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SHAPEIT2 uses multithreading so that multiple cores can be used 
to phase whole chromosomes, allowing users to make the best use 
of their computational resources.

We tested SHAPEIT2 on several large-sample, whole-chromosome 
data sets from a range of SNP genotyping chips (Supplementary 
Note 1). SHAPEIT2 outperforms other methods (Fig. 1a–c) in terms 
of switch error rate (SER) and the mean distance between switch 
errors (Supplementary Figs. 1 and 2). As compared to SHAPEIT1, 
SHAPEIT2 reduced SER by as much as 45% on these data sets. For 
example, on 1,229 Vietnamese samples assayed on the Illumina 
660K chip on chromosome 22, the SERs of SHAPEIT2 (K = 100, 
W = 2 Mb), SHAPEIT1 (K = 100) (ref. 2), HAPI-UR (v1.01) (ref. 4),  
Beagle (v3.3) (ref. 5), Impute2 v2.1.2 (K = 100) (ref. 3), MaCH 
v1.0.18 (K = 100) (ref. 6) and fastPHASE (v1.4) (ref. 7) were 2.87%, 
4.64%, 4.75%, 5.14%, 5.57%, 6.05% and 6.34%, respectively. In gen-
eral, SHAPEIT2 with low values of K outperformed SHAPEIT1 with 
high values of K (Fig. 1a–c). As the number of samples increased (up 
to ~9,000 samples in our tests), we found that SHAPEIT2 outper-
formed other methods and had the property that SER decreases as 
sample size increases (Fig. 1d).

We assessed accuracy on sequence data by phasing 381 European 
samples from the 1000 Genomes Project (TGP) together with geno-
types from two trio parents sequenced at high coverage. We found 
that SHAPEIT2 (K = 100, W = 0.3 Mb) reduced SER by 38% compared 
to Beagle (Supplementary Table 1 and Supplementary Note 2),  
illustrating that the SHAPEIT2 model can adapt to data sets with 
very high SNP density.

The computational performance of SHAPEIT2 is competitive 
compared to other methods. Figure 1e shows the computational 
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To the Editor: Methods that can accurately estimate haplotypes 
from single-nucleotide polymorphism (SNP) genotype data are 
important because they are widely used in many areas of genetic 
analysis. Examples include the creation of haplotype reference pan-
els, pre-phasing1 before genotype imputation in genome-wide asso-
ciation studies (GWAS), and population genetic analysis. The task 
is an inverse problem in which we observe a set of SNP genotypes in 
a sample, typically using a genome-wide SNP microarray, and wish 
to infer the underlying haplotypes carried by the study individuals.

We recently described the SHAPEIT1 method for inferring haplo-
type phase from genotype data2, which improves accuracy and com-
putational efficiency compared to other methods for sample sizes 
up to ~1,200. Here we present SHAPEIT2, a method that combines 
features of SHAPEIT1 and Impute2 (ref. 3) to substantially enhance 
performance. We use the SHAPEIT1 Markov model that represents 
the space of haplotypes consistent with a given individual’s geno-
types across a whole chromosome. The transition probabilities of 
this model are estimated by applying the Impute2 ‘surrogate family’ 
phasing approach in local windows of size W. In each window, K 
informative haplotypes are chosen to update the transition prob-
abilities of the Markov model. The method generalizes the Impute2 
method so that it can be applied across a whole chromosome with 
linear computational scaling in K (Supplementary Methods). 

Figure 1 | Accuracy and computational 
performance. (a–c) Comparison of methods 
on (a) the European X chromosome data 
set, (b) the Vietnamese chromosome 22 
data set and (c) the Illumina Omni2.5M 
chromosome 20 data set. Switch error 
rate (SER) is plotted against the number 
of conditioning states (K) for SHAPEIT1 
(cyan), SHAPEIT2 with W = 2 Mb (blue), 
Impute2 (purple) and MaCH (green). 
fastPHASE (yellow), Beagle (gray) and 
HAPI-UR (brown) were run using default 
settings. (d) SER versus sample size for 
SHAPEIT1 (K = 100, W = 2 Mb), SHAPEIT2 
(K = 100, W = 2 Mb), Beagle and HAPI-UR 
on the WTCCC1 data set. (e) Running times 
of the methods relative to Beagle on the 
WTCCC1 data set. To illustrate benefits of 
multithreading, SHAPEIT2 was run using 
one thread (dotted blue line) and four 
threads (solid blue line). (f) SER (top) 
and CPU time (bottom) of SHAPEIT2 run 
on a whole chromosome (blue) and of 
partition-ligation using Impute2 (purple) 
and SHAPEIT2 (orange).
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time (relative to Beagle) of SHAPEIT1 (K = 100), SHAPEIT2  
(K = 100) with one and four threads and HAPI-UR (3=) on data sets 
of up to ~9,000 samples. On a data set of 8,897 samples on chro-
mosome 10, the running times of SHAPEIT2 (K = 100) with four 
threads, HAPI-UR (3=) and Beagle were 24.3 h, 22.5 h and 52.9 h, 
respectively. On data sets with high SNP density, computational per-
formance was also good (Supplementary Table 1).

An alternative strategy for phasing whole chromosomes, called 
partition-ligation (PL), involves estimating haplotypes in overlap-
ping windows in parallel, followed by ligation across windows. 
Running SHAPEIT2 once per chromosome has better accuracy 
than PL but is much simpler to apply (Fig. 1f and Supplementary 
Note 2). It may be possible to improve the performance of PL with 
alternative strategies.

We investigated the downstream impact of phasing GWAS samples 
on subsequent imputation performance (Supplementary Note 2).  
We found that SHAPEIT2 haplotypes led to a clear boost in impu-
tation performance compared to other methods (Supplementary 
Figs. 3 and 4).

Large panels of haplotypes from projects such as the TGP might be 
used to help phase new cohorts, effectively by increasing sample size. 
This functionality has been included within SHAPEIT2. We phased 
different-sized subsets of the Vietnamese cohort separately and then 
together with the TGP Phase 1 haplotypes (Supplementary Note 2).  
Phasing with a reference panel improved performance, but only when 
the data set had fewer than 100 samples (Supplementary Fig. 5).  
When there is a close match in ancestry between study samples and 
reference panel, we expect that accuracy will improve with larger 
study samples.

When a cohort consists of samples with a diverse set of ancestries, 
one practical question that arises is whether to phase the samples 
together or separately within distinct ancestral groups. Using 2,123 
TGP samples from 14 distinct populations, we found that perfor-
mance was improved by phasing all samples together rather than 
separately in continental groups (Supplementary Figs. 6 and 7). 
These results suggest that SHAPEIT2 not only is robust to diverse 
ancestries but can take advantage of haplotype sharing between 
populations to improve performance.

SHAPEIT2 is available as Supplementary Software and at http://
www.shapeit.fr/.

Note: Supplementary information is available at http://www.nature.com/
doifinder/10.1038/nmeth.2307.
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Olivier Delaneau1, Jean-Francois Zagury2,4 &  
Jonathan Marchini1,3,4

High-resolution whole-genome 
haplotyping using limited seed data

To the Editor: The term ‘haplotype’ refers to a group of alleles inher-
ited on the same chromosome. Although most sequencing tech-
nologies cannot resolve which chromosomal copy a given sequence 
comes from, the value of haplotype information for genetic stud-
ies is increasingly being appreciated by researchers. Haplotypes are 
important for inferring disease status, determining which allele 
combinations tend to segregate together and helping to ‘fill in’ or 
impute missing values in regions that lack genotype information to 
power association studies. Statistical methods exist that can resolve 
or ‘phase’ haplotypes, but these have been limited to short sequence 
stretches and can be computationally demanding. Technical difficul-
ties still exist for obtaining accurate whole-genome and long-range 
haplotypes experimentally1,2.

Two high-throughput experimental haplotyping approaches have 
been developed recently. A single-chromosome isolation approach 
can yield entire chromosomal haplotypes, but resolution is low 
because of locus dropout during single-molecule whole-genome 
amplification3–5. A fosmid-based approach yields high-resolution 
haplotypes but not of chromosome length6. To improve the reso-
lution of our previously described single-chromosome approach4, 
we have developed the haplotype imputation from incomplete data 
(HiFi) software. Using limited experimental seed data, HiFi can yield 
two integral, high-resolution personal chromosomal haplotypes in a 
cost- and time-efficient manner.

Our aim was to integrate the chromosomal-range accuracy of 
experimental haplotyping with the efficiency of computational 
approaches. HiFi exhaustively seeks unambiguous matches to an 
individual’s seed haplotypes and genotypes among a panel of refer-
ence haplotypes along a sliding window (Fig. 1 and Supplementary 
Methods). Once HiFi identifies a single match in a window, it uses 
the identified reference haplotypes to impute the phases at all loci 
within this window. If HiFi does not find a unique match, it adjusts 
the window size and repeats the search automatically.

We examined HiFi performance on three data sets (Supplementary 
Table 1), measuring accuracy as the concordance of HiFi out-
put with high-confidence phase results from trio families 
(Supplementary Methods). We simulated the first data set from 
HapMap trio haplotypes; then we blinded the phases randomly at 
70% of the entire (homozygous and heterozygous) single-nucleotide 
polymorphism (SNP) set. The second data set contained haplotype-
resolved SNPs at ~40.7% of heterozygous loci with the single-chro-
mosome  isolation approach3. We observed 99.5% (Caucasian) and  
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1 Supplementary Table 1

Software SER (%) MSD (kb) Running times (hours)

Beagle 1.72 115 6

SHAPEIT2 W=0.3Mb K=100 1.12 179 5.8

SHAPEIT2 W=0.5Mb K=100 1.16 172 5.75

SHAPEIT2 W=1Mb K=100 1.21 167 5.75

SHAPEIT2 W=2Mb K=100 1.25 161 5.75

Supplementary Table 1 : Methods comparison on high-density SNP genotypes

from sequencing Comparison of accuracy and running times of Beagle and SHAPEIT2

on the high-coverage trio parents merged with the 381 individuals of European ancestry

of the 1000 Genomes Project. The timings for SHAPEIT2 are based on running the

program with 4 threads.
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2 Supplementary Figure 1
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Supplementary Figure 1 : Comparison of methods on the WTCCC2 X chro-

mosome dataset Switch error rate (a) and mean switch distance in Mb (b) are plot-

ted against the number of conditioning states for SHAPEIT1 (cyan), SHAPEIT2 with

W=5Mb (solid blue), SHAPEIT2 with W=2Mb (dashed blue), Impute2 (purple) and

MaCH (green). Beagle (grey), HAPI-UR (brown) and Fastphase (yellow) were run using

default settings.
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3 Supplementary Figure 2
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925 samples 7,821 SNPs
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Supplementary Figure 2 : Comparison of methods measured by Mean Switch

Distance European X chromosome dataset (a), WTCCC2 X chromosome dataset (b)

and Vietnamese chromosome 22 dataset (c). Mean switch distance in Mb is plotted

against the number of conditioning states for SHAPEIT1 (cyan), SHAPEIT2 with 5Mb

window (solid blue), SHAPEIT2 with 2Mb window (dashed blue), Impute2 (purple) and

MaCH (green). Beagle (grey), HAPI-UR (brown) and Fastphase (yellow) were run using

default settings.
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4 Supplementary Figure 3
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Supplementary Figure 3 : Comparison of whole chromosome phasing methods

for imputation of the WTCCC2 samples For each imputed SNP, the R2 correlation

coe�cient between the true and the imputed genotypes obtained when imputing into

Beagle haplotypes (panel a) and HAPI-UR haplotypes (panel b) is plotted against the

R2 di↵erence obtained when imputing into SHAPEIT2 haplotypes. The red solid line is

a curve fitted to the data points using R loess function. And the percentages in blue and

green give the proportions of SNPs that have respectively a better or a worse imputation

quality when using SHAPEIT2 haplotypes.
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5 Supplementary Figure 4
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Supplementary Figure 4 : Comparison of methods for imputation of the

WTCCC2 samples. For each imputed SNP, the R2 correlation coe�cient between

the true and the imputed genotypes obtained when imputing into MaCH haplotypes

chunks (panel a) and SHAPEIT2 haplotypes chunks (panel b) is plotted against the R2

di↵erence obtained when imputing into SHAPEIT2 whole chromosome haplotypes. The

red solid line is a curve fitted to the data points using R loess function. And the percent-

ages in blue and green give the proportions of SNPs that have respectively a better or a

worse imputation quality when using SHAPEIT2 haplotypes.
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6 Supplementary Figure 5

●

●

●

●

●

●
●

Vietnamese chr22 : 7,821 SNPs

Number of individuals

Sw
itc

h 
er

ro
r r

at
e 

(%
)

●
●

●

●

●

●

●

●
●

●
● ● ● ●

10 20 50 100 200 500 1000

5
7.

