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Abstract

A central challenge in interpreting personal genomes is determining which mutations most likely influence disease.
Although progress has been made in scoring the functional impact of individual mutations, the characteristics of the genes
in which those mutations are found remain largely unexplored. For example, genes known to carry few common functional
variants in healthy individuals may be judged more likely to cause certain kinds of disease than genes known to carry many
such variants. Until now, however, it has not been possible to develop a quantitative assessment of how well genes tolerate
functional genetic variation on a genome-wide scale. Here we describe an effort that uses sequence data from 6503 whole
exome sequences made available by the NHLBI Exome Sequencing Project (ESP). Specifically, we develop an intolerance
scoring system that assesses whether genes have relatively more or less functional genetic variation than expected based
on the apparently neutral variation found in the gene. To illustrate the utility of this intolerance score, we show that genes
responsible for Mendelian diseases are significantly more intolerant to functional genetic variation than genes that do not
cause any known disease, but with striking variation in intolerance among genes causing different classes of genetic
disease. We conclude by showing that use of an intolerance ranking system can aid in interpreting personal genomes and
identifying pathogenic mutations.
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Introduction

Many approaches are available that attempt to prioritize

mutations in terms of their prior probabilities of conferring risk

of disease, notably including population allele frequency and

measures of conservation at either the phylogenetic level [1] or in

terms of amino acid characteristics [2–6]. However, few analogous

approaches are available for prioritizing the genes in which the

variants are found, despite the fact that all groups performing

contemporary sequencing studies have learned that some genes

are much more likely to show at least modest (but unconvincing)

evidence of association with risk across multiple disease areas than

other genes. One reason for this outcome is that some genes carry

many more putatively interesting variants in the general popula-

tion, leading to more potential to show association for such

variants. Here, we seek to develop a gene-level assessment that

ranks genes in terms of their real likelihoods to influence disease.

The basis of our approach is to rank all protein-coding human

genes in terms of their intolerance to standing functional variation.

This scheme is intended to rank genes on the basis of the strength

and consistency of purifying selection acting against functional

variation in the gene. We note, however, that any such scheme will

inevitably also reflect the action of other kinds of selection (for

example, balancing selection). Such a scoring system can be

constructed in many ways, but it would need to be standardized

for gene size and total mutational rate. Using publically available

data from the NHLBI Exome Sequencing Project (ESP) [7] we

introduce a scoring system that predicts the expected amount of

common functional variation based on the total amount of

variation in each gene. The intolerance score itself is a measure of

the deviation from this prediction.

We evaluate this scoring system by examining correlations

between gene scores and whether genes do or do not cause known

Mendelian diseases [8]. We further evaluate how well this approach

prioritizes candidate de novo mutations identified in patient genomes

[9–15]. Critical to interpreting personal genomes, we show how our

gene-level score can be integrated with well-established variant-level

scores to highlight candidate causal mutations.

Results

To develop a gene-level assessment that ranks genes in terms of

their likelihoods to influence disease, we primarily rely on three

highly curated public datasets. The ESP6500 dataset is our source

for aggregate single nucleotide variant (SNV) sequence data,

described elsewhere [7,16]. The CCDS database was used to

define genes based on publically assigned transcripts [17]. Finally,

the Online Mendelian Inheritance in Man (OMIM) database was

used to assess the utility of the score by correlating the score with

whether genes do or do not cause Mendelian diseases [8].
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Considering genes assigned a HUGO Gene Nomenclature

Committee (HGNC) name, we set the coding boundaries of

HGNC genes to the public CCDS transcripts (CCDS release 9,

GRCh37.p5), with an extension of two base-pairs at each end of

exons to allow for splice acceptor and donor variant annotations.

For genes with multiple CCDS transcripts, we merged the

corresponding regions into a consensus summary of all CCDS-

defined bases for that HGNC gene. Using these CCDS

boundaries, we considered only CCDS sites reported with at least

10-fold coverage in the ESP6500 database [7]. We then defined

‘‘assessable’’ genes as HGNC genes with at least 70% of their

CCDS covered by an average 10-fold coverage in the ESP6500

database. This resulted in 16,956 assessable HGNC genes with

CCDS transcript(s). We adopted the annotated variant effect

predictions provided in the ESP6500 database, described

elsewhere [16]. We classified missense, nonsense, and splice

acceptor/donor variants as ‘‘functional,’’ and synonymous vari-

ants as ‘‘non-functional,’’ recognizing that such classifications will

never be entirely accurate. The ESP6500 database also includes

indel variants, but as these are less accurately called than SNVs,

we have excluded them from current analyses [18]. In assessing

the utility of the score, we organized Mendelian disease genes on

the basis of genetic models, considering the following groups:

‘‘haploinsufficient,’’ ‘‘dominant-negative,’’ ‘‘de novo disease-caus-

ing,’’ ‘‘recessive,’’ and ‘‘non-disease’’ genes using the OMIM

database (accessed 3rd December 2012) (Methods and Dataset S1).

Deriving the Residual Variation Intolerance Score
The primary motivation behind a gene based intolerance score

is to quantitatively distinguish two categories of genes. On one

hand, the ATP1A3 gene has very few functional mutations in the

general population, which makes it all the more striking when 70%

of patients with alternating hemiplegia of childhood were found to

carry de novo missense mutations in the gene [19]. On the other

hand, olfactory receptor genes often carry non-conservative amino

acid substitutions and stop mutations at high frequencies in human

populations yet trigger no clinical diagnosis. Clearly, to suggest

causation, it would take more observations of functional mutations

in patients in an olfactory receptor gene than in ATP1A3. To

quantitatively capture this difference, we derive a score, based on

the combined ESP6500 dataset that assesses the degree to which

genes have either more or less common functional variation than

expected for the genome as a whole given the amount of

presumably neutral variation they carry. We define the threshold

dividing ‘‘common’’ and ‘‘rare’’ variants as r. We then define Y as

the total number of common (Minor Allele Frequency [MAF].r)

