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Supplementary Note 

 

Multiple Imputation as Alternative to Most Likely Haplotype Solution 

 

Both MaCH and IMPUTE2 estimate haplotypes via Markov chain Monte Carlo 

(MCMC) algorithms that probabilistically sample phased haplotypes for each 

study individual, conditional on the current haplotype guesses for other 

individuals in the dataset. While the main text focuses on collapsing the 

haplotypes sampled by these algorithms into best-guess estimates, it also 

mentions another form of pre-phasing in which several sampled haplotype 

configurations are stored for later use. Given these, we can impute from any 

reference panel into each of an individual’s sampled haplotype pairs and 

average the results to produce probability distributions on missing genotypes. 

In statistics terminology, this is a form of “multiple imputation.” This 

approach takes longer than single imputation into best-guess haplotypes, 

but we explore this strategy here to inform investigators who want to 

maximize accuracy at the cost of extra computing power. 

 

We used the WTCCC2 and GAIN datasets to assess the properties of 

imputation based on sampled haplotypes. We considered two variables that 

drive the phasing algorithm: the number of MCMC iterations (parameterized 

by -iter in IMPUTE2 and -r in MaCH; each iteration involves sampling a new 

haplotype pair for every study individual) and the number of non-self 

haplotypes that are copied when sampling a new pair of haplotypes 

(parameterized by –k in IMPUTE2 and –s in MaCH). The cost of phasing 

grows linearly with the number of iterations and quadratically with the 

number of copied haplotypes. The cost of imputation grows linearly with the 

number of imputation steps N, where N=1 for imputation into best-guess 

haplotypes and N=M for imputation into M sets of sampled haplotypes. We 
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analyzed the WTCCC2 data with IMPUTE2 runs of 4, 10, 20, or 500 iterations 

and –k values of 40, 80, or 120. (Each run was preceded by 10 burn-in 

iterations that did not inform the inference.)  We analyzed the GAIN data 

with MaCH runs of 4, 10, 15, or 20 iterations (no burn-in) and -s values of 

50, 150, or 300. The two methods were assigned different settings because 

their algorithms and approximations are slightly different. 

 

The results of our experiments are shown in Supplementary Fig. 2 

(WTCCC2/IMPUTE2) and Supplementary Fig. 3 (GAIN/minimac), where –k 

and -s are plotted on the x-axis (respectively) and imputation accuracy is 

plotted on the y-axis. Supplementary Fig. 2A and 3A show the results for 

SNPs with MAF > 5%, while Supplementary Fig. 2B and 3B show the results 

for SNPs with MAF < 3%. Each color represents a phasing run that sampled 

a different number of haplotype configurations per individual. The results 

from collapsing the haplotypes into best-guess estimates for imputation are 

shown as solid lines, while the results from imputing into multiple sampled 

haplotypes and averaging are shown as dashed lines. We also provide 

benchmark results from IMPUTE1 (Supplementary Fig. 2) and MaCH 

(Supplementary Fig.  3) as dotted black lines. 

 

The basic trends in Supplementary Fig. 2 and 3 are as expected: imputation 

accuracy always increases with larger numbers of copied states (–k and –s) 

and with larger numbers of sampled haplotypes, regardless of whether those 

haplotypes were used for best-guess or sample-averaged imputation. In 

each case, it is clear that using 4-10 sampled haplotype configurations (at 

the cost of a 4-10x increase in computation time for the imputation step) 

can outperform analysis using the most likely haplotype pair for each 

individual. It is also clear that further increases in the number of sampled 

haplotype configurations (e.g., including up to 500 such configurations in 
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Supplementary Fig.  2, which would require 500x more computation time 

than using the most likely haplotype configuration) provide only modest 

increases in accuracy. 

 

The mixing of the Markov chains does not appear to be an issue since we 

obtained the same accuracy from the first M sampled haplotypes (M = 

4,10,20) as from M haplotype sets drawn at uniform intervals during 500 

sampling iterations (results not shown). The imputation accuracy was 

consistent across independent runs started from different parts of phasing 

space (results not shown), which further argues that the algorithms are 

efficiently exploring the space of GWAS haplotypes. 