5
10

15

●

●

●

SHAPEIT2 conditioning on:
only VIET
only 1KGP
both VIET + 1KGP

Supplementary Figure 5 : Assessment of the benefit of using an external ref-

erence set of haplotypes Phasing performance is measured in terms of switch error

percentage. The black line shows the performance of the standard SHAPEIT2 approach

in which only the other Vietnamese samples in the dataset are used when constructing

the conditioning set of haplotypes. The red line shows the performance of the SHAPEIT2

approach when the external set of haplotypes from the 1000 Genomes Project (1KGP)

are added in to the set of conditioning haplotypes. The blue line shows the performance

of SHAPEIT2 when only the 1KGP haplotypes are used as the set of conditioning hap-

lotypes.

9

Nature Methods: doi:10.1038/nmeth.2307



7 Supplementary Figure 6
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Supplementary Figure 6 : Strategies for phasing multi-population datasets

Comparison of two strategies to phase the Illumina Omni2.5 dataset. Switch error ob-

tained when the phasing is performed independently in 4 continental groups AFR, AMR,

ASN and EUR (x-axis) is plotted against the accuracy obtained when all individuals are

phased together in a single group (y-axis).
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Supplementary Figure 7 : Comparison of methods on multi-population

datasets Methods comparison on the Illumina Omni2.5 dataset stratified per population

of the 1000 Genomes project. The points give the switch error percentages obtained for

the samples using SHAPEIT1 (cyan), SHAPEIT2 (blue), and Beagle (grey). Horizontal

lines within each population group represent the mean switch error of that population.
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9 Supplementary Methods

9.1 Background

We recently described a new method for inferring haplotype phase from genotype data

called SHAPEIT version 1 (SHAPEIT1) [4] which has improved accuracy and computa-

tional e�ciency compared to several other methods. Inference is carried out using a Gibbs

sampling approach in which the haplotypes of each individual are iteratively updated.

At the core of this approach is a hidden Markov model (HMM) [8] that is used to model

the conditional distributions of the Gibbs sampler, where of an individual’s haplotypes

are updated conditional upon the current haplotype estimates of all other samples.

This is the same general approach used by the methods Phase[15], Impute2[6] and MaCH

[9]. The methods di↵er in the details of how they implement this approach, with all of

them making some level of approximation. The methods need to make approximations

because the HMM calculations involved in sampling an individual’s haplotypes from

the conditional distributions scale quadratically with the number of haplotypes being

conditioned on. If the number of the individuals being phased is N then the complexity

of the algorithm is O(N2) and this is an undesirable feature. MaCH approximates the

algorithm by choosing a random set of K haplotypes to condition on at each iteration.

This controls the complexity of the algorithm at O(K2). Impute2 also chooses a subset

but does so in a non-random way. The method chooses the most similar subset to the

previous haplotype estimates of the individual. A nice property of this approach is that

the method can adapt to the haplotype structure underlying the samples being phased.

For example, when phasing an admixed sample in a region where the sample has one

haplotype from two distinct ancestries, the method would likely choose haplotypes from

each distinct ancestry.

SHAPEIT1 introduced two new approximations. The first one involves collapsing the

haplotypes being conditioned on at each iteration into a graph that captures the haplotype

structure in a parsimonious way. Locally the haplotypes are clustered into K states. The

HMM calculations are then carried out on this graph rather than the original set of
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Nature Methods: doi:10.1038/nmeth.2307



haplotypes. The advantage of this approach is that the graph is constructed using all

of the haplotypes rather than a subset. Compared to methods that choose a subset of

K haplotypes this graph will capture more of the haplotype structure within each local

region. The second approximation involves a way of representing the space of possible

haplotypes that are consistent with an individual’s genotypes. Each individual’s vector

of genotypes is split up into segments containing B heterozygous sites and so has just

2B consistent haplotypes. Segments are then taken to be nodes of a graph each with 2B

states. We use B = 3 so that there are 8 states in each node. A path through the graph

then represents a consistent haplotype across a whole chromosome. The joint distribution

of all paths through the graph, conditional upon the haplotypes of other individuals, is

then modelled as a HMM and transition probabilities between segments can be calculated

using a forward-backward algorithm. These transition probabilities can be used to sample

pairs of consistent haplotypes very quickly. A key property of this approach is that the

HMM calculation involved have complexity O(2BK) = O(8K) which is typically much

less than O(N2) of the full algorithm, or the O(K2) of the subset selection based methods.

This allows many more haplotypes to be conditioned upon for the same computational

e↵ort. The SHAPEIT1 algorithm combines both these approximations together. In

addition, a pruning and merging strategy is used in which unlikely states within each

segment are carefully pruned away as the algorithm progresses. Consecutive segments

are merged together when they each contain only a few likely states.

The algorithm was compared to Impute2 [6], MaCH [9], Beagle [3] and Fastphase [14]

using genotyping chip data across whole chromosomes from three di↵erent datasets with

740, 925 and 1,229 samples respectively. For example, on a dataset consisting of 1,229

phase known samples at 7,985 SNPs on chromosome 22, created from a set of Vietnamese

father-mother-child trios, the average distance between phasing errors (switch errors) for

the methods Fastphase, Beagle, MaCH, Impute2 and SHAPEIT1 was 0.3Mb, 0.38Mb,

0.40Mb, 0.44Mb and 0.56Mb respectively. This clearly shows that the SHAPEIT1 ap-

proach o↵ers a substantial improvement in performance over these other methods on

datasets similar to those used in genome-wide association studies. This approach has

recently been used in studies focussing on detecting interactions between SNPs [16].
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One caveat of these results is that the Impute2 results were obtained by applying the

method across a whole chromosome at once. Impute2 chooses a subset of “surrogate

family” conditioning haplotypes by similarity and this idea is designed to work well on

relatively small regions. This idea is analogous to “surrogate parent” phasing approaches

that have been suggested in situations where extended sharing of segments between indi-

viduals can be expected. For example, in more isolated populations or when a substantial

fraction of a population has been sampled [7, 12]. In samples where much shorter seg-

ments are expected to be shared between individuals Impute2 searches for a subset of

haplotypes (referred to as the surrogate family) that jointly capture the haplotype vari-

ation of each individual in a local region. The standard advice when using Impute2

is that regions of size around 5Mb should be used, although the approach does seem

remarkably robust to the choice of region since it still outperforms MaCH, Beagle and

Fastphase when run across a whole chromosome. When run on smaller 5Mb regions the

Impute2 algorithm seems to be as accurate as SHAPEIT1 (see Supplementary Fig 3 in

[4]). These results led us to explore the idea of combining the best features of Impute2

and SHAPEIT1 into a new algorithm. This paper describes how we have generalized the

Impute2 “surrogate family” phasing approach so that it can be applied across a whole

chromosome. This method has been combined with the SHAPEIT1 linear complexity

method for sampling haplotypes consistent with an individual’s genotypes. Adopting the

Impute2 approach replaces the use of the compact HMM introduced in SHAPEIT1. Our

new method is called SHAPEIT version 2 (or SHAPEIT2 for short). In the following

Methods section we describe the algorithm in detail.

9.2 Notation

We assume that we are trying to estimate the haplotypes of N unrelated individuals with

complete genotype data at L biallelic SNPs. The extension of the method for mother-

father-child trios and parent-child duos is described later. Since the algorithm uses a

Gibbs sampling scheme in which each individual’s haplotypes are sampled conditional

upon the current estimates of all others it is su�cient for us to consider the details of
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a single iteration. So we consider sampling the haplotypes of the ith individual and

we call this individual’s genotype vector G = {G1, . . . , GL}, where Gl 2 {0, 1, 2} is the

genotype at the lth SNP and represents the counts of the allele coded as 1 at the SNP.

The two alleles at each SNP are abitrarily coded as 0 and 1. We use H = {H1, . . . , HK}

to denote the K current haplotype estimates being used in the iteration, where Hk =

{Hk1, . . . , HkL} is the kth haplotype in this set with Hkl denoting the allele carried by

this haplotype at the lth SNP. The K haplotypes are usually a subset from the total set

of 2N haplotypes.

We want to sample a pair of haplotypes (g1, g2), called a diplotype, that is compatible

with G so that the sum of the alleles is equal to G, denoted G = g1 + g2. Each of the

haplotypes, g1 and g2, is a vector of alleles of length L. We divide the vector G into a

number, C, of consecutive non-overlapping segments such that each segment contains B

heterozyogous genotypes. We use B = 3. Boundaries between segments can be arbitrarily

assigned when there is more than one possibility. We denote this segmentation of sites

using labels Sl 2 {1, . . . , C} that detail which segment site l resides in. We use the

notation {s} to denote the set of sites with the sth segment.

A consequence of this segmentation is that there will only be 2B possible haplotypes

that are consistent with G within each segment. These consistent haplotypes are easily

enumerated and labelled from 1 to 2B. For example, Figure S1 shows the four haplotypes

that are consistent with a segment of G that is 01012. Based on this construction we

can represent a haplotype that is consistent with G across its whole length as a vector

of labels X = {x1, . . . , xL} where xl denotes the label of the consistent haplotype at the

lth site in the Slth segment, with the restriction that the labels are identical within each

segment.

9.3 A segmented haplotype model

A given realization of X precisely determines a haplotype consistent with G, however X

is unobserved. To estimate X we need to build a model for the conditional distribution

of X given H, P (X|H). Sampling X from this distribution will then form the iteration
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Segment'of'G' ' '0'1'0'1'2'
''

' ' ' ' ' ' '0'0'0'0'1'''c1'

' ' ' ' ' ' '0'0'0'1'1'''c2'

' ' ' ' ' ' '0'1'0'0'1'''c3'

' ' ' ' ' ' '0'1'0'1'1'''c4'

' ' '' ' '' ' '' ' '''

'

Consistent'haplotypes'

Fig S1 The figure shows an example of a segment of a genotype vector G that has

B = 2 heterozygous sites. Also shown are the 2B = 4 haplotypes that are consistent

with the segment of G. The haplotypes are labelled c1, c2, c3, c4. The haplotypes occur

in consistent pairs so that G = ci + c2B+1�i where i 2 {1, . . . , 2B�1}. In this example the

pairs of consistent haplotypes are (c1, c4) and (c2, c3).
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of the Gibbs sampler that we require.