missense and ‘‘truncating’’ SNVs (including splice and nonsense

variants) and X as the total number of protein-coding variants

(including synonymous variants, regardless of frequency in the

population) observed within a gene. We then regress Y on X

(Figure 1) and take the studentized residual as the Residual

Variation Intolerance Score (RVIS). Thus, the raw residual is

divided by an estimate of its standard deviation and accounts for

differences in variability that come with differing mutational

burdens. The RVIS then provides a measure of the departure

from the (genome-wide) average number of common functional

mutations found in genes with a similar amount of mutational

burden. When S = 0, the gene has the average number of common

functional variants given its total mutational burden; when S,0,

the gene has less common functional variation than predicted;

when S.0, it has more. Although multiple population genetic

forces could influence the RVIS value of a gene, negative scores

are likely to often reflect purifying selection, whereas positive

scores are likely to reflect either the absence of purifying selection,

the presence of some form of balanced or positive selection, or

both. Scores for the 16,956 assessed genes are available in Dataset

S2, and a histogram of the distribution of S is available in Figure

S1.

Here, we have set r= 0.1% MAF in the combined ESP6500

population. However, we also explored the behaviour of the score

for r of 0.01% and 1%, and found both of these to be strongly

correlated with r= 0.1% (Pearson’s r = 0.849 and Pearson’s

r = 0.813, respectively) (Figure S2).

To facilitate interpretation, we also present the RVIS values as

percentiles that reflect the relative rank of the genes, with the

lowest scores being the most intolerant genes.

Correlation between RVIS and genes that cause
Mendelian disease

The residual variation intolerance score is derived using the

combined European American (EA) and African American (AA)

data. Detailed studies of the EA and AA data, within the exome

sequencing project (ESP), have been published elsewhere [16].

Here, we show that there is a strong correlation between RVIS

values based on the combined population compared to scores

based on either the EA samples or AA samples: Pearson’s r = 0.86

and Pearson’s r = 0.91, respectively (Figure S2). To address

whether the RVIS is a predictor of ‘‘common’’ mutations and

mutational burden, we also compared a score derived from the EA

polymorphism data to the score derived from the AA polymor-

phism data. These two populations generate two independently

derived RVISs for each gene. For the EA versus AA RVIS

comparison, the Pearson’s r correlation is 0.73 (Figure S2 [G]).

To assess whether the RVIS can discriminate genes that do and

do not cause disease, we compared the RVIS values for genes

causing different kinds of Mendelian diseases. Using keyword

searches in OMIM, we extracted six gene-lists reflecting different

contexts: OMIM genes, ‘‘haploinsufficiency,’’ ‘‘dominant-nega-

tive,’’ ‘‘de novo’’ disease causing, ‘‘recessive,’’ and we indirectly

derived a non-disease gene list (Methods, Table 1, and Dataset

S1). Using a logistic regression model, we found that genes causing

Mendelian diseases have lower RVIS values than those that do

Author Summary

This work uses empirical single nucleotide variant data
from the NHLBI Exome Sequencing Project to introduce a
genome-wide scoring system that ranks human genes in
terms of their intolerance to standing functional genetic
variation in the human population. It is often inferred that
genes carrying relatively fewer or relatively more common
functional variants in healthy individuals may be judged
respectively more or less likely to cause certain kinds of
disease. We show that this intolerance score correlates
remarkably well with genes already known to cause
Mendelian diseases (P,10226). Equally striking, however,
are the differences in the relationship between standing
genetic variation and disease causing genes for different
disease types. Considering disorder classes defined by Goh
et al (2007) human disease network, we show a nearly
opposite pattern for genes linked to developmental
disorders and those linked to immunological disorders,
with the former being preferentially caused by genes that
do not tolerate functional variation and the latter caused
by genes with an excess of common functional variation.
We conclude by showing that use of an intolerance
ranking system can facilitate interpreting personal ge-
nomes and can facilitate identifying high impact mutations
through the gene in which they occur.

Genic Intolerance to Functional Variation
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not, with the strongest correlations observed for haploinsufficiency

(p = 1.6610231; b = 20.71 [95%CI 20.82–20.59]) and de novo

disease-linked events (p = 2.7610236; b = 20.57 [95%CI 20.65–

20.48]) (Table 1, Figure 2). ROC curves were generated to

illustrate the capacity of the RVIS to predict the OMIM gene lists

(Figure 2B).

We also investigated RVIS values for other gene lists of interest,

including 91 genes that are human orthologs of ‘‘lethality’’ genes

from the Mouse Genome Informatics (MGI) database [20] (mouse

knockouts associated with embryonic [MP:0008762], prenatal,

[MP:0002080] or perinatal [MP:0002081] lethality), 95 human

orthologs of ‘‘seizure’’ genes (mouse knockouts associated with

seizures phenotype [MP:0002064]), a set of genes identified as

essential in a recent publication by Georgi and colleagues (2013)

[21], and the 108 OMIM ‘‘haploinsufficiency’’ genes with de novo

mutation variants reported (Table 1, Figure 3 and Dataset S1).

We then explored a derivative of the RVIS that is further

informed, among the missense mutations, by PolyPhen-2 [2]

qualitative predictions (RVIS-PP2). In summary, RVIS-PP2

considers the PolyPhen-2 ‘‘benign’’ classifications as ‘‘non-

functional’’ variants (Methods, Table 1, Figure S3). On average,

based on the 6503 individuals in the NHLBI-ESP, applying this

PolyPhen-2 filter resulted in a 33% reduction of missense variants

in any given gene. The RVIS-PP2 values achieved a Pearson’s

correlation of 0.76 with the RVIS and remain significant across

the OMIM disease groups (Table 1).

