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Supplementary Note 

 

Multiple Imputation as Alternative to Most Likely Haplotype Solution 

 

Both MaCH and IMPUTE2 estimate haplotypes via Markov chain Monte Carlo 

(MCMC) algorithms that probabilistically sample phased haplotypes for each 

study individual, conditional on the current haplotype guesses for other 

individuals in the dataset. While the main text focuses on collapsing the 

haplotypes sampled by these algorithms into best-guess estimates, it also 

mentions another form of pre-phasing in which several sampled haplotype 

configurations are stored for later use. Given these, we can impute from any 

reference panel into each of an individual’s sampled haplotype pairs and 

average the results to produce probability distributions on missing genotypes. 

In statistics terminology, this is a form of “multiple imputation.” This 

approach takes longer than single imputation into best-guess haplotypes, 

but we explore this strategy here to inform investigators who want to 

maximize accuracy at the cost of extra computing power. 

 

We used the WTCCC2 and GAIN datasets to assess the properties of 

imputation based on sampled haplotypes. We considered two variables that 

drive the phasing algorithm: the number of MCMC iterations (parameterized 

by -iter in IMPUTE2 and -r in MaCH; each iteration involves sampling a new 

haplotype pair for every study individual) and the number of non-self 

haplotypes that are copied when sampling a new pair of haplotypes 

(parameterized by –k in IMPUTE2 and –s in MaCH). The cost of phasing 

grows linearly with the number of iterations and quadratically with the 

number of copied haplotypes. The cost of imputation grows linearly with the 

number of imputation steps N, where N=1 for imputation into best-guess 

haplotypes and N=M for imputation into M sets of sampled haplotypes. We 
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analyzed the WTCCC2 data with IMPUTE2 runs of 4, 10, 20, or 500 iterations 

and –k values of 40, 80, or 120. (Each run was preceded by 10 burn-in 

iterations that did not inform the inference.)  We analyzed the GAIN data 

with MaCH runs of 4, 10, 15, or 20 iterations (no burn-in) and -s values of 

50, 150, or 300. The two methods were assigned different settings because 

their algorithms and approximations are slightly different. 

 

The results of our experiments are shown in Supplementary Fig. 2 

(WTCCC2/IMPUTE2) and Supplementary Fig. 3 (GAIN/minimac), where –k 

and -s are plotted on the x-axis (respectively) and imputation accuracy is 

plotted on the y-axis. Supplementary Fig. 2A and 3A show the results for 

SNPs with MAF > 5%, while Supplementary Fig. 2B and 3B show the results 

for SNPs with MAF < 3%. Each color represents a phasing run that sampled 

a different number of haplotype configurations per individual. The results 

from collapsing the haplotypes into best-guess estimates for imputation are 

shown as solid lines, while the results from imputing into multiple sampled 

haplotypes and averaging are shown as dashed lines. We also provide 

benchmark results from IMPUTE1 (Supplementary Fig. 2) and MaCH 

(Supplementary Fig.  3) as dotted black lines. 

 

The basic trends in Supplementary Fig. 2 and 3 are as expected: imputation 

accuracy always increases with larger numbers of copied states (–k and –s) 

and with larger numbers of sampled haplotypes, regardless of whether those 

haplotypes were used for best-guess or sample-averaged imputation. In 

each case, it is clear that using 4-10 sampled haplotype configurations (at 

the cost of a 4-10x increase in computation time for the imputation step) 

can outperform analysis using the most likely haplotype pair for each 

individual. It is also clear that further increases in the number of sampled 

haplotype configurations (e.g., including up to 500 such configurations in 
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Supplementary Fig.  2, which would require 500x more computation time 

than using the most likely haplotype configuration) provide only modest 

increases in accuracy. 

 

The mixing of the Markov chains does not appear to be an issue since we 

obtained the same accuracy from the first M sampled haplotypes (M = 

4,10,20) as from M haplotype sets drawn at uniform intervals during 500 

sampling iterations (results not shown). The imputation accuracy was 

consistent across independent runs started from different parts of phasing 

space (results not shown), which further argues that the algorithms are 

efficiently exploring the space of GWAS haplotypes. 

 

In general, we anticipate that averaging imputation results across sampled 

haplotypes will be more valuable in situations where the haplotypes are 

harder to estimate, such as populations with high genetic diversity. One 

pragmatic approach might be to use best-guess haplotypes for fast genome-

wide imputation, then repeat the imputation with the more intensive 

sample-averaging approach to refine signals in regions with putative 

associations. Both MaCH/minimac and IMPUTE2 include functionality to store 

sampled haplotypes at the pre-phasing step and then average the 

imputation over these configurations for a given reference panel. 