We assume a haplotype consistent with G can be modelled as an imperfect mosaic of

the haplotypes in H. We model this using the same HMM model underlying Phase[15],

Impute2[6] and MaCH[9]. In this model the sequence of unobserved states Z = {Z1, . . . , ZL}

are such that Zl 2 {1, . . . , L} denotes the haplotype being ‘copied’ at site l. The transi-

tion probabilities between the states along the sequence are governed by an estimate of

the fine-scale recombination rate between adjacent sites as follows

Pr(Z1 = u) =
1

K
,

P (Zl = u|Zl�1 = v) =

8
<

:
e�

⇢l
K + 1�e�

⇢l
K

K
u = v,

1�e�
⇢l
K

K
u 6= v,

where ⇢l = 4Nerl and rl is the per generation genetic distance between sites l and l � 1

and Ne is the e↵ective population size. We use Ne = 15, 000. On the human datasets we

have analysed the results are very insensitive to changes in this parameter.

We now have two unobserved sequences X and Z and we are primarily interested in

making inference about X. We do this by constructing the joint conditional distribution

of X and Z given H as

P (X,Z|H) = p(X1|Z1, H)P (Z1)
LY

l=2

p(Xl, Zl|Xl�1, Zl�1, H).

The joint transition probabilities are constrained by the restriction described above that

labels of consistent haplotypes at consecutive sites within a segment must be identical.

Consequently, when sites l and l� 1 are within the same segment i.e. Sl = Sl�1, we have

p(Xl = i, Zl = u|Xl�1 = j, Zl�1 = v,H) =

8
<

:
P (Xl = i|Zl = u,H)P (Zl = u|Zl�1 = v) i = j

0 otherwise,

and when sites l and l � 1 are in di↵erent segments i.e. Sl 6= Sl�1, we have

p(Xl = i, Zl = u|Xl�1 = j, Zl�1 = v,H) = P (Xl = i|Zl = u,H)P (Zl = u|Zl�1 = v).

The emission probabilities of the model are given by

P (Xl = i|Zl = u,H) =

8
<

:
�, Hul 6= Ali

1� �, Hul = Ali
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where we use Alb to denote the allele carried by the bth consistent haplotype at site l.

Also, � = ✓
2(✓+K) and ✓ =

⇣PK�1
i=1

1
i

⌘�1

[8].

9.4 Sampling consistent haplotypes

We use the model in the previous subsection to calculate marginal probabilities P (X1 =

i|H) and transition probabilities between the labels of consistent haplotypes at consecu-

tive sites, P (Xl = i|Xl�1 = j,H). The precise details of all the calculation involved are

provided in the following subsection. It is important to highlight that these calculations

are linear in the number of haplotypes being conditioned on, K, because both the state

spaces of the X and Z are representing haplotypes rather than diplotypes.

We then use these marginal and transition probabilities to sample consistent haplotypes

for each individual. Since each individual has two unobserved haplotypes we need to

sample two consistent haplotypes at the same time. We do this by first sampling vectors

of consistent haplotype labels across all sites and then converting this vectors of labels

into realized haplotyes. We use notation X(1)
l and X(2)

l to denote the pair of vectors of

consistent haplotype labels that we sample.

In each segment there will be 2B consistent haplotypes and these will occur in 2B�1

consistent pairs. The scheme we use to sample consistent haplotypes is described by the

following steps

1. A pair of consistent haplotypes in the first segment with labels (i, j) is sampled

with probability proportional to P (X1 = i|H)P (X1 = j|H). Not all pairs of labels

will denote pairs of consistent haplotypes. In the example in Figure S1 above we

would only consider label pairs (c1, c4) and (c2, c3). It is also worth noting here that

the sampler uses the marginal probabilities of the first site X1 but this is su�cient

since all sites in the same segment will have identical marginal probabilities due to

the constraints placed on the sequence X. We set the labels of all sites in the first

segment to be the same as those sampled for the first site. That is,

X(1)
l = i, X(2)

l = j 8 l 2 {1}
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2. Set r = 2.

3. Let q(r) be the index of the first site in the rth segment. We consider the rth

segment and use the transition probabilities between the last site in segment r �

1 and the first site in segment r, P (Xq(r)|Xq(r)�1, H) say. A pair of consistent

haplotypes in the second segment with labels (d, f) is sampled with probability

proportional to P (Xq(r) = d|Xq(r)�1 = i, H)P (Xq(r) = f |Xq(r)�1 = j,H). We set

the labels of all sites in the rth segment to be the same as those sampled for site

q(r). That is,

X(1)
l = d,X(2)

l = f 8 l 2 {r}

4. Set r = r + 1.

5. If r = C +1 then stop, else go to Step 3. In other words, process all C segments in

the same way.

The result is a pair of vectors of consistent haplotype labels, X(1) and X(2), across the

whole region being phased and these can be turned into new haplotype estimates, (g1, g2),

using gil = A
lX

(i)
l

for i 2 {1, 2} and l 2 {1, . . . , L}. These haplotype estimates can then

be added back into the haplotype set H and the next individual’s haplotypes can be

estimated, although their current haplotype estimates must be removed from H first.

SHAPEIT2 can also handle mother-father-child trios and parent-child duos. These situa-

tions impose additional constraints on the configurations of consistent haplotypes within

each segment. When processing a trio the haplotypes of the mother, father and child

are updated jointly. First, a set of segments are defined so that each one contains no

more than 16 possible haplotypes across all members of the family. Only sites that are

heterozygous in all members of the nuclear family are phase-unknown and it is such sites

that increase that number of possible haplotypes. Then, haplotypes in each segment are

labelled as paternal or maternal, and transmitted or untransmitted, with the childs hap-

lotypes corresponding to the pair of transmitted haplotypes. Finally sets of 4 haplotypes

are sampled across the segments such that they conform to these Mendel rules and solve

all the members of the family. Parent-child duos are handled in an analogous way. It
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is worth pointing out that this method of handling closely related samples is very com-

putationally e�cient. The constraints imposed by the family structure mean that many

sites are phase-known so that sites with phase ambiguity will be more sparsely spread

out across a chromosome than for unrelated samples. This means that the segments span

larger regions and there are fewer segments across a chromosome and the algorithm takes

less time to process.

SHAPEIT2 can also handle sporadic missing genotypes in the dataset. Missing data

in an individual increases the number of combinations of consistent haplotypes that an

individual could carry. For example, if the genotypes in region consist of a single missing

genotype and a single heterozygous site then there will be four consistent haplotypes in

this region and four combinations of these consistent haplotypes that the individual could

carry. In contrast, if the region contained just two heterozygous sites then there will also

be four consistent haplotypes in this region but only two combinations of these consistent

haplotypes that the individual could carry.

We have also added options to the program that allow reference sets of haplotypes to

be used when phasing a set of unphased samples. This set of haplotypes are added to

the set of the current haplotype estimates at each iteration so that they can be used as

conditioning haplotypes when updating each individual’s haplotypes.

9.4.1 Algorithmic details

In this section we set out the precise details of the calculations of the probabilities P (X1 =

i|H) and P (Xl = i|Xl�1 = j,H) that we need to sample consistent haplotypes. To do

this we use the notation Gn,m to denote the model of the data from site n to m and define

the partial vectors Xn,m = {Xn, . . . , Xm}, Zn,m = {Zn, . . . , Zm}. We then define forward

probabilities as

am(i, u) = P (Xm = i, Zm = u,G1,m|H).

These are initialized as

a1(i, u) = P (X1 = i|Z1 = u,H)P (Z1 = u).
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Subsequent probabilities are defined recursively, but the recursions are di↵erent dependent

upon whether the mth and (m+1)th sites are in the same segment. So when Sm = Sm+1

we have

am+1(i, u) = P (Xm+1 = i|Zm+1 = u,H)
KX

v=1

am(i, v)P (Zm+1 = u|Zm = v)

= P (Xm+1 = i|Zm+1 = u,H)
h1� e�

⇢l
K

K
am(i, •) + e�

⇢l
K am(i, u)

i
,

and when Sm 6= Sm+1 we have

am+1(i, u) = P (Xm+1 = i|Zm+1 = u,H)
2BX

j=1

KX

v=1

am(j, v)P (Zm+1 = u|Zm = v)

= P (Xm+1 = i|Zm+1 = u,H)
h1� e�

⇢l
K

K
am + e�

⇢l
K am(•, v)

i

where am(i, •) =
PK

u=1 am(i, u), am(•, u) =
P2B

i=1 am(i, u) and am =
P2B

i=1

PK
u=1 am(i, u).

The calculation of the quantities am(i, •), am(•, u) and am saves a significant amount of

computation.

Similarly, we define backward probabilities as

bm(i, u) = P (Gm+1,M |Xm = i, Zm = u,H).

These are initialised as

bM(i, u) = 1.

Subsequent probabilities are also defined recursively, but the recursions are di↵erent de-

pendent upon whether the mth and (m + 1)th sites are in the same segment. So when

Sm = Sm+1 we have

bm(i, u) =
KX

v=1

bm+1(i, v)P (Xm+1 = i|Zm+1 = v)P (Zm+1 = v|Zm = u)

=
h1� e�

⇢l
K

K
Bm+1(i, •) + e�

⇢l
K bm+1(i, u)P (Xm+1 = i|Zm+1 = u)

i

and when Sm 6= Sm+1 we have

bm(i, u) =
2BX

i=1

KX

v=1

bm+1(i, v)P (Xm+1 = i|Zm+1 = v)P (Zm+1 = v|Zm = u)

=
h1� e�

⇢l
K

K
Bm+1 + e�

⇢l
KBm+1(•, u)

i

21

Nature Methods: doi:10.1038/nmeth.2307



where Bm(i, •) =
PK

u=1 bm(i, u)P (Xm = i|Zm = u), Bm(•, u) =
P2B

i=1 bm(i, u)P (Xm =

i|Zm = u) and Bm =
P2B

i=1

PK
u=1 bm(i, u)P (Xm = i|Zm = u).

The forward and backwards probabilities can then be used to calculate the marginal

probability of the unobserved states, Xm and Zm, at site m as

P (Xm = i, Zm = u|H) / P (Xm = i, Zm = u,G1,m|H)P (Gm+1,M |Xm = i, Zm = u,H)

= am(i, u)bm(i, u).

The marginal probability of the unobserved state, Xm, is then obtained as

P (Xm = i|H) /
KX

u=1

am(i, u)bm(i, u),

and this allows us to calculate the marginal probability distribution of the first site,

P (X1 = i|H).

Along similar lines we can calculate the joint marginal probability of the unobserved

states at sites m and m+ 1 as

P (Xm = i1, Zm = u1, Xm+1 = i2, Zm+1 = u2|H) / am(i1, u1)P (Zm+1 = u2|Zm = u1)

⇥P (Xm+1 = i2|Zm+1 = u2)bm+1(i2, u2).