In part, as the RVIS values reflect the selection pressures acting

on genes, one obvious question is the extent to which the RVIS

correlates with other measures of selection on genes. One

phylogenetic approach is to compare non-synonymous substitu-

tions per non-synonymous site (dN) to the synonymous substitutions

per synonymous site (dS), as reflected in v (aka Ka/Ks, dN/dS). To

determine whether the RVIS correlates with v, we compared a

subset of the genome (the orthologs between human and chimp for

human chromosomes 1–5) to three estimates drawn from a

separate study (codeml [22], LWL [23], and NG [24]; estimates of

v were kindly provided by Dr. Chuanzhu Fan) [25] (Methods).

Using a Pearson’s r correlation, we find that the RVIS is not

Figure 1. A regression plot illustrating the regression of Y on X. The plot is annotated for the 2% extremes: red = 2% most intolerant,
blue = 2% most tolerant. Five outlier genes with .140 common functional variant sites (y-axis) are not shown.
doi:10.1371/journal.pgen.1003709.g001
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strongly correlated with these three estimates of v: codeml

(r = 0.11), LWL (r = 0.02), and NG (r = 0.04). Moreover, the

capacity for the estimates of v to predict OMIM disease genes is

inferior to that of RVIS across all investigated gene lists (Table S1

and Figure S4).

Reviewing disorder classes from the human disease
network

These analyses suggest that genes that are intolerant to genetic

variation in the human population are more likely to cause some

disorders than genes that either tolerate functional variation or

have been under some form of selection promoting functional

variation. It remains possible that some kinds of diseases show a

different pattern from this overall one. To investigate this

possibility we directly assess the gene-lists that make up the 22

disorder classes defined by Goh et al. (2007) [26]. For each

disorder class, we assess the average RVIS values (Table S2). This

analysis shows striking variation among types of disorders. Some

closely follow the overall pattern of being influenced primarily by

genes intolerant to functional variation, including ‘‘developmen-

tal’’ disorders with an average RVIS of 20.56 (corresponding to

19.54 percentile), ‘‘cardiovascular’’ at 20.45 (corresponding to

24.00 percentile), and ‘‘skeletal’’ at 20.36 (corresponding to 28.64

percentile). At the other extreme there are some disorder classes

where it is precisely the genes most enriched in common functional

variation that are most likely to cause disease (Table S2). This

contrast is illustrated starkly by comparing the two disorder classes

with the highest and lowest average RVIS values: developmental

diseases and immunological diseases, where we observe that the

genes linked to the immunological disorder class have significantly

greater tolerance to standing functional variation (Figure 4,

p = 1.461025, 2-tail Mann-Whitney U test). In the former

category, approximately half of all OMIM genes causing

developmental disorders are found among the genes within the

25th percentile of intolerance and only 10% are found among

genes above the 75th percentile. The pattern for immunological

disorder OMIM genes is essentially the reverse: only 16% are

found among the most intolerant 25th percentile, and 35% above

the 75th percentile.

One obvious question is whether genes that cause early onset

diseases tend to have lower RVIS values than genes that cause

later onset diseases. This is not easy to assess overall, especially

given that there are sharp differences in the distributions of ages of

onset of diseases in the different categories considered above, and

also that not only age of onset but mode of inheritance will

influence RVIS (Figure 2). However, to at least partially assess this

question, we consider epileptic encephalopathies (EE) and

amyotrophic lateral sclerosis (ALS) as two diseases with sharply

different ages of onset. We then exclude all EE and ALS OMIM

genes reporting only recessive forms (Methods). Of the 10 EE

genes linked to a dominant mutation model, the average

RVIS = 21.41 (corresponding to the 4.1% most intolerant genes).

Of the 13 ALS genes linked to a dominant mutation model, the

average RVIS = 20.29 (corresponding to the 33.3% most

intolerant genes). Thus, we have described two clearly genetic

disorders, differing in age of onset, with an upwards shift in the

RVIS corresponding to a later-onset. These analyses suggest that

the use of the RVIS values should be tailored, wherever possible,

to the RVIS values for genes already securely implicated in the

phenotype under study. Focusing on the 25th percentile intolerant

genes helped the Epi4K consortium successfully adopt the RVIS

to identify epileptic encephalopathy genes within their de novo

mutation data [15].

Applying the Residual Variation Intolerance Score to
prioritize candidate mutations

So far we have demonstrated the utility of the RVIS to

discriminate between OMIM disease genes, and also the disease-

causing genes specific to various physiological systems. A recent

Epi4K trio sequencing paper illustrated the value of the RVIS in

Figure 2. [A] Cumulative percentage plots for the residual variation intolerance scores among six OMIM lists. [B] ROC curves of the residual variation
intolerance scores’ capacity to predict the corresponding OMIM list.
doi:10.1371/journal.pgen.1003709.g002
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interpreting the de novo mutation data from a cohort of sequenced

epileptic encephalopathy trios [15]. Here, we show how the

residual variation intolerance scores can facilitate the analysis of de

novo mutations observed in patient genomes.

We consider de novo mutations observed in patients with severe

intellectual disability (ID), epileptic encephalopathies (EE), and

autism spectrum disorders (ASD), as well as in control individuals

(unaffected siblings that were sequenced across the studies) [9–15]

(Table S3). Focusing on the 4,264 genes in the most intolerant 25th

percentile of RVIS values (Figure S1), we observe an increasing

enrichment among intolerant genes for the more extreme mutations

(Figure 5 and Table S3). Synonymous de novo mutations show no

enrichment for intolerant genes in any of the datasets (Figure 5).

Taking the pooled synonymous data across all cohorts (n = 417

synonymous de novo mutations) and correcting for the four tests

performed, we observe that the functional mutations (missense and

likely gene disrupting [LGD]) in the severe ID cohort are significantly

enriched for more intolerant genes (p = 161024, 2-tail Mann-

Whitney U test). Similarly, comparing the EE and ASD cohorts

reflect enrichment of likely functional de novo mutations preferentially

occurring among the most intolerant genes (p = 6.861023 and

p = 1.361022, respectively) (Methods and Table S3). We observe no

significance among the functional de novo mutations within the control

samples, p = 0.12, 2-tail Mann-Whitney U test. Thus, the excess of

functional de novo mutations observed in intolerant genes among the

cohorts ascertained for disease is difficult to explain unless some of

those de novo mutations actually increase risk of disease.