 

In general, we anticipate that averaging imputation results across sampled 

haplotypes will be more valuable in situations where the haplotypes are 

harder to estimate, such as populations with high genetic diversity. One 

pragmatic approach might be to use best-guess haplotypes for fast genome-

wide imputation, then repeat the imputation with the more intensive 

sample-averaging approach to refine signals in regions with putative 

associations. Both MaCH/minimac and IMPUTE2 include functionality to store 

sampled haplotypes at the pre-phasing step and then average the 

imputation over these configurations for a given reference panel. 

 
Choice of Methods for Pre-Phasing and Subsequent Imputation 
 

We conducted each pre-phasing analysis in this study within a given 

software suite: for some datasets we pre-phased with MaCH and then 

imputed with minimac, while for other datasets we pre-phased and imputed 

with IMPUTE2. This approach was convenient for our situation, but in 

principle the pre-phasing and imputation steps could be performed with any 
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combination of software packages that can handle the required input and 

output information. 

 

In general, we recommend using the most accurate method that is 

computationally feasible for each step. This could be a function of study 

design (unrelateds, small nuclear families, etc.), study population, and 

computational resources. The GWAS haplotypes estimated in the pre-

phasing step affect all downstream imputation steps, so it is worthwhile to 

devote substantial computing power to pre-phasing if this will improve 

accuracy. Recent comparisons suggest that MaCH and IMPUTE2 can produce 

some of the best phasing results among existing methods for unrelated 

individuals1,2, although newer methods like SHAPEIT2 may achieve better 

accuracy with less computation. 

 

To illustrate the benefits of using our approach together with alternative 

phasing methods, we phased the WTCCC2 scaffold genotypes (Affymetrix 

500k SNPs) with SHAPEIT v1.r416 on the following settings: --states-

phase=600, --burn=10, --prune=10, --main=50, --effective-size=11500. 

We then passed the estimated haplotypes to IMPUTE2 for imputation from 

the 1,000 Genomes EUR (Nov 2010) reference panel. Relative to the 

WTCCC2 results in Table 2 (which are based on using IMPUTE2 for both the 

pre-phasing and imputation), this analysis yielded a small improvement at 

SNPs with MAF>5% (~0.005 on the R2 scale) and a larger improvement at 

SNPs with MAF<3% (~0.014 on the R2 scale). These results highlight the 

importance of accuracy in the pre-phasing step and the potential to improve 

imputation accuracy through continuing development in phasing algorithms. 
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Imputation Results from Different Combinations of Methods and 
Datasets 
 

In the main text, we illustrated the strengths of pre-phasing through 

different combinations of imputation methods and cross-validation datasets. 

We conducted this work collaboratively across multiple institutions, and 

these combinations were largely determined by which datasets were 

convenient for each group to analyze. This approach was informed by our 

understanding that the MaCH and IMPUTE software families share deep 

mechanistic similarities, such that we do not expect substantial differences 

in behavior. Nonetheless, we here present results to confirm that both 

methods produce very similar trends in accuracy and running time when 

applied to the same dataset (Supplementary Fig. 4; main text Table 1 vs. 

Supplementary Table 1). 
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Supplementary	
  Table	
  1: Running	
  times	
  in	
  GAIN	
  data	
  (in	
  CPU	
  minutes	
  needed	
  to	
  impute	
  one	
  
individual	
  genome-­‐wide)	
  for	
  different	
  imputation	
  methods	
  and	
  reference	
  panels.	
  