This can then be used to calculate the transition probabilities we need

P (Xm+1 = i2|Xm = i1, H) =

PK
u1=1

PK
u2=1 P (Xm = i1, Zm = u1, Xm+1 = i2, Zm+1 = u2|H)

P2B

i2=1

PK
u1=1

PK
u2=1 P (Xm = i1, Zm = u1, Xm+1 = i2, Zm+1 = u2|H)

.

Calculation of the forward and backward probabilities can sometimes result in very small

probabilities that go below the lower limit for a floating point datatype. A standard

solution to this problem [13] involves rescaling the probabilities by an arbitrary constant

when probabilities become small and we implement this approach when needed.

9.5 Surrogate family phasing

Experience suggests that the “surrogate family” phasing idea in Impute2 whereby the

K haplotypes being conditioned upon at each iteration are chosen to be the closest K
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haplotypes to the current haplotypes works well over reasonably short regions around

5Mb long, but not as well across whole chromosomes. Our new method selects sub-

sets of haplotypes in local regions but carries out inference across whole chromosomes

at once. Within the framework of the SHAPEIT method we apply the model in over-

lapping chunks with the constraint that the pairs of consistent haplotypes must agree in

the overlapping regions between the chunks. As above, these steps relate to the Gibbs

sampling update of a single individual conditional upon the current haplotype estimates

of all other individuals. The method is implemented using the following steps.

1. The whole chromosome is divided up into consecutive non-overlapping segments of

B heterozygous sites. The boundaries of these segments stay constant through the

first two stages of iterations. The segments are then redefined after the pruning

and merging process. This is described in more detail in the next section.

2. The whole chromosome is divided up in a second way into overlapping windows of

length W Mb. Window size can be specified by the user. The windows are generally

much larger than the segments with each window containing many segments. The

overlapping regions between these windows consist of one segment, as defined by

step 1. The windows are determined using a stochastic algorithm that recursively

partitions the chromosome and results in a set of windows that are typically around

WMb in length. The windows are re-defined on each iteration so that the overlap-

ping segment between windows changes at each iteration. This reduces any bias

that might occur if a fixed set of windows was chosen.

3. Within the first window a subset of K haplotypes are chosen from H that are in-

formative for the phasing of G within the window. The haplotypes in H are scored

according to how similar they are to the current haplotype estimates for the indi-

vidual being updated. The K haplotypes with the lowest scores are selected. When

developing this algorithm we found it necessary to adjust this method to allow for

windows where the individual being updated shares two alleles identically by de-
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scent with another individual at a significant proportion of sites in the window.

This can happen due to cryptic relatedness between samples. In the following two

sub-sections we give details of a basic method of haplotype selection (Algorithm 1)

and an adjusted version (Algorithm 2) that is robust to cryptic relatedness and is

implemented in SHAPEIT2. The model is applied to all the segments in the first

window conditional upon the subset of K haplotypes. Then a pair of consistent

haplotypes is sampled across the window.

4. The model is then applied to the second window using a new set of K haplotypes

selected for that window. The sampling of consistent haplotypes across this window

is initialized in it’s first segment using the pair of consistent haplotypes in the last

segment of the first chunk and then the calculated transition probabilities are used

to sample further segments.

5. The method deals with all subsequent windows in the same way as the second

window until a complete sequence of consistent haplotypes across the whole chro-

mosome is sampled.

9.5.1 Algorithm 1

We rank each haplotype h in H by the distance between h and the current haplotype

guess G = (g1, g2), defined as

D(h) = min[hamming(h, g1), hamming(h, g2)],

where hamming(h, g) is the Hamming distance between haplotypes h and g i.e. the number

of alleles that di↵er between the two haplotypes g and h. If hamming(h, g) is small, that

means that h is similar to g and is likely to be useful for updating the haplotypes of

G. Conversely, if hamming(h, g) is large, that means that h di↵ers a lot from g, which

suggests that h may not be very informative for updating G. Thus, if we use only the

24

Nature Methods: doi:10.1038/nmeth.2307



haplotypes of H that have the smallest scores, we should be able to base the estimation

only on the most informative part of H. Note that the computation time required for

the calculation of this score for all the haplotypes in H is negligible compared to the

calculations involved in Appendix A. Pseudo code for the algorithm is given below.

Algorithm 1 Selection of the K best haplotypes

for all h 2 H do

Calculate D(h).

end for

Sort H by increasing D(h) values.

return K first haplotypes in H.

When developing this approach we found instances when Algorithm 1 did not perform

well where two individuals shared both alleles identically by descent (IBD) across a large

proportion of a given window. This can happen if the two individuals are closely related.

For example, if two sibs are included in the sample set then they will tend to share large

segments of the genome with an IBD count of two. We observed that use of Algorithm 1

resulted in high switch error rates for such pairs of samples in such regions. We tracked

this down to a convergence problem where each individual’s haplotypes are updated to

be close to identical to the haplotypes of the other individual at each iteration, which

tends to fix switch errors in these samples, and the algorithm can not move away from

this solution. To overcome this problem, we developed a refined the haplotype subset

strategy in order to be more robust to this case.

9.5.2 Algorithm 2

The main idea of this algorithm is to identify cases where we think that a given individual,

I, shares a large proportion of the window with an IBD count of two with the individual

being updated, G, and then make it less likely that the haplotypes of I are included in

the subset of K haplotypes. To do this we consider the two haplotypes of each individual

in turn I = (i1, i2) and compare them to the two haplotypes of G = (g1, g2). We look

for cases where there is close matching between distinct pairs of haplotypes in I and G.

25

Nature Methods: doi:10.1038/nmeth.2307



More precisely, we check for whether either of the following two conditions occur.

9.5.3 Matching conditions

1. hamming(i1, g1) < hamming(i1, g2) and hamming(i2, g2) < hamming(i2, g1)

2. hamming(i1, g2) < hamming(i1, g1) and hamming(i2, g1) < hamming(i2, g2)

Having identified these pairs of haplotypes we then look at the pattern of IBD sharing

across the window. We use g⇤1 and g⇤2 to denote the haplotypes of G that match i1 and

i2 respectively. So for condition 1 we would have g⇤1 = g1 and g⇤2 = g2 and for condition

2 we would have g⇤1 = g2 and g⇤2 = g1 respectively. We then look to see where i1 matches

g⇤1, where i2 matches g⇤2 and then at the overlap between this matching. This can be

summarised by the following three numbers

S(i1) = number of sites where i1 matches g⇤1

S(i2) = number of sites where i2 matches g⇤2

S(i1, i2) = number of sites where i1 matches g⇤1 AND i2 matches g⇤2

Given these measures we can define the proportion, p1, of sharing between i1 and g⇤1 that

is also shared between i2 and g⇤2

p1 =
S(i1, i2)

S(i1)
(1)

And similarly, the proportion, p2, of sharing between i2 and g⇤2 that is also shared between

i1 and g⇤1

p2 =
S(i1, i2)

S(i2)
(2)

This results in two measures p1 and p2 that are close to 1 when the overlap between

matches of i1 with g⇤1 and matches of i2 with g⇤2 is large. This is the situation we wish to

avoid. Conversely, they are close to 0 when this overlap is small. This situation is less

worrying for our algorithm as it means there less chance that there is a shared segment of

IBD=2 within the window. Our algorithm then chooses to exclude i1 from consideration

for the K subset with probability p1 and similarly to exclude i2 from consideration for

the K subset with probability p2.
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One caveat is that the proportions p1 and p2 depend a lot on the frequency spectrum of

the sites in the sense that if many sites are rare (for example when working with data

from sequencing studies), many sites will be homozygous for the reference allele, which

tends to inflate p1 and p2. To be more independent of the frequency spectrum of sites in

the sample, we calculate S(i1), S(i2) and S(i1, i2) only for sites where I and G are not

homozygous for the same allele.

The full algorithm in pseudo code is

Algorithm 2 Selection of the K best haplotypes robust to close relatives

Create an empty set of haplotypes W = ;.

for all I 6= G do

if Matching conditions 1 or 2 are satisfied then

Define the matching haplotypes g⇤1 and g⇤2.

Calculate p1 and p2.

Add i1 to W with probability 1� p1.

Add i2 to W with probability 1� p2.

end if

end for

For each haplotype in W calculate D(h) and sort W by increasing D(h) values.

return K first haplotypes in W .

27

Nature Methods: doi:10.1038/nmeth.2307



9.6 State pruning and segment merging

An iteration of our algorithm consists of updating all the individuals in a random order by

using the update step described in previous sections. The algorithm starts from random

haplotype estimates for each individual and performs three stages of iterations:

1. A first stage of burn-in iterations are run to find a better starting point. For the

analysis in this paper we have used 7 burn-in iterations. The only information that

is retained from these iterations are the haplotype estimates from the last iteration.

These are used as the initial estimates of the second stage of iterations.

2. A second stage of pruning iterations are then run in which the joint probabilities,

P (Xl = i, Xl�1 = j,H), for each individual are stored. For the analysis in this

paper we have used 8 pruning iterations. These haploid level probabilities are then

converted very easily into diploid level probabilities and these are then averaged

across the iterations. These joint probabilities then represent the set of likely paths

through the space of consistent haplotypes at this stage of the algorithm. We then

prune away sets of states that have low probability and try to merge together seg-

ments when only very few combinations of states across segments are favoured.

This defines a new (smaller) set of segments and a new (smaller) set of consistent

haplotypes within each segment and overall a more parsimonious representation of

the space of consistent haplotypes. This has the dual e↵ect of focussing attention of

subsequent iterations on the most likely set of haplotypes and increases computa-

tional e�ciency since the model space is reduced. Full details of the state pruning

and segment merging are set out in the following sub-section.

3. A third of stage with a larger number of main iterations are used to obtain a final

estimate of the transition probabilities. These haploid level probabilities are then

converted into diploid level probabilities and these are then averaged across the

main iterations. These conversion and averaging is the same as that used in

The haplotype estimate for each individual is then obtained by finding the most

likely sequence of haplotypes across the segments via a Viterbi algorithm. For the
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analysis in this paper we have used 20 main iterations.

9.6.1 Algorithmic details

Both the pruning and main iterations involve conversion of the haploid level state prob-

abilities to diploid level probabilities and subsequent averaging of these diploid level

probabilities. The details of these two steps are as follows

• Conversion to diploid probabilities. We convert the haploid state probabilities

to diploid state probabilities by considering all possible pairs of consistent haplo-

types. That is we consider pairs of consistent haplotypes X(1) and X(2) at sites l�1

and l with probabilities

P (X(1)
l�1 = i1, X

(2)
l�1 = i2, X

(1)
l = j1, X

(2)
l = j2|H) = P (X(1)

l�1 = i1, X
(1)
l = j1|H)

⇥P (X(2)
l�1 = i2, X

(2)
l = j2|H) (3)

such that A(l�1)i1 + A(l�1)i2 = Gl�1 and Alj1 + Alj2 = Gl. If there are B = 3

heterozygous sites in each segment then there will be 2B = 8 consistent haplotypes

in each segment and within each segment there will be 2B�1 = 4 pairs of consistent

haplotypes. Each pair of consistent haplotypes in the segment that contains site l�1

can be paired with each pair of consistent haplotypes in the consecutive segment

containing site l in two ways so that there will be 32 possible joint states at sites

l � 1 and l at the diploid level.