The above analyses suggest that gene-level information reflected

in the RVIS values can help discriminate between genes that do

and do not cause disease. Given the well-established literature that

prioritizes variants for their likely pathogenicity, a natural question

arises as to whether integrating gene- and variant-level informa-

tion can improve our ability to pinpoint causal mutations. As the

simplest possible illustration of an integrated scheme, we consider

two-dimensional (2D) analyses that use the RVIS percentiles for

genes (y-axis) and Polyphen-2 quantitative scores for missense

mutations (x-axis). We then analysed missense de novo mutations

observed in the ID, EE, and ASD studies referenced earlier [9–

15]. We found that, compared to those of controls, de novo

mutations seen in the exomes of patients showed a striking

concentration of density among the most damaging region of the

2D space (Figure 6 [A–D]). A simple interpretation of these data is

that while in the general population de novo mutations can occur in

intolerant genes, and putatively ‘‘damaging’’ de novo mutations can

occur in the exome, it is much less common for damaging

mutations to occur in the most intolerant genes, unless those

mutations are contributing to disease. In particular, concentrating

only on the lower right-hand-side (y, = 0.25, x. = 0.95), we

found that the severe ID (Figure 6B) and EE (Figure 6C) missense

de novo mutations had a significant excess p = 3.961027 and

p = 5.161026, respectively, compared to control exomes

(Figure 6A), and significant, but less enriched, for ASD missense

de novo mutations (p = 1.261023) (Figure 6D and Dataset S3).

Discussion

The residual variation intolerance score has obvious implica-

tions for human disease gene discovery. Of particular relevance is

quantifying gene intolerance to functional mutations, genome-

Figure 3. ROC curves of the residual variation intolerance scores’ capacity to predict the corresponding independent gene-list.
doi:10.1371/journal.pgen.1003709.g003
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wide. Qualitatively, at least for some categories of disease, the

genes most likely to influence disease are those that are the most

intolerant of functional variation in the human population. More

generally, ranking genes based on their RVIS values will clearly

help in developing more formal quantitative frameworks that

assign weights to genes based on RVIS or elaborations of RVIS.

Several directions for future research could lead to improved

gene-based intolerance scoring systems. As both the amount of

sequence data and our knowledge of different functional domains

of proteins increase, intolerance scoring systems can be developed

that subdivide genes based on protein domains as opposed to

single gene units. Such approaches could be informative, as certain

regions of the gene could be much more constrained than others.

Another future direction could be to leverage information from the

entire site frequency spectrum (SFS) of mutations within a gene,

instead of focusing on functional variation above a given frequency

threshold. A gene-based score that incorporated the shifts in the

SFS between functional and non-functional variants could

produce a more sensitive discriminator of gene intolerance. To

better discriminate the putatively non-functional from the

functional missense mutations, yet another future direction could

be to incorporate variant-level information in the form of

conservation scores (e.g. GERP++) [1] or in silico protein-damaging

characterizing tools (e.g. PolyPhen-2 [2] or SIFT [4]), as we briefly

explored in this paper with the RVIS-PP2. A slightly different

approach would be to leverage from both a gene-level (RVIS) and

a variant-level (e.g., PolyPhen-2) score in prioritizing individual

mutations. Initial data (Figure 6) indicate that this approach is

particularly promising. Importantly, we have shown that to

prioritize causal variants, incorporating both gene- and variant-

Figure 4. The proportion of genes explained by each of the 25-percentile bins (RVIS) for the human disease networks disorder class
with the lowest ‘‘Developmental Disorders’’ and highest ‘‘Immunological Disorders’’ average residual variation intolerance score.
doi:10.1371/journal.pgen.1003709.g004
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level information has a demonstrated ability to improve our

interpretation of personal genomes.

Methods

Estimating coverage-corrected gene-size
We first determine exactly what portion of the whole genome

real estate any given gene covers in the ESP6500 database. This

step required three parameters:

Coding-sequence source: We adopt the CCDS public tran-

scripts as our coding-sequence source data (CCDS Release 9,

Assembly GRCh37.p5), further extending exonic positions by two

base pairs, either side of an exon, to permit inclusion of putative

splice acceptor and donor sites. For HGNC genes with multiple

CCDS transcripts, we merge all transcripts of that gene into a

single CCDS boundary. This allows assessment of the overall

possible functional burden, correcting for variant annotations

based on multiple public CCDS transcripts of HGNC genes.

EVS Ethnicity: The ESP6500 database provides information for

variants based on European American (EA), African American

(AA), or combined (ALL). For assessing gene intolerance to

standing functional variation we adopt the combined (ALL) data.

But further compare those results to the EA and AA data (Figure

S2).

Minimum Average Coverage: We adopt a minimum average

coverage of at least 10-fold for any given CCDS site in the

ESP6500 dataset for that site to contribute to assessment of

intolerance.

With the above three parameters we extracted data from

ESP6500 for each HGNC gene with at least a single public CCDS

transcript, including the number of possible sites within the CCDS

after the splice acceptor and donor adjustment. We then determined

how many of those CCDS defined sites for the HGNC gene had at

least 10-fold coverage within the ESP6500 database.

Of the 18,474 gene ids available in CCDS Release 9, 1,518

(8.2%) of genes were determine un-assessable due to having either

less than 70% of the possible CCDS covered with at least 10-fold

coverage in the ESP6500 database, or, for not having a ‘‘public’’

transcript within CCDS Release 9. This resulted in 16,956

assessable HGNC genes.

