50% of the variants are casual, irrespective of frequency, and 80% of these 

increase expected trait values by 1/4 standard deviation, while the remaining 20% decrease trait values by the same 

amount. Between 2 and 100 studies of 1000 individuals each were simulated. Meta-analysis for variants with MAF<5% 

was performed using our approach or using Fisher’s method and the minimal p-value approach to combine burden test, 

SKAT and variable threshold (VT) test statistics. Power was evaluated at threshold α=2.5×10
-6

 using 10,000 replicates.  

 

Figure 1 and Supplementary Figure 7 summarize the results of our power simulations, considering meta-analysis of up 

to 100 samples of 1000 individuals each. Several patterns are clear from the figures. First, for the effect sizes simulated 

here, very large sample sizes may be required to ensure adequate power. In some settings, power only reaches ~60% in 

analyses that include ~100,000 individuals, even using the most powerful available test. Second, we did not find a 

universally most powerful method, emphasizing the utility of approaches such as ours that can be extended to implement a 

diverse set of test statistics. Typically, we found that when the proportion of non-causal variants is high or causal variants 

can have opposite effects, the SKAT was more powerful. When causal variants have effects in the same direction, simpler 

burden tests were more powerful. Third, in all the simulation scenarios considered, our method greatly outperforms these 

alternative methods for meta-analysis, especially when information is combined across a large number of samples.  

 

Evaluation of Conditional Analysis Strategy 

As described in our analysis of genes neighboring APOE, common variant association signals can produce inflated rare 

variant test statistics at nearby genes due to linkage disequilibrium. To evaluate our strategy for conditional analysis of 

rare variant association tests, we selected one common variant with pooled MAF>10% as causal and increasing mean trait 

values by 0.25 standard deviation per copy. We then evaluated the type I error rate of gene-level rare variant association 
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test statistics (Supplementary Figure 13). The results show that, without conditioning, p-values deviate substantially 

from null expectations. The results also show that, after conditioning, p-values for rare variant association tests behave as 

expected under the null.  

 

Meta-Analysis of Lipid Traits 

Summary statistics were calculated for each participating study and shared to enable a central meta-analysis. In single 

variant and gene-base rare variant association analysis, age, age
2
, sex and cohort specific covariates, such as principal 

components of ancestry were included in the analysis. Trait residuals were standardized using an inverse normal 

transformation.   

 

STUDY DESCRIPTIONS 

To illustrate applications of our method, we perform meta-analysis of lipids traits using 18,699 individuals, a sample size 

that is expected to identify several signals (see Willer et al
20

 and Kathiresan et al
21

 for example).  

 

Malmö Diet and Cancer Study – Cardiovascular Cohort (MDC-CC)  

The Malmö Diet and Cancer Study
22

 is a community-based prospective epidemiologic cohort of 28,449 persons recruited 

for a baseline examination between 1991 and 1996. From this cohort, 6,103 persons were randomly selected to participate 

in the cardiovascular cohort, which sought to investigate risk factors for cardiovascular disease. All participants 

underwent a medical history assessment and a physical examination.  

 

Women’s Health Initiative 

The WHI
23

 encompasses four randomized clinical trials as well as a prospective cohort study of 161,808 post-menopausal 

women aged 50–79, recruited (1993–1998) and followed up at 40 centers across the US. Samples examined here were 

genotyped as part of the NHLBI Exome Sequencing Project. 

 

Ottawa Heart Study 
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Cases and controls were recruited from either the lipid clinic at the University of Ottawa Heart Institute or the cardiac 

catheterization laboratory
24

.  All cases were required to have at least one of: a stenosis in a major epicardial vessel of at 

least 50%; have had a percutaneous intervention (PCI); have had coronary artery bypass surgery (CABG); or have had a 

myocardial infarction (MI). Cases with diabetes mellitus were excluded. Age of onset of CAD was required to be ≤55 

years old for men and ≤65 years old for women. Controls were either healthy asymptomatic elderly individuals or were 

recruited through the catheterization laboratory with no stenosis ≥50% in any major epicardial vessel and were required to 

be ≥65 years old for men and ≥70 years old for women.  

 

PROCARDIS 

The PROCARDIS
25

 “genetically-enriched” case collection is composed of sibships (proband and at least one affected 

sibling) with coronary disease.  Ascertainment criteria for PROCARDIS probands were myocardial infarction (MI) or 

symptomatic acute coronary syndrome before the age of 66 years.  For each of the coronary disease cases included in the 

“genetically-enriched” case-control study, it was planned to recruit one control of the same sex, ethnicity and within 5 

years of age of cases, with no personal or sibling history of coronary disease before age 66 years.  In the UK, controls 

were identified by mailing a self-administered questionnaire to spouses or siblings of spouses or male friends of any 

individuals who had previously returned a completed questionnaire to the PROCARDIS study.  Eligible respondents were 

asked to attend their general practice to have their blood pressure, height and weight recorded, and to provide a blood 

sample.  In Sweden, Italy and Germany, controls were selected from population registers and invited to attend a special 

clinic to have their blood pressure, height and weight recorded, to provide a blood sample and to complete a self-

administered questionnaire.  

 

HUNT – The Nord-Trøndelag Health Study 

The HUNT study has been described in detail previously
26

. The HUNT study is a population based health study with 

personal and family medical histories on 106,436 people from Nord-Trøndelag County, Norway, collected during three 

phases from 1984 to 2008. A subsample of 5,869 individuals were successfully genotyped on the iSelect Exomechip V1.0 

(Illumina, San Diego, CA), 2,928 cases with retrospectively hospital diagnosed myocardial infarction and 2,941 healthy 
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controls matched on sex, birth year and municipality. Genotype calling was done using GenTrain version 2.0 in 

GenomeStudio V2011.1 (Illumina, San Diego, CA) in combination with zCall version 2.2 
27

.  
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