• Averaging step. During the pruning and main iterations we store the diploid

state probabilities between segments as described by Eq.3. So for nth iteration

we store the probabilities Pn(X
(1)
l�1 = i1, X

(2)
l�1 = i2, X

(1)
l = j1, X

(2)
l = j2|H) for all

possible quadruplet (j1, j2, i1, i2) of labels. We then average these joint probabilities

to obtain

Pavg(X
(1)
l�1 = i1, X

(2)
l�1 = i2, X

(1)
l = j1, X

(2)
l = j2|H) =

1

V

VX

n=1

Pn(X
(1)
l�1 = i1, X

(2)
l�1 = i2, X

(1)
l = j1, X

(2)
l = j2|H)

It is su�cient to consider only transitions between sites l � 1 and l that straddle

the boundaries of segments because within each segment no changes in state are
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permitted.

During the second stage of pruning iterations we use the averaged diploid probabilities

to obtain a more parsimonious representation of the space of haplotypes underlying a

genotype. The precised details of this process are given in the following two steps.

• Pruning step. We calculate which states account for the 99% of the total prob-

ability. To do this we order the probabilities in decreasing order and then discard

all states after the nth state if the cumulative sum of the first nth state probabil-

ities are greater than 99%. For example, we would call states (i1, i2) and (j1, j2)

“connected” if Pavg(X
(1)
l�1 = i1, X

(2)
l�1 = i2, X

(1)
l = j1, X

(2)
l = j2|H) is within the top

99% of cumulative probabilities of all such possible states. All other states pairs

across segment boundaries are labelled “unconnected”. We carry this out across

all segment boundaries and then we remove diploid states in each segment that are

“unconnected” to any diploid states in the two flanking segments. It may be the

a diploid state within a segment is unconnected to any state in one the flanking

segments but does have connections to diploid states in the other flanking segment.

In this case, we retain the state and add in the connection to the diploid state that

has the highest probability.

• Merging step. We consider each pair of consecutive segments and count the

number of remaining diploid states. If this number is less than or equal to 8 then

we merge the segments. That is we use the remaining diploid states to calculate a

new set of consistent haplotypes that span both segments.

This process defines a new set of segments and a new set of consistent haplotypes within

each segment. This new “model space” is used for all subsequent iterations.

9.7 Multi-threading and recommendations for whole genome

phasing

For increased computational e�ciency both the SHAPEIT1 and SHAPEIT2 algorithms

have been implemented using multi-threading via POSIX Threads. The user can specify
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the number of threads to be used on the command line (the default is 1). This feature

is especially useful when multiple CPUs with multiple cores are available on a compute

server as it allows these resources to be used in full. For example, a machine with two

quad-core CPUs would allow 8 threads to be used and each job would finish around 8

times faster. We have frequently taken advantage of servers with two CPUs each with 12

cores to run phasing jobs using upto 24 threads. The phasing of the Illumina Omni2.5

genotype data produced by the 1000 Genomes Project was carried out in this way.

When phasing a whole genome it makes sense to provide more compute power for larger

chromosomes. For example, on a server with 60 cores we would suggest distributing

compute resources according to chromosomal size i.e. chromosomes 1 and 2 using 5

cores each, chromosomes 3-6 using 4 cores each, chromosomes 7-12 using 3 cores each,

chromosomes 13-18 using 2 cores each and chromosomes 19-22 using 1 core each. In this

way each of the 22 compute jobs needed should take roughly the same amount of time

to run.

Each single thread is used to process a single individual, trio or duo at a time. This

involves calculating the transition probabilities between segments for the set of consistent

haplotypes and then sampling a new set of consistent haplotypes. When multiple threads

are used this means that multiple individuals, trios or duos can be updated at once. This

does mean that the updates we use in this case are not strictly Gibbs sampling updates

where each sample is updated conditionally upon the current haplotype updates of all

other samples. We have never found this to be a problem on the datasets we have analysed

and the results in this paper confirm this.

9.8 Metrics for comparing methods

All computational phasing methods will make errors in the estimation of haplotypes and

the probability of making at least one error will increase with the length of the sequence

being analysed. Across a whole chromosomes this probability will be 1 in all but the most

trivial examples where samples are highly inbred. For this reason many previous phasing

comparisons have used the switch error metric (SER - switch error rate) [10, 11] which
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measures the proportion of changes (or switches) that need to be applied to the estimated

haplotypes in order to make them agree with the truth. This metric is independent of the

length of sequence being analysed. In our experiments we also calculated the locations

of switches for each estimated set of haplotypes and report the mean distance between

switches (MSD - mean switch distance). This metric gives a clear sense of the average

length of correct haplotype segments that each method will produce and can be more

interpretable than switch error rate. We also recorded the running times taken by each

of the methods.
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10 Supplementary Note 1 - Datasets

10.1 European X Chromosome dataset

This dataset consisted of 3,481 individuals with European ancestry from the cohorts

GRIV 300K (355 samples), ACS 300K (411 samples), DESIR 300K (697 samples), Il-

lumina Control 1M (49 samples), Illumina Control 550K (1,579 samples) and Illumina

Control 300K (370 samples) (downloaded from www.illumina.com). On these cohorts,

we (1) extracted only the SNPs included on the Illumina 300K chip, (2) extracted the X

chromosomes, (3) removed SNPs with missing data rate above 0.05 and with MAF under

0.01, (4) removed individuals with missing data rate above 0.2, (5) aligned alleles to be

relative to the + strand of the human reference genome, (6) imputed sexes according

to the level of heterozygous SNPs, (7) removed females and finally (8) set all remaining

heterozygous SNPs as missing. This resulted in 1,850 male phase known haplotypes at

7,821 SNPs. These haplotypes were then randomly paired to produce 925 phase known

samples.

10.2 WTCCC2 X Chromosome dataset

We used 1,480 male samples from the WTCCC2 control dataset. These samples were

genotyped on the A↵y 6.0 genotyping chip. We used the merged and filtered dataset

released by the project. The male haplotypes were randomly paired to produce 740

phase known samples at 29,227 SNPs.

10.3 Vietnamese chromosome 22 dataset

597 trios and 35 duos were extracted from a cohort of Vietnamese families who were geno-

typed in the context of leprosy with Illumina 660K human beadchips. This cohort is an

extended version of previously described studies [1, 2]. The various software tested were

used to phase the 1,229 parents at 7,985 SNPs that passed QC filtering on chromosome

22. Respective switch error rates were measured between heterozygous sites for which
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the phase was known through the Mendel transmission rules (i.e. sites that are not triple

heterozygous for trios and not double heterozygous for duos). When we combined this

dataset with the 1000 Genomes Phase I haplotypes as an external reference we removed

64 SNPs as these were not present in the 1000 Genomes dataset or had inconsistencies

in the alleles reported.

10.4 1000 Genomes Illumina Omni2.5 dataset

We obtained the chromosome 20 estimated haplotypes from the 1000 Genomes samples

genotype using the Illumina Omni2.5 chip from the ftp site

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/

20111117 omni genotypes and intensities/. A detailed summary of this dataset is

given below in Table S1.

10.5 1000 Genomes Phase I haplotypes

We obtained the chromosome 20 estimated haplotypes from the 1000 Genomes samples

sequenced at low-coverage (⇠ 4X) from the ftp site

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/

10.6 High-coverage sequencing data on a European mother-

father-child trio

We used a CEU father, mother and child trio identified by respective Coriell ID NA12891,

NA12892 and NA12878. This trio was deeply sequenced by Illumina with paired end reads

of 100bp separated by average insert sizes of repectively ⇠155bp, ⇠140bp and ⇠92bp. For

NA12891, NA12892 and NA12878, there was respectively ⇠2.5Gb, ⇠2.7Gb and ⇠2.9Gb

of sequence data produced only for chromosome 20. After mapping the reads to reference

genome HG18 we ended up with a depth of coverage of respectively ⇠39x, ⇠42x and

⇠44x only for mapped reads. The 3 corresponding BAM files were sorted using samtools
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v0.1.17, and prepare for variant calling in 3 steps using GATK v1.4-11: (1) reads were

realigned locally around indels previously discovered by the 1000 Genomes Project, (2)

duplicate reads were removed, and (3) base quality scores were recalibrated separately

for each lane. For variant calling, we only considered the 824,876 SNP positions reported

for chromosome 20 in the interim release of the 1000 Genomes project of June 2011, and

used samtools v0.1.17 to calculate Genotype Likelihoods only at those sites. Then, we

control the quality of the sites using filters used in the pilot phase of the 1000 Genomes

Project:

1. The depth of coverage combined across all trio members at a site must be between

50% (⇠ 60x) and 150%(⇠ 200x) of the average depth, and the root mean squared

mapping quality score of covering reads is at least 30 (RMS � 30 ).

2. The posterior probability for at least one non-reference allele exceeds 0.999 (SNP

call quality score � 30).

3. The alleles at a site must be consistent with Mendel inheritance rules across the

trio. When the 3 individuals are not all heterozygous, the phase was determined

and the site was flagged as phased.

We then merged the resulting trio genotype dataset with the 1094 individuals of the

1000 Genomes project of June 2011 giving thus a dataset containing 1097 individuals

defined on 731,749 SNPs. We then extracted the 384 individuals with European ancestry

(populations CEU, FIN, GBR, IBS and TSI) and kept only polymorphic sites, resulting in

a set of 294,658 SNPs. On this dataset, we measured phasing accuracy by first excluding

the child NA12878, then proceeding with phasing using SHAPEIT or BEAGLE and

finally identifying switch errors at sites previously phased using Mendel inheritance rules

(cf. step3 above).
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ID Population Group #individuals

ACB African Caribbean in Barbados AFR 75 (44)

ASW African ancestry individuals from SW US AFR 65 (44)

MKK Maasai individuals from Kenya AFR 31 (31)

LWK Luhya individuals AFR 99 (1)

YRI Yoruba individuals AFR 105 (99)

CLM Colombian in Medellin, Colombia AMR 72 (69)

MXL Mexican individuals from LA California AMR 70 (59)

PEL Peruvian in Lima, Peru AMR 70 (68)

PUR Puerto Rican in Puerto Rico AMR 76 (70)

CDX Chinese Dai in Xishuangbanna, China ASN 100 (0)

CHB Han Chinese in Beijing ASN 100 (100)

CHD Chinese in metropolitan Denver, CO ASN 1 (0)

CHS Han Chinese South ASN 100 (100)

GIH Gujarati India individuals from Texas ASN 93 (0)

JPT Japanese individuals ASN 100 (0)

KHV Kinh in Ho Chi minh City, Vietnam ASN 97 (40)

CEU CEPH individuals EUR 102 (4)

FIN Finnish individuals from Finland EUR 100 (0)

GBR British individuals from England and Scotland EUR 100 (1)

IBS Iberian populations in Spain EUR 98 (97)

TSI Toscan individuals EUR 100 (0)

Table S1 Detailled description of the di↵erent populations included in the Omni 2.5

dataset. The first column gives the acronym used to called the population. The second

column gives the ethnical and geographical origin of the populations. The third column

the continental group that were assign to each population. And finally, the fourth column

gives the number of founder individuals in each population and between brackets, the

number of individuals for which phase is partially known using Mendel rules.
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11 Supplementary Note 2 - Experiments and Results

We have carried an extensive set of analyses using a variety of large sample, whole

chromosome datasets to investigate the performance of SHAPEIT2 in comparison with

SHAPEIT1 and other methods. We used real datasets from SNP genotyping chips with

low, medium and high SNP density, as well as SNP genotype data derived from low-

coverage sequencing. Details of all the datasets are given in the previous section.