Filtering qualifying variants
We only consider ESP6500 single nucleotide variants (SNV)

with a ‘‘PASS’’ filter status, as described on the Exome Variant

Figure 5. The percentage of de novo mutations occurring in the most intolerant quartile (25th percentile) across the severe ID,
autistic, epileptic encephalopathy, and control siblings, for the different variant effect types. LGD = Likely Gene Disrupting (including
nonsense, coding indels, and splice acceptor/donor site mutations). *Taking the CCDS of RVIS genes, 38% reflects the total real estate occupied by
the 25th percentile most intolerant genes. P-values reflect binomial exact tests where the probability of success is adjusted to 0.38, accounting for the
gene sizes of the 25% most intolerant genes.
doi:10.1371/journal.pgen.1003709.g005
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Server (http://evs.gs.washington.edu/EVS/HelpDescriptions.

jsp?tab = tabs-1#FilterStatus; last accessed 12th December 2012).

Variant Function: The coding variant annotations considered

for CCDS defined sites include: ‘‘missense’’, ‘‘coding-synony-

mous’’, ‘‘stop-gained’’, ‘‘missense-near-splice’’, ‘‘coding-synony-

mous-near-splice’’, ‘‘stop-lost’’, ‘‘splice-5’’, ‘‘splice-3’’, ‘‘stop-

gained-near-splice’’, and ‘‘stop-lost-near-splice’’, as provided by

the Exome Sequencing Project, and described in Tennessen et al

2012. Of these variant annotations, we consider ‘‘missense’’, ‘‘stop-

gained’’, ‘‘missense-near-splice’’, ‘‘stop-lost’’, ‘‘splice-5’’, ‘‘splice-

3’’, ‘‘stop-gained-near-splice’’, and ‘‘stop-lost-near-splice’’ as pu-

tatively ‘‘functional’’ variant annotations, while we considered

‘‘coding-synonymous’’ and ‘‘coding-synonymous-near-splice’’ as

putatively ‘‘non-functional’’ variants.

Minor Allele Frequency: We rely on the combined EA and AA

cohorts, and thus rely on the ESP6500 ‘‘All’’ component of

column ‘‘MAFinPercent(EA/AA/All)’’ for the minor allele

frequency of any given CCDS variant. For the primary analysis

we consider the MAF cut-off at 0.1% frequency in the combined

population. However, we further considered what effect on score

Figure 6. 2D plots illustrating possible utility of RVIS in conjunction with a variant-level quantitative score (PolyPhen-2) across
cohorts with proposed de novo mutation genetic architectures. Plots reflect the single most damaging de novo missense mutation in
individuals with at least one de novo missense mutation: [A] Controls (n = 247); [B] Severe ID (n = 67); [C] Epileptic Encephalopathies (n = 134); [D]
Autism Spectrum Disorders (n = 412). Full lists of missense de novo mutations in the ‘‘hot zone’’ are available in Dataset S3, including loss of function
SNV mutations (not plotted).
doi:10.1371/journal.pgen.1003709.g006
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alternating MAF cut-offs might have to better understand the

residual variation intolerance scores’ behaviour across frequency

spectrum cut-offs of 0.01% and 1%, Figure S2.

Investigating a variant-level informed Residual Variation
Intolerance Score (RVIS-PP2)

To explore alternative genome-wide scoring that leverages from

additional variant-level data we informed the RVIS score with the

inclusion of PolyPhen-2 in silico predictions, as annotated in the

NHLBI-ESP. We considered PolyPhen-2 ‘‘benign’’ qualitative

assessments as ‘‘non-functional’’, and PolyPhen-2 ‘‘probably,

possibly, and unknown effects’’ as ‘‘functional’’. Then, as before,

we defined the threshold dividing ‘‘common’’ and ‘‘rare’’ as 0.1%

minor allele frequency (MAF). We defined Y as the total number

of common, MAF.r ‘‘functional’’ missense and ‘‘truncating’’

SNVs (including splice and nonsense) and let X be the total

number of variants (including synonymous and ‘‘non-functional’’

missense mutations, regardless of frequency in the population)

observed within a gene. We regressed Y on X and took the

studentized residual as the score (S), as was described for the

RVIS. In this manuscript, we refer to this revised RVIS score as

the RVIS-PP2. The Pearson’s r correlation comparing the RVIS

and the RVIS-PP2 was 0.76 [95% CI 0.75–0.77]. Results of the

correlation between the RVIS-PP2 and OMIM disease genes are

presented in Table 1.

Deriving the OMIM lists for score assessment
As a primary assessment of score behaviour, we determine how

well the scores predict known gene-lists from six different contexts,

extracted from the OMIM database (accessed 3rd December

2012): OMIM disease genes, ‘‘recessive’’, ‘‘haploinsufficiency’’,

‘‘dominant-negative’’, ‘‘de novo’’ disease-causing, and indirectly

derive an OMIM ‘‘non-disease’’ gene list.

For the five disease gene lists we filter only for gene entries that

are annotated with a (*) indicating genes with known sequence and

(#) indicating that a phenotype description and molecular basis is

known. Moreover, we restrict it to records with ‘‘Allelic variants’’

and a ‘‘Gene Map Locus’’. For the ‘‘recessive’’ (n = 881 genes),

‘‘haploinsufficiency/haploinsufficient’’ (n = 251 genes), ‘‘dominant

negative’’ (n = 387 genes) and ‘‘de novo’’ (n = 507 genes) lists, we

adopted those keywords, understanding that pulling out by

keyword will identify some instances where the keyword is used

for one reason or another even though the gene in question does

not follow the indicated genetic model. We directly estimate this

misclassification rate by inspecting a random subset of 30 genes

from each of the OMIM categories and found it varied from a

zero misclassification rate to a maximum of 30%. For the

‘‘haploinsufficiency/haploinsufficient’’ list we did manually curate

each event to restrict to events with a confident haploinsufficient

relationship (n = 202 genes) (lists are available in Dataset S1).