 
Choice of Methods for Pre-Phasing and Subsequent Imputation 
 

We conducted each pre-phasing analysis in this study within a given 

software suite: for some datasets we pre-phased with MaCH and then 

imputed with minimac, while for other datasets we pre-phased and imputed 

with IMPUTE2. This approach was convenient for our situation, but in 

principle the pre-phasing and imputation steps could be performed with any 
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combination of software packages that can handle the required input and 

output information. 

 

In general, we recommend using the most accurate method that is 

computationally feasible for each step. This could be a function of study 

design (unrelateds, small nuclear families, etc.), study population, and 

computational resources. The GWAS haplotypes estimated in the pre-

phasing step affect all downstream imputation steps, so it is worthwhile to 

devote substantial computing power to pre-phasing if this will improve 

accuracy. Recent comparisons suggest that MaCH and IMPUTE2 can produce 

some of the best phasing results among existing methods for unrelated 

individuals1,2, although newer methods like SHAPEIT2 may achieve better 

accuracy with less computation. 

 

To illustrate the benefits of using our approach together with alternative 

phasing methods, we phased the WTCCC2 scaffold genotypes (Affymetrix 

500k SNPs) with SHAPEIT v1.r416 on the following settings: --states-

phase=600, --burn=10, --prune=10, --main=50, --effective-size=11500. 

We then passed the estimated haplotypes to IMPUTE2 for imputation from 

the 1,000 Genomes EUR (Nov 2010) reference panel. Relative to the 

WTCCC2 results in Table 2 (which are based on using IMPUTE2 for both the 

pre-phasing and imputation), this analysis yielded a small improvement at 

SNPs with MAF>5% (~0.005 on the R2 scale) and a larger improvement at 

SNPs with MAF<3% (~0.014 on the R2 scale). These results highlight the 

importance of accuracy in the pre-phasing step and the potential to improve 

imputation accuracy through continuing development in phasing algorithms. 
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Imputation Results from Different Combinations of Methods and 
Datasets 
 

In the main text, we illustrated the strengths of pre-phasing through 

different combinations of imputation methods and cross-validation datasets. 

We conducted this work collaboratively across multiple institutions, and 

these combinations were largely determined by which datasets were 

convenient for each group to analyze. This approach was informed by our 

understanding that the MaCH and IMPUTE software families share deep 

mechanistic similarities, such that we do not expect substantial differences 

in behavior. Nonetheless, we here present results to confirm that both 

methods produce very similar trends in accuracy and running time when 

applied to the same dataset (Supplementary Fig. 4; main text Table 1 vs. 

Supplementary Table 1). 
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Supplementary	  Table	  1: Running	  times	  in	  GAIN	  data	  (in	  CPU	  minutes	  needed	  to	  impute	  one	  
individual	  genome-‐wide)	  for	  different	  imputation	  methods	  and	  reference	  panels.	  
 

Reference	  Panela 

Imputation	  method	  
MaCH	  

	  
minimac	  

(pre-‐phasingb)	  
	   HapMap	  2	  CEU	  (60	  indiv,	  2.5M	  SNPs)	   12	   <1	  

	   1000G	  CEU	  (60	  indiv,	  7.3M	  SNPs)	   45	   1	  

	   1000G	  EUR	  (283	  indiv,	  11.6M	  SNPs)	   1,261	   7	  

	   1000G	  EUR	  (381	  indiv,	  37.4M	  SNPs)	   7,369c	   23	  

 
aReference	  panels,	  in	  order:	  HapMap	  2	  release	  #22;	  1000	  Genomes	  low-‐coverage	  pilot	  (June	  2010);	  
1000	  Genomes	  interim	  release	  (Aug	  2010);	  1000	  Genomes	  interim	  Phase	  I	  release	  (Nov	  2010).	  
bRunning	  times	  do	  not	  include	  the	  initial	  investment	  required	  to	  phase	  the	  GWAS	  genotypes,	  which	  
took	  25	  minutes	  per	  individual.	  	  
cProjected	  running	  time	  extrapolated	  from	  existing	  benchmarks.
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Supplementary	   Figure	   1:	   Histograms	   of	   minor	   allele	   frequency	   on	   cross-‐validation	   SNP	  

chips.	  The	  x-‐axis	  shows	  1%	  frequency	  bins:	   (0,0.01],	   (0.01,0.02],…,	   (0.49,0.50].	  The	  y-‐axis	  

shows	  the	  number	  of	  SNPs	  in	  each	  bin	  that	  were	  used	  to	  estimate	  cross-‐validation	  accuracy.	  