11.1 Settings used when running other methods

SHAPEIT1 SHAPEIT1 is available from

http://www.shapeit.fr/.

SHAPEIT1 v1.r532 was run with a total of 70 MCMC iterations: 10 burn-in (–burn 10),

10 pruning (–prune 10) and 50 main (–main 50).

Impute2 Impute2 is available from

https://mathgen.stats.ox.ac.uk/impute/impute v2.html.

Impute2 v2.1.2 was run using the phase mode (-phase) with a total of 70 MCMC itera-

tions: 20 burn-in (-burnin 20) and 50 main (–iter 70).

MaCH MaCH is available from

http://www.sph.umich.edu/csg/abecasis/MACH/index.html.

In all experiments, MaCH v1.0.18 was run using the phase mode (–phase) with 70 MCMC

iterations (–rounds 70).

Beagle Beagle is available from

http://faculty.washington.edu/browning/beagle/beagle.html.

Beagle v3.3.2 was run using default parameters.

fastPHASE Fastphase is available from

http://stephenslab.uchicago.edu/software.html#fastphase.
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FastPHASE v1.4 was run using default parameters.

HAPI-UR HAPI-UR is available from

http://code.google.com/p/hapi-ur/.

HAPI-UR v1.01 was run as advised by the authors, that is:

1. by using a window size value (-w) matching the SNP density of the dataset; 64 for

the European X Chromosome dataset (300K chips), 73 for the WTCCC1 derived

datasets (500K chip), 79 for the Vietnamese chromosome 22 dataset (650K chip),

and 110 for the WTCCC2 derived dataset (1M chip). For the 1000 Genomes Illu-

mina Omni2.5 dataset (2.5M SNPs), the recommended value (w=184) causes the

program to crash so we gradually reduced the window size value until it works and

used 150.

2. by repeating the haplotype estimation three times for each dataset and making a

concensus of the resulting haplotype etimates using the vote-phase tool provided

on the HAPI-UR website.

11.2 Optimal window size

The performance of the “surrogate family” model of SHAPEIT2 is controlled by two

parameters: the size of the window (W ) and the number of conditioning haplotypes used

in each window (K). It is well established that increasing K increases accuracy. We

used the WTCCC2 X chromosome dataset to investigate how changing W influences

the performance on typical GWAS data. We applied SHAPEIT2 with a fixed value of

K = 100 and di↵erent values of W ranging from 100kb to 20Mb and measured accuracy

for each W value using SER. The results shown in Fig S1 suggest that the optimal

value for GWAS data is about 2Mb window. We can see a clear decrease in SER from

W = 100kb toW=2Mb, then a slow increase fromW=2Mb toW=20Mb. In the following

experiments on GWAS based datasets, we applied SHAPEIT2 using W = 2Mb.
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11.3 Low and medium density SNP microarray datasets

We compared methods using three datasets consisting of whole chromosomes of data

from real genome-wide SNP chips typed in sample sizes representative of real GWAS

studies. The first dataset consists of male X chromosome data from several European

studies which were randomly paired to create 925 unrelated phase-known diploid samples

with 7,821 SNPs. The second dataset consists of 740 samples with 29,227 SNPs from the

A↵ymetrix6.0 array using randomly paired male X chromosome data from the Wellcome

Trust Case Control Consortium (WTCCC2) control dataset. The third dataset consists

of 1,229 phase-known samples with 7,985 SNPs on chromosome 22 of the Illumina 660K

array created from a set of Vietnamese father, mother and child trios

We applied the methods SHAPEIT1, SHAPEIT2, Impute2, MaCH, Beagle and Fast-

phase to all three datasets. For the SHAPEIT methods, Impute2 and MaCH we varied

the number of conditioning states used by each method (K), although we did not run

MaCH and Impute2 for K > 200 on the WTCCC2 and Vietnamese datasets as these

methods would have taken too long to run. It is important to note at this stage the

number of conditioning states (K) used by each method has a di↵erent interpretation.

In SHAPEIT2 it is the number of “surrogate family” haplotypes chosen locally in each of

the windows. In Impute2 it is the number of “surrogate family” haplotypes chosen across

the whole chromosome. In MaCH it is the number of random conditioning haplotypes

chosen across the whole chromosome at each iteration. In SHAPEIT1 the full set of

possible conditioning haplotypes are collapsed locally into a graph with K states. Beagle

and Fastphase do not have such a parameter so were run using their default settings. We

ran all methods on the whole chromosome at once.

The results in Figure 1 (a-b) and Supplementary Figures 1-2 show that SHAPEIT2 pro-

duces a clear increase in accuracy over SHAPEIT1 and the other approaches. On the

European X chromosome (a) dataset, SHAPEIT2 with W=2Mb produces a MSD of just

under 1Mb using just K = 50 conditioning states while SHAPEIT1 and Impute2 needs

K = 300 conditioning states to produce the same level of accuracy. Due to the linear

scaling in K of the SHAPEIT algorithms this means that on this dataset SHAPEIT2 with
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W=2Mb is at least 6 times faster than SHAPEIT1 for the same level of accuracy. On the

WTCCC2 X chromosome dataset (b) with K = 200 conditioning states SHAPEIT1 pro-

duces a MSD of 1.17Mb and increases to 1.25Mb when using SHAPEIT2 with W=2Mb.

This is an increase of 7%. The MSD for Impute2, MaCH, Beagle and fastPHASE are

1Mb, 0.96Mb, 0.86Mb and 0.75Mb respectively. On the Vietnamese dataset (c) with

K = 200 conditioning states SHAPEIT1 produces a MSD of 487kb and increases to

597kb when using SHAPEIT2 with W=2Mb. This is an increase of 23%. The MSD for

Impute2, MaCH, Beagle and fastPHASE are 416kb, 380kb, 360kb and 292kb respectively.

When increasing the size of the window to W=5Mb (Supplementary Figures 1-2), we can

see that accuracy increases in all cases on low to medium density datasets confirming the

accuracy pattern obtained in Fig S1.

11.4 Performance as sample size increases

We also investigated how performance changes with increasing number of samples. We

created three test datasets by combining 60 CEU HapMap2 samples with (a) 1480 control

samples from the 1958 Birth Cohort, (b) 2938 samples from the 1958 Birth Cohort and

UK Blood Service cohort, and (c) 8,837 samples from the 1958 Birth Control, UK Blood

Service, Type 1 Diabetes, Type 2 Diabetes and Hypertension cohorts. Only SNPs on

chromosome 10 and on both the A↵y 500k chip used in the WTCCC1 study and in

HapMap2 were combined together. The alleles at all SNPs were reported relative to the +

strand of the human reference sequence. This resulted in a dataset with 23,143 SNPs. The

60 HapMap2 samples are parents of mother-father-child trios that have highly accurate

haplotype estimates from trio-based phasing [11]. We ran SHAPEIT1, SHAPEIT2 with

W = 5Mb and W = 2Mb and Beagle on these datasets and compared the haplotype

estimates of the 60 CEU samples to the trio-based estimates of these individuals. In this

way we can assess the impact of dataset size on accuracy and investigate dependence of

accuracy on the combination of samples size, number of conditioning states and window

size. The results in term of SER and MSD are shown in Figure 1d and Figure S2.

The results show that SHAPEIT2 with both W = 5Mb or W = 2Mb outperforms Beagle
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on all three datasets for all values of K � 50 and outperforms SHAPEIT1 for all values

of K. There seems to be less benefit in increasing K beyond 200 for SHAPEIT2. The

results of both SHAPEIT2 and Beagle improve as sample size increases but the accuracy

of SHAPEIT1 seems to decrease as sample size increases, although this e↵ect is reduced

if a large value of K is used.

11.5 Using a reference set of haplotypes

We also investigated whether it is possible to increase performance by adding an external

reference set of haplotypes to the set of possible conditioning haplotypes used at each

stage of the SHAPEIT2 algorithm. To do this we worked with the Vietnamese dataset on

chromosome 22. We took subsamples of this dataset of sizes 10, 20 50, 100, 200, 500 and

1000 and phased these datasets using three di↵erent ways of running the SHAPEIT meth-

ods. Firstly, we took a very simple approach in which we estimated the haplotypes using

just the reference set of haplotypes and ignoring all the other unphased samples in the

dataset. This method requires just one iteration and we use the SHAPEIT1 (K = 200).

model to do this. This approach is very quick but does not use all of the available infor-

mation in the whole dataset as it cannot use the information in other samples. Secondly,

we ran SHAPEIT2 (K = 200, W=5Mb) on the Vietnamese samples and allowed the

method to use the external haplotypes. We used the latest release of the 1000 Genomes

haplotypes (Feb 2012) as the external reference set. When updating an individuals haplo-

type estimates we allow the haplotype subset selection method choose from the combined

set of haplotypes from all other samples and the 1000 Genomes haplotypes. In addition,

we initialise the phase of the Vietnamese samples using the haplotype estimates from

our simple and quick method described above. This initialisation replaces the 10 burn-in

iterations that we would normally have used. Thirdly, we ran SHAPEIT2 (K = 200,

W=5Mb) without using an external reference panel. For each of the three methods we

measured the SER of the estimated haplotypes.

Supplementary Figure 5 shows the results of our assessment of whether using an external

reference set of haplotypes can increase accuracy. The plot shows that when the number
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of unphased samples is low (less then 100) then the addition of the 1000 Genomes set of

haplotypes (red line) can improve accuracy relative to the approach of not using the ex-

ternal reference (black line). As the sample size goes above 100 we find that the approach

of using the 1000 Genomes reference dataset does slightly worse than the approach of

not using the reference set. The fast approach of phasing each sample one at time using

only the external reference set (blue line) does better than phasing the dataset without

using an external reference sample sizes lower than 50 but does not quite reach the levels

of accuracy of achieved by the full MCMC approach that uses the external reference.

There are at least two factors that might explain why use of an external reference set

slightly degraded performance above a sample size of 100. First, the 1000 Genomes

reference set of haplotypes are derived from low-coverage sequencing data and have been

constructed using imputation and may contain allele errors and phasing errors. These

errors might have a downstream e↵ect on the phasing of the Vietnamese samples if these

haplotypes are included in conditioning set chosen by the “surrogate family” phasing

approach.

Second, in general it makes sense that when phasing a Vietnamese sample the best set

of conditioning haplotypes to use will be other Vietnamese haplotypes as they have the

best chance of containing shared haplotype diversity with the sample. When presented

with a set of 1000 Genomes haplotypes and a set of current haplotype estimates of other

Vietnamese samples our method may choose a mixture of haplotypes from these two

sources, when it might have been better to choose just from the Vietnamese set. Since

we initialize the haplotype estimates of the Vietnamese samples using only the 1000

Genomes reference set it may be that this causes a bias that is di�cult to correct in

subsequent iterations. Of course, the genome is large and in a given region the converse

might be true. It might be the case that the ancestry of a given Vietnamese sample is

closer to some of the 1000 Genomes samples so that haplotype estimation is improved by

using the external reference. It could be quite di�cult to precisely determine the reasons

for the small di↵erences we have observed and would require more space and analysis

than we currently have in this paper. In scenarios where the ancestry of the samples

being phased is less clear cut the use of an external reference could be a good approach.