For the OMIM disease gene list (n = 2,329) we did a universal

capture of all genes linked to disease, excluding genes linked to

disorders with the following criteria: ‘‘resistance’’, ‘‘cancer’’,

‘‘somatic’’, ‘‘susceptibility’’, ‘‘carcinoma’’ and ‘‘tumor’’. We

further refined that list to only genes without the following

annotations: braces ‘‘{’’ reflecting mutations contributing to

susceptibility to multifactorial or infectious diseases, brackets ‘‘[]’’

reflecting genes linked to non-disease traits and question mark ‘‘?’’

indicating an unconfirmed or possibly spurious mapping. We

found that 56.5% of the genes from the OMIM disease gene list

overlap with at least one of the four additional OMIM contexts,

described earlier. Moreover, we observe that 5.3% of OMIM

recessive genes were also annotated to OMIM haploinsufficiency,

while 61.7% of OMIM haploinsufficiency genes overlapped with

the ‘‘de novo’’ gene list (Dataset S1).

The OMIM non-disease gene list (n = 14,712 genes) is derived

by excluding, from the list of 16,956 HGNC assessable genes, any

genes overlapping with at least one of the five described OMIM

disease gene lists.

Comparison to omega, a measure of evolutionary
selective pressure: Ka/Ks ratio

To compare the RVIS to measures of omega (v), we consider

HGNC genes in the subset of the human genome (chromosomes

1–5) that have been derived and kindly provided by Dr. Chuanzhu

Fan [25]. Dr. Chuanzhu Fan and colleagues calculated Ka/Ks for

the orthologs between human and chimps for chromosomes 1–5,

using codeml [22], NG [24], and LWL [23]. For our comparisons,

we relied on the subset of 2,963 genes across chromosomes 1–5,

where a score was available for all four scoring systems: RVIS,

codeml, LWL, and NG. Where a gene had multiple transcripts, we

considered the average Ka/Ks across those transcripts for each

omega scoring system. Across these 2,963 genes, the highest

correlation between the four scores was found for the pair-wise

comparison between LWW and NG (Pearson’s r = 0.82), and the

second highest was a Pearson’s r of 0.11 for RVIS and codeml.

Thus, it is clear that there is low correlation between the RVIS

score and these ratios of Ka/Ks.

To address the question as to whether the Ka/Ks scores were

better correlated to OMIM disease gene lists, we directly

compared all four scores to the subset of gene annotations for

the 2,963 genes. We found that, across the OMIM disease gene

lists, the AUC consistently remained higher for the RVIS (Table

S3). Most notably the de novo specific haploinsufficiency list, using

RVIS as the predictor, obtained an AUC of 0.76 [95% CI 0.66–

0.87], while, in comparison, the highest AUC among the three

omega scores was for NG, AUC of 0.61 [95% CI 0.47–0.75]. The

closest comparison between the RVIS score and the omega scores

was for the All OMIM gene list, where the RVIS score obtained

an AUC of 0.56 [95% CI 0.53–0.59], compared to NG,

AUC = 0.52 [95% CI 0.49–0.55]. ROC curves for each of the

investigated lists are available (Figure S4).

Score sensitivity to sub-population and allele frequency
We assessed the sensitivity of the 0.1% Minor Allele Frequency

(MAF) residual variation intolerance score in the combined

ESP6500 population by comparing it to the European and

African American subpopulations, and to varied thresholds of

0.01% and 1% MAF (Figure S2).

First, we regenerated the scores based on altering the MAF cut-

off in the combined cohort from r= 0.1% to r= 0.01% and

subsequently, r= 1%. We then compared the residual variation

intolerance scores under the alternative MAF thresholds to that

obtained using the 0.1% MAF. We obtained Pearson’s r

correlation coefficients of 0.849 [95%CI 0.845–0.853] comparing

0.1% MAF and 0.01% MAF, and 0.813 [95%CI 0.808–0.818] for

the comparison between 0.1% MAF and 1% MAF (Figure S2 [A

and B]).

We then regenerated the residual variation intolerance scores

for the 0.1% MAF threshold based on the two sub-populations

comprising the European Americans (EA) and African Americans

(AA). In doing so, 124 (0.7%) of the 16956 HGNC assessable

genes were identified as un-assessable for having insufficient

coverage in one of the two separate populations, and were omitted

from these comparisons. We found that the combined residual

variation intolerance score (ALL) obtained a Pearson’s r correla-

tion coefficient of 0.862 [95%CI 0.858–0.865] for the comparison

Genic Intolerance to Functional Variation
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with the EA, and 0.908 [95%CI 0.905–0.911] for the comparison

between AA and the combined (ALL) cohort (Figure S2 [C and

D]).

We then investigated the effects on the MAF comparison when

stratifying by sub-population to eliminate the effect of sample size

differences in the MAF comparisons previously performed on the

combined cohort of EA and AA. Using a MAF comparison of

0.1% and 1% in each of the EA and AA sub-populations, we

obtain a Pearson’s r correlation coefficient of 0.836 [0.832–0.841]

for the EA 1% versus EA 0.1% MAF thresholds, and 0.850

[0.846–0.855] for the AA 1% versus AA 0.1% MAF thresholds

(Figure S2 [E and F]). We could not do a similar comparison for

the 0.1% versus 0.01% MAF threshold in the sub-populations due

to resolution limitations at such a low frequency, but given the

current evidence from the comparisons we are encouraged that it

will remain high.

Finally, we showed that, while there is minor fluctuation in the

curves, the signals did not differ when stratifying to the EA or AA

sub-populations for the capacity to associate with OMIM disease

genes (Figure S5). Likewise, the overall signals did not differ when

adjusting r to 0.01% or 1.0% MAF for the capacity to associate

with OMIM disease genes (Figure S6). The slight dip in

performance for the 0.01% MAF is likely a result of the reduced

resolution to sufficiently assess variants at that frequency level

among a cohort of approximate 6503 combined samples.

We found no correlation, Pearson’s r of 0.005 [95%CI 20.010–

0.020], between the RVIS (0.1% MAF, combined population) to

(X) the number of variants observed in the corresponding gene.