 

Reference	
  Panela 

Imputation	
  method	
  
MaCH	
  

	
  
minimac	
  

(pre-­‐phasingb)	
  
	
   HapMap	
  2	
  CEU	
  (60	
  indiv,	
  2.5M	
  SNPs)	
   12	
   <1	
  

	
   1000G	
  CEU	
  (60	
  indiv,	
  7.3M	
  SNPs)	
   45	
   1	
  

	
   1000G	
  EUR	
  (283	
  indiv,	
  11.6M	
  SNPs)	
   1,261	
   7	
  

	
   1000G	
  EUR	
  (381	
  indiv,	
  37.4M	
  SNPs)	
   7,369c	
   23	
  

 
aReference	
  panels,	
  in	
  order:	
  HapMap	
  2	
  release	
  #22;	
  1000	
  Genomes	
  low-­‐coverage	
  pilot	
  (June	
  2010);	
  
1000	
  Genomes	
  interim	
  release	
  (Aug	
  2010);	
  1000	
  Genomes	
  interim	
  Phase	
  I	
  release	
  (Nov	
  2010).	
  
bRunning	
  times	
  do	
  not	
  include	
  the	
  initial	
  investment	
  required	
  to	
  phase	
  the	
  GWAS	
  genotypes,	
  which	
  
took	
  25	
  minutes	
  per	
  individual.	
  	
  
cProjected	
  running	
  time	
  extrapolated	
  from	
  existing	
  benchmarks.
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Supplementary	
   Figure	
   1:	
   Histograms	
   of	
   minor	
   allele	
   frequency	
   on	
   cross-­‐validation	
   SNP	
  

chips.	
  The	
  x-­‐axis	
  shows	
  1%	
  frequency	
  bins:	
   (0,0.01],	
   (0.01,0.02],…,	
   (0.49,0.50].	
  The	
  y-­‐axis	
  

shows	
  the	
  number	
  of	
  SNPs	
  in	
  each	
  bin	
  that	
  were	
  used	
  to	
  estimate	
  cross-­‐validation	
  accuracy.	
  

The	
  WTCCC	
  comparison	
  included	
  SNPs	
  from	
  the	
  Affymetrix	
  6.0	
  and	
  Illumina	
  1M	
  arrays	
  on	
  

chromosome	
  10,	
  minus	
  a	
   set	
  of	
   scaffold	
  SNPs	
   from	
   the	
  Affymetrix	
  500k	
  array.	
  The	
  GAIN	
  

comparison	
  included	
  SNPs	
  from	
  the	
  Affymetrix	
  6.0	
  array	
  on	
  chromosome	
  20,	
  minus	
  a	
  set	
  of	
  

scaffold	
  SNPs	
  from	
  a	
  custom	
  Perlegen	
  array.	
  The	
  WHI	
  comparison	
  included	
  SNPs	
  from	
  the	
  

Affymetrix	
   6.0	
   array	
   on	
   chromosome	
   20;	
   all	
   SNPs	
  were	
   imputed	
   through	
   a	
  mask-­‐every-­‐

10th-­‐SNP	
  sliding	
  window	
  analysis.	
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Supplementary	
   Figure	
   2:	
   Accuracy	
   of	
   imputation	
   from	
  1000	
  Genomes	
   CEU	
  panel	
   into	
  WTCCC2	
  

data	
  as	
  a	
  function	
  of	
  phasing	
  parameter	
  -­‐k,	
  imputation	
  strategy,	
  and	
  number	
  of	
  haplotypes	
  sampled	
  

per	
  individual	
  by	
  IMPUTE2.	
  The	
  analysis	
  used	
  a	
  pseudo-­‐GWAS	
  scaffold	
  of	
  Affymetrix	
  500k	
  SNPs;	
  all	
  

other	
  SNPs	
   in	
   the	
  WTCCC2	
  dataset	
  were	
  masked	
  and	
   imputed	
  (this	
  analysis	
  was	
  restricted	
  to	
   the	
  

first	
  half	
  of	
  chromosome	
  10	
  to	
  facilitate	
  parameter	
  exploration).	
  The	
  dashed	
  and	
  solid	
  curves	
  show	
  

results	
   based	
   on	
   IMPUTE2’s	
   iterative	
   phasing	
   algorithm,	
   which	
   samples	
   a	
   new	
   pair	
   of	
   scaffold	
  

haplotypes	
  for	
  every	
  GWAS	
  individual	
  at	
  each	
  iteration.	
  The	
  phasing	
  algorithm	
  was	
  run	
  for	
  4,	
  10,	
  20,	
  