42

Nature Methods: doi:10.1038/nmeth.2307



The approach of phasing each sample one at a time using just the external reference did

have good performance in small samples and since it is very quick (approximately 70

times faster than our full MCMC approach) it might be of use to researchers working

with small sample sizes to obtain a quick “first pass” set of haplotypes.

11.6 High density SNP microarray dataset

We carried out a methods comparison using the data from a denser Illumina Omni2.5

SNP microarray. The 1000 Genomes Project have used this chip to obtain genotypes

on 2,123 samples across 14 di↵erent populations. These samples allow us to assess the

performance of our method when applied to datasets that contain samples with di↵erent

ancestry. The dataset consists of a mixture of unrelated samples, mother-father-child trios

and parent-child duos. We took the 1,754 founder individuals across the whole dataset

and applied SHAPEIT1, SHAPEIT2 with both W = 5Mb and W = 2Mb, Beagle and

HAPI-UR(3x). We only used these three methods as they are the only methods that

can handle such high-density datasets across whole chromosomes in reasonable amounts

of computing time. The methods were run only on data from chromosome 20 which

consisted of 54,267 SNPs. To assess the method we took the haplotype estimates from

the 696 samples that were parents of either trios of duos in the full dataset and compared

them to haplotype estimates dictated purely by Mendel rules. A large proportion of sites

will have phase determined in this way and provide an unbiased set of true haplotypes

for methods comparison. Sites that did not have their phase determined by Mendel rules

were excluded when calculating the switch errors of the estimated haplotypes. The results

are shown in Figure 1c and Supplementary Figure 2. We find that SHAPEIT2 produces

a large boost in accuracy over SHAPEIT1 and Beagle. With K = 200 conditioning

states and W=5Mb SHAPEIT2 (MSD = 400kb, SER = 1.9%) increases accuracy by 30%

relative to SHAPEIT1 (MSD = 308kb, SER=2.4%), increases by 39% relative to Beagle

(MSD = 287kb, SER=2.6%) and increases by 40% relative to HAPI-UR(3x) (MSD =

284kb, SER=2.6%) When using smaller window sizes of W = 2Mb instead of W = 5Mb,

SHAPEIT2 gets slighlty better results (MSD = 421kb, SER = 1.8%).
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11.7 Haplotype estimation in sequencing studies

We wanted to evaluate the performance of our new method when SNP density reaches

near maximum levels, as would be the case if SNP genotypes were derived by sequencing.

To do this we considered SNP genotype calls made from the Phase I of the 1000 Genomes

Project on chromosome 20 and designed the two following distinct experiments.

11.7.1 Comparison to phase known sites on the Illumina Omni2.5M dataset

The 1,094 Phase I individuals are all included in the Illumina Omni2.5M dataset (see

previous subsection). Usefully 418 of them have also relatives in the larger Omni2.5

dataset of 2,123 samples, allowing us to determine true phase for them using Mendel

rules at sites that are in both Phase I and Omni2.5. We re-phased the 1,094 individuals

over 12 Mb of the chromosome 20 (39Mb to 51Mb) using SHAPEIT2 with a grid of

parameter values where the size of the window ranges from 100kb to 5Mb and the number

of conditioning haplotypes ranges from 100 to 500. We applied Beagle as well on this

dataset using default settings. Additionally, we extracted, for the same 12Mb region, the

haplotypes released by the 1000 Genomes Project. To avoid any edge e↵ect, we measured

phasing accuracy only in the central 10Mb region. The results are shown in Figure S3.

We find that the best window size for sequencing data seems to be comprised between

W=0.2Mb and W=0.4Mb, and SHAPEIT2 with K = 100 reaches the accuracy of the

haplotypes released by the project using windows of this size. SHAPEIT2 with K = 200

and K = 500 provide even better haplotypes as soon as the windows are smaller than

respectively 2Mb and 5Mb. Beagle produces substantially lower quality haplotypes than

the o�cial 1000 Genomes haplotypes and the best SHAPEIT2 runs. All these results

suggest that the best window size value is W=0.3Mb.

These analyses suggest that a more accurate set of 1000 Genomes haplotypes could be

obtained by re-phasing the 1000 Genomes Phase 1 genotypes using SHAPEIT2 with a

high value of K.
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11.7.2 Comparison to phase known sites in a trio sequenced at high-coverage

In a second experiment, we took the SNP genotypes from the 381 European samples in

the Phase 1 dataset and combined it for the whole chromosome 20 with the genotypes

of the parents of a mother-father-child trio sequenced at high-coverage (⇠130x across all

three individuals) by Illumina. We only used genotypes at the non singletons SNPs in

the Phase 1 dataset. This resulted in a dataset with 294,658 SNPs that were polymor-

phic in the 383 samples. We estimated haplotypes from this dataset using SHAPEIT2

with K = 100 conditioning haplotypes and windows of W=0.3Mb, W=0.5Mb, W=1Mb,

W=2Mb and Beagle using default settings. Then, we compared the estimated haplo-

types of the trio parents to a set of haplotypes derived using family information from

the high-coverage genotype calls. The results are shown in Supplementary Table 1. We

find that SHAPEIT2 with W=0.3Mb increased the MSD compared to Beagle by ⇠ 62%

(SHAPEIT2 MSD=187kb, Beagle MSD=115kb).

11.8 Performance on multi-population datasets

Genowide SNP genotypes are often collected from multiple populations, especially for

the purposes of population genetic analyses. The Illumina Omni2.5M dataset is a perfect

example of such study design since it contains individuals from 14 populations (Table S1).

We investigated the performance of each method stratified by population. All individuals

were phased together using SHAPEIT2 with K = 200 and W=5Mb, SHAPEIT1 with

K = 200 and Beagle. Then, we measured SER on the subset of 696 individuals for which

phase can be determined using Mendel rules, and regrouped the individuals according to

the 10 distinct populations they belong to. Note that some populations were discarded

if the number of phase known individuals was less than 10. The results are shown in

Supplementary Figure 7. SHAPEIT1 performs equally well as Beagle for most of the

populations but substantially outperforms Beagle in populations with some proportion

of African ancestry (YRI, ASW, ACB). SHAPEIT2 outperforms clearly both SHAPEIT1

and SHAPEIT2 for all populations. For African populations, Beagle, SHAPEIT1, and

SHAPEIT2 give a SER of 2.7%, 1.9% and 1.5% respectively.
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A question that often arises in this context of multi-population datasets concerns the

phasing strategy to be adopted in order to get the best possible set of haplotypes; should

all populations be phased simultaneously (scenario A) or separately according to some

predefined continental groups (scenario B)? The advantage of using the largest sample

size possible is that this is known to increase phasing accuracy. However, it is also known

that LD patterns can vary substantially across di↵erent populations and thus could be

a confounding factor for phasing. We assessed this question on the Illumina Omni2.5M

dataset using SHAPEIT2. To mimic scenario A, we phased the 1754 individuals all to-

gether using K = 100 conditioning haplotypes, windows of W=5Mb and without any

ancestry consideration. Then, we measured phase accuracy on the 697 duo/trio parents

for which very accurate phase can be determined through Mendel rules. To mimic sce-

nario B, we first classified the 1754 individuals in the following 4 majors ethnic groups :

African (AFR), American (AMR), Asian (ASN) and European (EUR) containing respec-

tively 375, 288, 591 and 502 individuals (Table S1). Then, we phased each group sepa-

rately using the same model parameters (K = 100,W=5Mb) and we measured phasing

accuracy for respectively 189, 267, 141 and 104 trio/duo phased individuals. The results

are shown in Supplementary Figure 6 where we plotted the per-individual switch error

percentages obtained for scenario B against those obtained for scenario A. Individuals are

coloured according to the group (AFR, AMR, ASN and EUR) they belong to. Overall,

phasing accuracy is substantially reduced when phasing populations all together. When

examining the phasing accuracy per individual group, one can notice that the improve-

ment is mainly achieved for the AMR group, in a lesser extent for the EUR and AFR

groups and not at all for the ASN group. This suggests that increasing the size of the

sample should be prioritized when using SHAPEIT2 even though individuals do not al-

ways share common ancestries. Moreover, this illustrates three main properties of the

surrogate family model used in SHAPEIT2. First, it gets rid of any confounding e↵ect

due to mixing di↵erent LD patterns, as illustrated by the fact that none of the groups

shows an increased error rate. That means that in the worst case of scenario A, the

same conditioning haplotypes are chosen as in scenario B. Second, it can slightly improve

accuracy in some cases as illustrated by the results obtained for AFR and EUR. This is
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probably due to the increasing size of the set of haplotypes from which the conditioning

haplotypes are chosen. And third, it can even greatly improve accuracy when dealing

with admixed individuals as illustrated by results for the AMR group. This group con-

tains individuals with mixed ancestries of Native American, African and European. In

this particular case, the conditioning haplotypes in a window are chosen according to the

local ancestry of this window, thus making use of haplotypes of other AMR individuals

but also of European (EUR) and African (AFR) origins when required.

11.9 Comparison with partition-ligation strategies

An alternative strategy for phasing whole chromosomes would be to run a phasing method

on overlapping regions of the chromosome. Haplotypes estimated in each region could

then be joined together to form a set of haplotypes across the whole chromosome. This

is the strategy recommended when using Impute2, as this method is designed to work

on regions of up to around 5Mb in size. The advantage of this strategy is that it can

be trivially parallelized on a compute cluster with many cores. The disadvantage is that

it may be more more complicated to set up, the ligation step needs to be carried out

which may cause errors. The strategy is also somewhat wasteful in the sense that the

overlapping regions of the regions (which do need to be a reasonable size) are phased

twice. We refer to this strategy as partition-ligation (PL). Any phasing method can be

used to phase each region.

We recommend that SHAPEIT2 is used to phase whole chromosomes using one single

compute job. When multiple cores are available the multi-threading option can be used

to take advantage of them. This approach is much simpler to run, requiring just one

compute job per chromosome, and it does not require a ligation step.

We compared the accuracy and computational burden of three strategies (a) PL using

Impute2 (K=100) (b) PL using SHAPEIT2 (K=100) (c) SHAPEIT2 run as one job per

chromosome. We applied these methods to the European chromosome X dataset, the

WTCCC2 chromosome X dataset, the Vietnamese chromosome 22 dataset and the 1000

Genomes Illumina Omni2.5 dataset. For both the PL strategies, we split the datasets
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into 5Mb chunks across the chromosome and created overlaps between the chunks by

extending both boundaries by 0.25Mb. Then, we phased each resulting 5.5Mb regions

and ligated consecutive chunks in the following way.

Let hilk denote the jth haplotype of individual i fr For each pair of consecutive chunks

in each individual we considered the overlapping haplotypes

Let hl = {hl1, hl2} and hl+1 = {h(l+1)1, h(l+1)2} denote the two haplotypes from the

overlapping region between chunks l and l + 1. We measure the hamming distance

between haplotypes for the two possible alignments of the two chunks and use that

measure to decide which is the best alignment. More specifically, we calculate d1 =

d(hl1, h(l+1)1) + d(hl2, h(l+1)2) and d2 = d(hl1, h(l+1)2) + d(hl2, h(l+1)1), where d(h, g) is the

Hamming distance between two haplotypes h and g. If d1 < d2 we choose to align hl1

with h(l+1)1 and hl2 with h(l+1)2, otherwise we align hl1 with h(l+1)2 and hl2 with h(l+1)1.