This is consistent with the expectation that the raw residuals and X

are independent by construction. Furthermore, there was a very

weak correlation, Pearson’s r correlation of 20.099 [95%CI

20.114–20.084], between the RVIS and the coverage-corrected

gene size. We did not find strong correlation between RVIS and

the percentage GC content of the gene (www.ensembl.org/

biomart/martview), Pearson’s r of 20.03. Thus, it is clear that

the information captured by the RVIS is not systematically biased

by the number of variants in a gene, gene size, or the percentage

GC content of the gene.

Assessing additional gene lists
In addition to the primary OMIM gene lists, we assessed the

behaviour of the residual variation intolerance score within four

alternatively derived lists of interest. Two lists were derived from

the Mouse Genome Informatics (MGI) database (last accessed 3rd

December 2012, http://www.informatics.jax.org/), and a third

was the combination of overlapping entries between OMIM

‘‘haploinsufficient’’ and OMIM ‘‘de novo’’ lists (n = 108). The first

MGI-derived list focused on ‘‘lethality’’ genes (n = 91), which

represent human orthologs, with public CCDS transcript(s), where

mouse knockouts have resulted in embryonic [MP:0008762],

prenatal, [MP:0002080] or perinatal [MP:0002081] lethality. The

second list focused on ‘‘seizure’’ genes (n = 95), which represent

human orthologs, with public CCDS transcript(s), where mouse

knockouts have resulted in a phenotype with a seizure presentation

(MP:0002064). Gene lists are available in Dataset S1. While we do

not expect all the mouse knockout ‘‘lethality’’ and ‘‘seizure’’ genes

to have identical consequence in humans, they are comparable

proxies that are expected to be enriched for genes that when

disrupted could have comparable phenotypes.

A fourth list comprised of genes considered ‘‘essential’’ in a

recent paper by Georgi et al. (2013) [21]. Of the 2,472 ‘‘essential’’

genes, 2,288 (92.6%) had an available RVIS score. The remaining

7.4% of ‘‘essential’’ genes were unavailable due to having either

less than 70% of the gene assessed within the NHLBI-ESP, as

described in earlier methods, or not matching a public CCDS

Release 9 transcript.

Assessing the disorder classes from the human disease
network

To determine the disorder classes that are most likely to be

affected by mutations in intolerant genes, we rely on previously

curated lists of OMIM genes categorised into the 22 disorder

classes by Goh et al. 2007 as part of the human disease network

diseasome mapping effort [26]. The disorder class annotations are

published in Goh et al. (2007) ‘‘Supporting Information Table 1’’.

[http://www.pnas.org/content/suppl/2007/05/03/0701361104.

DC1/01361Table1.pdf - last accessed 27th December 2012]. We

filtered only for HGNC genes within the source list that were

assigned an RVIS value. We summarized the RVIS within each of

the 22 disorder classes (Table S2).

To compare RVIS values in an early versus late-onset genetic

disorder context, we took epileptic encephalopathy (EE) genes

from OMIM to represent ‘‘early-onset’’: ARX (EIEE1 – OMIM#
308350), CDKL5 (EIEE2 – OMIM# 300672), SLC25A22 (EIEE3

– OMIM# 609304), STXBP1 (EIEE4 – OMIM# 612164),

SPTAN1 (EIEE5 – OMIM# 613477), SCN1A (EIEE6 – OMIM#
607208), KCNQ2 (EIEE7 – OMIM# 613720), ARHGEF9 (EIEE8

– OMIM# 300607), PCDH19 (EIEE9 – OMIM# 300088), PNKP

(EIEE10 – OMIM# 613402), SCN2A (EIEE11 – OMIM#
613721), PLCB1 (EIEE12 – OMIM# 613722), SCN8A (EIEE13

– OMIM# 614558), KCNT1 (EIEE14 – OMIM# 614959),

MAPK10 (LGS EE – OMIM# 606369). Of these 16 EE genes,

ARX was not assigned an RVIS score because it was insufficiently

covered (less than 70% of gene) in the NHLBI-ESP (Methods). Of

the remaining 15 genes, ST3GAL3, ARHGEF9, SLC25A22, PNKP,

and PLCB1 lacked OMIM annotation for a dominant model. The

genes considered for amyotrophic lateral sclerosis (ALS), a ‘‘late-

onset’’ severe neuronal disorder, were similarly extracted from

OMIM: SOD1 (ALS1 – OMIM# 105400), ALS2 (ALS2 –

OMIM# 205100), SETX (ALS4 – OMIM# 602433), FUS

(ALS6 – OMIM# 608030), VAPB (ALS8 – OMIM# 608627),

ANG (ALS9 – OMIM# 611895), TARDBP (ALS10 – OMIM#
612069), FIG4 (ALS11 – OMIM# 612577), OPTN (ALS12 –

OMIM# 613435), VCP (ALS14 – OMIM# 613954), UBQLN2

(ALS15 – OMIM# 300857), SIGMAR1 (ALS16 – OMIM#
614373), CHMP2B (ALS17 – OMIM# 614696), PFN1 (ALS18 –

OMIM# 614808), C9orf72 (ALS – OMIM# 105550). Of the 15

ALS genes, ALS2 and SIGMAR1 lacked OMIM annotation for a

dominant model. OMIM susceptibility genes ‘‘{’’ were not

considered, and only genes with reported causal genetic variants

were eligible.

Assessing the trio sequencing studies across autism,
severe ID, epileptic encephalopathies, and presumed
non-neurologically impaired sibling controls

Using a 25th percentile intolerance threshold to define the

quarter of genes, genome-wide, that are most intolerant, we

observed an increased enrichment of de novo mutations in the

disease cohorts for the more damaging mutation types (Figure 5,

Table S3). Larger numbers of sequenced trios among these groups

will facilitate improved interpretation of the enrichment for de novo

mutations in intolerant genes among children affected by

neurological/developmental disorders. Limitations interpreting

these data include that 6.1% of the de novo mutations reported

from the autism studies arose from multiplex families. Moreover,

there is literature supporting overlaps between autism, EE, and

severe ID; however, the exact percentage of the autism samples
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sequenced across the four ASD studies that had severe ID, EE, or

both, were not readily available.