or	
  500	
   iterations	
   (orange,	
   green,	
   red,	
   and	
  blue	
   lines,	
   respectively).	
  The	
   sampled	
  haplotypes	
  were	
  

then	
  used	
  for	
  multiple	
  imputation	
  (dashed	
  curves)	
  or	
  collapsed	
  into	
  best-­‐guess	
  estimates	
  and	
  used	
  

for	
   single	
   imputation	
   (solid	
   curves).	
   As	
   a	
   benchmark,	
   we	
   also	
   ran	
   a	
   method	
   that	
   analytically	
  

integrates	
  over	
  GWAS	
  haplotype	
  configurations	
  (IMPUTE,	
  dotted	
  black	
  line;	
  results	
  do	
  not	
  depend	
  

on	
  k).	
   (A)	
   Imputed	
   SNPs	
  with	
  MAF	
  >	
   5%	
   in	
  WTCCC2	
  data.	
   (B)	
   Imputed	
   SNPs	
  with	
  MAF	
  <	
   3%	
   in	
  

WTCCC2	
  data.	
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Supplementary	
  Figure	
  3:	
  Accuracy	
  of	
  imputation	
  from	
  1000	
  Genomes	
  CEU	
  panel	
  into	
  GAIN	
  data	
  

as	
  a	
  function	
  of	
  phasing	
  parameter	
  -­‐s,	
  imputation	
  strategy,	
  and	
  number	
  of	
  haplotypes	
  sampled	
  per	
  

individual	
   by	
   MaCH.	
   We	
   evaluated	
   imputation	
   accuracy	
   by	
   examining	
   the	
   correlation	
   between	
  

imputed	
  dosages	
  and	
  array	
  genotypes	
  for	
  markers	
  that	
  were	
  present	
  on	
  the	
  Affymetrix	
  6.0	
  arrays	
  

but	
  not	
  on	
  the	
  Perlegen	
  custom	
  array	
  (this	
  analysis	
  was	
  restricted	
  to	
  chromosome	
  20	
  to	
  facilitate	
  

parameter	
   exploration).	
   The	
   dashed	
   and	
   solid	
   curves	
   show	
   results	
   based	
   on	
   MaCH’s	
   iterative	
  

phasing	
  algorithm,	
  which	
  samples	
  a	
  new	
  pair	
  of	
  scaffold	
  haplotypes	
  for	
  every	
  GWAS	
  individual	
  at	
  

each	
  iteration.	
  The	
  phasing	
  algorithm	
  was	
  run	
  for	
  4,	
  10,	
  15,	
  or	
  20	
  iterations	
  (orange,	
  green,	
  red,	
  and	
  

blue	
  lines,	
  respectively).	
  The	
  sampled	
  haplotypes	
  were	
  then	
  used	
  for	
  multiple	
  imputation	
  (dashed	
  

curves)	
  or	
  collapsed	
   into	
  best-­‐guess	
  estimates	
  and	
  used	
   for	
  single	
   imputation	
   (solid	
  curves).	
  As	
  a	
  

benchmark,	
  we	
  also	
  ran	
  a	
  method	
  that	
  analytically	
  integrates	
  over	
  GWAS	
  haplotype	
  configurations	
  

(MaCH,	
  dotted	
  black	
   line;	
  results	
  do	
  not	
  depend	
  on	
  s).	
  (A)	
   Imputed	
  SNPs	
  with	
  MAF	
  >	
  5%	
  in	
  GAIN	
  

data.	
  (B)	
  Imputed	
  SNPs	
  with	
  MAF	
  <	
  3%	
  in	
  GAIN	
  data.	
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Supplementary	
  Figure	
  4:	
  Accuracy	
  of	
  pre-­‐phasing	
  imputation	
  with	
  minimac	
  and	
  IMPUTE2	
  when	
  

used	
   to	
   impute	
   genotypes	
   from	
   three	
   different	
   1000	
   Genomes	
   reference	
   panels	
   into	
   GWAS	
   data	
  

from	
  WTCCC2,	
  GAIN,	
  and	
  WHI.	
  

Nature Genetics: doi:10.1038/ng.2354