The details of how the haplotypes are aligned are also important. If we decide to align

hl1 with h(l+1)1 then we do the alignment at the midpoint of the overlapping region i.e we

exclude the 125kb at the end of chunk l and at the start of chunk l+1 and then join the

first haplotypes from chunk l with the first haplotype from chunk l + 1. This attempts

to avoid edge e↵ects.

The results of this analysis are shown in Figure 1f in the main paper and show that on all

4 datasets the most accurate strategy is to run SHAPEIT2 on the whole chromosome at

once. The next best strategy is to run PL using SHAPEIT2. Running PL using Impute2

is the worst strategy. Interestingly, the di↵erence in SER between the two PL strategies

is almost the same as the di↵erence between the two SHAPEIT2 strategies on all of the

datasets except the Vietnamese dataset.

The di↵erence in CPU time is as expected. Since Impute2 scales quadratically with K we

see that PL with Impute2 takes longer to run than either of two SHAPEIT2 approaches.

There is very little di↵erence between the CPU time of running PL with SHAPEIT2 or

running SHAPEIT2 on whole chromosomes.
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11.10 Comparison of Algorithm 1 and 2 for haplotype selection.

We also used the Illumina Omni2.5M dataset to compare both Algorithm 1 and 2 for

selecting conditioning haplotypes. Figure S4 shows the switch error rate of each of the

696 samples using both methods. The plot shows that some individuals have very high

switch error rates using the basic method implemented in Algorithm 1 and the error rate

on these individuals is reduced to normal values when using Algorithm 2. Figure S5 shows

the per-sample switch error rate of SHAPEIT1 versus SHAPEIT2. This figure further

illustrates that SHAPEIT2 provides improves phasing accuracy compared to SHAPEIT1.

SHAPEIT1 does not use a haplotype subset selection method so is relatively more immune

to the problem of samples sharing long segments with an IBD count of 2. This can be seen

in Figure S5 as SHAPEIT1 does not produce large switch error rates on some samples but

is highly correlated with the SHAPEIT2 algorithm that uses Algorithm 2 for haplotype

selection.

11.11 Impact on downstream imputation quality

A major use of phasing is haplotype estimation of GWAS samples in order to speed up

imputation from large reference panel of haplotypes such as 1000 Genomes. The current

recommendation is that GWAS samples are first ‘pre-phased’ using the most accurate

method available. The subsequent imputation step (which involves imputing alleles from

one set of haplotypes into another set) is fast. As new haplotype reference sets become

available imputation can be re-run much more e�ciently.

Given the widespread use of imputation many groups it is of interest to investigate the

impact of phasing accuracy on downstream imputation. To do so, we used 2490 WTCCC2

samples that were typed with both A↵ymetrix 6.0 (set A of ⇠ 1M SNPs) and Illumina

1M (set B of ⇠ 1M SNPs) and we proceeded as follows:

(1) we extracted the genotypes at SNPs included on the A↵ymetrix 500k (set C of ⇠ 500K

SNPs),

(2) we phased set C on the whole chromosome 10 (23,231 SNPs) using Beagle, HAPI-UR
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and SHAPEIT2 (K = 100, W = 2Mb). We also phased the dataset by making 27 chunks

of 5Mb and then by applying MaCH and SHAPEIT2 (K = 100, W = 2Mb) on each

chunk,

(3) we imputed in each resulting set of haplotypes all chromosome 10 SNPs included in

sets A and B but not in C (47,739 SNPs) using Impute2 and 1000 Genomes phase 1

release 3 haplotypes as reference panel,

(4) we measured in each scenario the imputation quality as the R2 correlation coe�cient

between the imputed and the true genotypes.

The results of this analysis are shown in Supplementary Figures 3 and 4. These plots

show the imputation quality di↵erences achieved when using SHAPEIT2 instead of Beagle

(Supplementary Figure 3a), HAPI-UR (Supplementary Figure 3b), MaCH (Supplemen-

tary Figure 4a) and SHAPEIT2 when run in chunks (Supplementary Figure 4b). Overall,

we can see a clear trend suggesting that using SHAPEIT2 for prephasing leads to im-

proved imputation quality especially at the hardest SNPs to impute (r2 < 0.8). Moreover,

running SHAPEIT2 on the whole chromosome seems to work slightly better than when

running on a set of 5Mb chunks.

11.12 Computational performance

We have also compared the computational performance of the methods used in our com-

parison. We compared all methods using just 1 thread. In addition, to illustrate the

gains that can be achieved by multi-threading we also SHAPEIT2 with 1 thread. We

measured the elapsed time taken for each command to run. Figure S6 shows the time

taken by each method relative to the time taken by Beagle on the European chromosome

X dataset, the WTCCC2 chromosome X dataset, the Vietnamese chromosome 22 dataset

and the Omni2.5 chromosome 25 dataset. Figure S7 shows the CPU time taken by each

method.

On the Vietnamese chromosome 22 dataset consisting of 1,229 samples SHAPEIT2 (K =

100,W = 5Mb with 1 and 4 threads took 179mins and 48mins to run respectively. Beagle

took 23mins and HAPI-UR (3x) took 22mins. Assuming 20 cores are available, extrap-
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olating these numbers to the whole genome (using the assumption that chromosome 22

is roughly 1/60th of the genome) it would take SHAPEIT2 (run with 1 thread) approxi-

mately 9 hours to phase the dataset. Both Beagle and HAPI-UR (3x) would take around

66mins.

On the Illumina Omni2.5M chromosome 20 dataset consisting of 1,740 samples SHAPEIT2

(K = 100,W = 5Mb) with 1 and 4 threads took 26.7 hours and 7 hours to run respec-

tively. Beagle took 9.2 hours and HAPI-UR (3x) took 5.2 hours. Assuming 20 cores

are available, extrapolating these numbers to the whole genome (using the assumption

that chromosome 20 is roughly 1/45th of the genome) it would take SHAPEIT2 (with 1

thread) approximately 60 hours to phase the dataset. Beagle and HAPI-UR (3x) would

take around 20.7 hours and 11.7 hours respectively.

It is our experience that many research groups working on GWAS datasets have access to

compute resources equivalent to 20 cores. Under this assumption it is clear that timing

would not present a serious hurdle for phasing. GWAS are very expensive experiments

that will often have taken many months on data collection. The resulting haplotypes

from such studies will often we used many times in subsequent analysis. For this reason

it seems preferable to ensure that the haplotypes are as accurate as possible via phasing

using SHAPEIT2.

When more cores are available then the multi-threading features in SHAPEIT2 become

very useful. HAPI-UR (3x), which runs HAPI-UR 3 times and then combines the results,

can also take advantage of 3 cores at a time when phasing a chromosome.

Figures S8 and S9 show the computational performance of SHAPEIT1, SHAPEIT2 and

Beagle on the three datasets that combine HapMap CEU samples with increasingly larger

amounts of WTCCC1 data. The figures show timings relative to the time taken by Beagle

and CPU time respectively plotted against the number of conditioning states used by

SHAPEIT1 and SHAPEIT2. These results highlights how Beagle scales non-linearly as

the number of samples increases. This can be more clearly seen in Figure S9 that shows

the computational time taken by the methods plotted against the sample size.

On the dataset with very high SNP density produced by sequencing from the 1000
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Genomes Project we found that Beagle took 6 hours whereas SHAPEIT2 (K = 100,W =

0.3Mb) and 4 threads took 5.8 hours (Supplementary Table 1).
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SHAPEIT2 (K=200) and the running times in hours (green line) for the WTCCC2 X

chromosome dataset. For this experiment SHAPEIT2 was run using 10 burn in iterations,

10 sampling iterations and 50 main iterations.
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Fig S2 Comparison of the accuracy of methods on the 60 CEU samples plus 1480 (a, d),

2938 (b, e) and 8,837 (c, f) WTCCC1 samples. The datasets all have 23,143 SNPs from

chromosome 10. The plots show the switch error percentage (a-c) and the mean switch

distance in Mb (d-f) plotted against the number of conditioning states for SHAPEIT1

(cyan), SHAPEIT2 with W=5Mb (solid blue) and SHAPEIT2 with W=2Mb (dashed

blue). Beagle (grey) and HAPI-UR (brown) were run using default settings.
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released by the project were obtained using SNPTools (red).
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Fig S4 Comparison of a haplotype subset selection methods. Algorithm 2 (x-axis) which

is robust to cryptic relatedness is compared to Algorithm 1 (y-axis) which is not robust

to cryptic relatedness. The methods were applied to the Illumina Omni2.5 dataset of

1,754 samples. Per-sample switch error rates of the estimated haplotypes from the two

algorithms are plotted against each other. Only the 696 samples that have family-based

haplotype estimates available were used for the comparison.
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Fig S5 Comparison of per-sample switch error rate for SHAPEIT2 (x-axis) versus

SHAPEIT1 (y-axis). The methods were applied to the Illumina Omni2.5 dataset of

1,754 samples. Per-sample switch error rates of the estimated haplotypes from the two

algorithms are plotted against each other. Only the 696 samples that have family-based

haplotype estimates available were used for the comparison. The solid red line is the x=y

line. The dotted red line is the regression line.
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European chr X : 925 samples 7,821 SNPs
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Vietnamese chr22 : 1,229 samples, 7,985 SNPs
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WTCCC2 chrX : 740 samples, 29,227 SNPs
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Fig S6 Comparison of the computational performance of methods on the datasets :

European chromosome X (top left), WTCCC2 chromosome X (top right), Vietnamese

chromosome 22 (bottom left), Omni2.5 chromosome 20 (bottom right). Computational

timings relative to Beagle are plotted against the number of conditioning states (K) used

by the methods. SHAPEIT2 was run with W = 2Mb.
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Fig S7 Comparison of the computational performance of methods on the datasets :

European chromosome X (top left), WTCCC2 chromosome X (top right), Vietnamese

chromosome 22 (bottom left), Omni2.5 chromosome 20 (bottom right). Computational

timings in hours are plotted against the number of conditioning states (K) used by the

methods. SHAPEIT2 was run with W = 2Mb.
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60 CEU HM2 + 1480 WTCCC
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Fig S8 Comparison of computational performance of SHAPEIT1 (cyan), SHAPEIT2

(blue), Beagle (grey) and HAPI-UR(3x) (brown) on 60 HapMap2 CEU samples plus

1480 (left), 2938 (middle) and 8837 (right) WTCCC1 samples. Computational time is

shown relative to Beagle. SHAPEIT2 was run with W = 2Mb.
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60 CEU HM2 + 1480 WTCCC
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Fig S9 Comparison of computational performance of SHAPEIT1 (cyan), SHAPEIT2

(blue), Beagle (grey) and HAPI-UR(3x) (brown) on 60 HapMap2 CEU samples plus

1480 (left), 2938 (middle) and 8837 (right) WTCCC1 samples. Computational time is

shown in hours. SHAPEIT2 was run with K = 100 and W = 2Mb.
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WTCCC1 chr10 : 1,540 to 8,897 samples, 23,143 SNPs
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Fig S10 Comparison of computational performance of SHAPEIT1 (cyan), SHAPEIT2

(blue), Beagle (grey) and HAPI-UR(3x) (brown) on 60 HapMap2 CEU samples with

varying number of WTCCC1 samples. The x-axis reports the total sample size. Com-

putational time is shown relative to Beagle. SHAPEIT2 was run with K = 100 and

W = 2Mb.

62

Nature Methods: doi:10.1038/nmeth.2307



References
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