Utilizing a multidimensional mutation prioritization
scheme

To illustrate constructing a multidimensional prioritizing

scheme for mutations we first collect all the publically available

de novo mutations published across the autism, severe ID, epileptic

encephalopathies, and control data from recently published papers

[9–15]. We collectively annotated all de novo mutations to extract

the de novo missense mutations using ensembl variant effect

predictor v2.6 (Ve!P). Only mutations reported in CCDS

transcripts [17] were considered. Restricting to missense CCDS

mutations, for each de novo mutation we consider the most

damaging PolyPhen-2 CCDS annotation. As the most likely de novo

mutation genetic model is a single causal de novo mutation, for

samples with multiple missense de novo mutations, we used the

single most damaging de novo based on the lowest RVIS value (i.e.,

the most intolerant gene affected). Finally, we split the remaining

pooled de novo missense mutations into the four groups: Control

(Figure 6A), Severe ID (Figure 6B), Epileptic Encephalopathy

(Figure 6C), and Autism (Figure 6D).

We plotted each of the de novo missense mutations in the 2D

space (x-axis = PolyPhen-2 quantitative score; y-axis = Residual

Variation Intolerance Score percentile). We considered the high-

interest region ‘‘hot zone’’ to correspond to highly-predicted

‘‘functionally damaging’’ PolyPhen-2 missense mutations

(x$0.95), and RVIS within the lowest 25% of genes (y#0.25)

(Figures 6 [A–D]). We list the de novo mutations within the high-

interest region, for each cohort, in Dataset S3. While other

elaborations of this multidimensional approach are possible,

including higher dimensions that incorporate additional variant-

level quantitative scores, such as SIFT, GERP++, MAPP, etc.,

here we aim to provide the simplest proof-of-concept for how this

can be conceptualized, and ultimately adopted within relevant

contexts.

For simplicity we presented only 2D plots that considered the

missense de novo mutations from the corresponding studies

(Figure 6). However, it is certainly plausible to incorporate the

information from other SNV effect types. For example, nonsense

and essential splice site SNVs can be included in the assessment

under a recoded PolyPhen-2 probabilistic damaging score of 1,

likewise, silent de novo mutations can be recoded with a

probabilistic damaging score of 0. With the inclusion of these

additional SNV effect types, the preferential enrichment for each

of the cohorts in this most damaging ‘‘hot zone’’ (PolyPhen-

2$0.95 and RVIS#0.25) for controls is 11.54%, compared to

severe ID (48.96%, p = 9.4610214, 2-tail Fisher’s Exact test); EE

(30.86%, p = 5.961027, 2-tail Fisher’s Exact test); and ASD

(23.25%, p = 1.961025, 2-tail Fisher’s Exact test).

Supporting Information

Dataset S1 The adopted OMIM and MGI gene lists (last

accessed 3rd December 2012).

(XLSX)

Dataset S2 The Residual Variation Intolerance Score (RVIS)

and corresponding RVIS percentile for the full set of 16,956

CCDS assessed genes.

(XLSX)

Dataset S3 Details of the missense de novo mutations that are

located within the high-interest region (PolyPhen-2 . = 0.95 and

RVIS Percentile , = 0.25) for each of the control, severe

intellectual disability, epileptic encephalopathy, and autism

spectrum disorder cohorts. Putative loss of function SNV de novo

mutations among the intolerant genes are also provided, but not

plotted in Figure 6.

(XLSX)

Figure S1 Histogram of the Residual Variation Intolerance

Scores (RVIS), with annotations for each of the 25% boundaries.

Red: #25th percentile of genes, Orange: .25th and #50th

percentile, Grey: .50th and #75th percentile, Blue: .75th

percentile.

(EPS)

Figure S2 Scatter plots reflecting correlations between RVIS

derived from alternating population and minor allele frequency

(MAF) thresholds. [A] Combined population RVIS: 0.1% MAF

vs. 0.01% MAF; [B] Combined population RVIS: 0.1% MAF vs.

1% MAF; [C] 0.1% RVIS: Combined population vs. European

Americans; [D] 0.1% RVIS: Combined population vs. African

Americans; [E] European Americans RVIS: 0.1% MAF vs. 1%

MAF; [F] African Americans RVIS: 0.1% MAF vs. 1% MAF; [G]

0.1% MAF RVIS: European Americans vs. African Americans;

[H] Combined population RVIS: 0.01% MAF vs. 1% MAF.

(PDF)

Figure S3 Receiver Operating Characteristic (ROC) curves

illustrating RVIS-PP2 in the context of the OMIM disease gene

lists.

(EPS)

Figure S4 Receiver Operating Characteristic (ROC) curves

comparing RVIS to estimates of omega (Ka/Ks) across OMIM

and MGI disease gene lists for chromosomes 1–5.

(PDF)

Figure S5 Receiver Operating Characteristic (ROC) curves of

the alternating population on the association between the RVIS

and predicting OMIM disease data.

(TIF)

Figure S6 Receiver Operating Characteristic (ROC) curves of

the alternating minor allele frequency (MAF) thresholds on the

association between the RVIS and predicting OMIM disease data.

(TIF)

Table S1 Comparing the residual variation intolerance score

(RVIS) to the three sources of omega estimates (v). AUC estimates

are based on lower scores being predictive of corresponding gene

list.

(DOCX)

Table S2 Profiling the residual variation intolerance score

among the 22 disorder classes defined by the human disease

network [26].

(DOCX)

Table S3 Profiling the residual variation intolerance score

(RVIS), across three de novo mutant functional-effect categories,

among the published trio sequencing studies of severe ID, epileptic

encephalopathies, autism, and sibling controls.

(DOCX)
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