The	  WTCCC	  comparison	  included	  SNPs	  from	  the	  Affymetrix	  6.0	  and	  Illumina	  1M	  arrays	  on	  

chromosome	  10,	  minus	  a	   set	  of	   scaffold	  SNPs	   from	   the	  Affymetrix	  500k	  array.	  The	  GAIN	  

comparison	  included	  SNPs	  from	  the	  Affymetrix	  6.0	  array	  on	  chromosome	  20,	  minus	  a	  set	  of	  

scaffold	  SNPs	  from	  a	  custom	  Perlegen	  array.	  The	  WHI	  comparison	  included	  SNPs	  from	  the	  

Affymetrix	   6.0	   array	   on	   chromosome	   20;	   all	   SNPs	  were	   imputed	   through	   a	  mask-‐every-‐

10th-‐SNP	  sliding	  window	  analysis.	  
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Supplementary	   Figure	   2:	   Accuracy	   of	   imputation	   from	  1000	  Genomes	   CEU	  panel	   into	  WTCCC2	  

data	  as	  a	  function	  of	  phasing	  parameter	  -‐k,	  imputation	  strategy,	  and	  number	  of	  haplotypes	  sampled	  

per	  individual	  by	  IMPUTE2.	  The	  analysis	  used	  a	  pseudo-‐GWAS	  scaffold	  of	  Affymetrix	  500k	  SNPs;	  all	  

other	  SNPs	   in	   the	  WTCCC2	  dataset	  were	  masked	  and	   imputed	  (this	  analysis	  was	  restricted	  to	   the	  

first	  half	  of	  chromosome	  10	  to	  facilitate	  parameter	  exploration).	  The	  dashed	  and	  solid	  curves	  show	  

results	   based	   on	   IMPUTE2’s	   iterative	   phasing	   algorithm,	   which	   samples	   a	   new	   pair	   of	   scaffold	  

haplotypes	  for	  every	  GWAS	  individual	  at	  each	  iteration.	  The	  phasing	  algorithm	  was	  run	  for	  4,	  10,	  20,	  

or	  500	   iterations	   (orange,	   green,	   red,	   and	  blue	   lines,	   respectively).	  The	   sampled	  haplotypes	  were	  

then	  used	  for	  multiple	  imputation	  (dashed	  curves)	  or	  collapsed	  into	  best-‐guess	  estimates	  and	  used	  

for	   single	   imputation	   (solid	   curves).	   As	   a	   benchmark,	   we	   also	   ran	   a	   method	   that	   analytically	  

integrates	  over	  GWAS	  haplotype	  configurations	  (IMPUTE,	  dotted	  black	  line;	  results	  do	  not	  depend	  

on	  k).	   (A)	   Imputed	   SNPs	  with	  MAF	  >	   5%	   in	  WTCCC2	  data.	   (B)	   Imputed	   SNPs	  with	  MAF	  <	   3%	   in	  

WTCCC2	  data.	  
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Supplementary	  Figure	  3:	  Accuracy	  of	  imputation	  from	  1000	  Genomes	  CEU	  panel	  into	  GAIN	  data	  

as	  a	  function	  of	  phasing	  parameter	  -‐s,	  imputation	  strategy,	  and	  number	  of	  haplotypes	  sampled	  per	  

individual	   by	   MaCH.	   We	   evaluated	   imputation	   accuracy	   by	   examining	   the	   correlation	   between	  

imputed	  dosages	  and	  array	  genotypes	  for	  markers	  that	  were	  present	  on	  the	  Affymetrix	  6.0	  arrays	  

but	  not	  on	  the	  Perlegen	  custom	  array	  (this	  analysis	  was	  restricted	  to	  chromosome	  20	  to	  facilitate	  

parameter	   exploration).	   The	   dashed	   and	   solid	   curves	   show	   results	   based	   on	   MaCH’s	   iterative	  

phasing	  algorithm,	  which	  samples	  a	  new	  pair	  of	  scaffold	  haplotypes	  for	  every	  GWAS	  individual	  at	  

each	  iteration.	  The	  phasing	  algorithm	  was	  run	  for	  4,	  10,	  15,	  or	  20	  iterations	  (orange,	  green,	  red,	  and	  

blue	  lines,	  respectively).	  The	  sampled	  haplotypes	  were	  then	  used	  for	  multiple	  imputation	  (dashed	  

curves)	  or	  collapsed	   into	  best-‐guess	  estimates	  and	  used	   for	  single	   imputation	   (solid	  curves).	  As	  a	  

benchmark,	  we	  also	  ran	  a	  method	  that	  analytically	  integrates	  over	  GWAS	  haplotype	  configurations	  

(MaCH,	  dotted	  black	   line;	  results	  do	  not	  depend	  on	  s).	  (A)	   Imputed	  SNPs	  with	  MAF	  >	  5%	  in	  GAIN	  

data.	  (B)	  Imputed	  SNPs	  with	  MAF	  <	  3%	  in	  GAIN	  data.	   	  
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Supplementary	  Figure	  4:	  Accuracy	  of	  pre-‐phasing	  imputation	  with	  minimac	  and	  IMPUTE2	  when	  

used	   to	   impute	   genotypes	   from	   three	   different	   1000	   Genomes	   reference	   panels	   into	   GWAS	   data	  

from	  WTCCC2,	  GAIN,	  and	  WHI.	  
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