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LETTER TO THE EDITOR
MZ twin pairs or MZ singletons 1n population family-based
GWAS? More power 1n pairs



Why is this important?

Ignoring clustering in the data may lead to wrong conclusions
(point estimates of effects OK, but SE too small)

The focus is on family-based Genome-Wide Association Studies.

However the analytic strategies to be discussed are regression based
approaches, hence, relevant for any analysis involving family-data ; that is,
the predictor can be a Genetic Variant, a polygenic score, or any other
covariate one might be interested in.



Why is this important?

 Many GWA meta-analyses rely heavily on twin registries

* Twin registries have data collected in families readily available



|dentification of seven loci affecting mean TELOMERE length and
their association with disease
Veryan Codd et al. (ENGAGE consortium) Nature Genetics, 2013

Twin registries supplied 34% of samples

2 TERC ®
!
[ ]
s
&
2 i TERT
—~ ! L
o
< § NAFL
=3 i
“ihy ] ee
e
= . d ZNF208 RTEL1
= ACYP2 : ° &
SR R T
° - = i B2
° L e X e o 9 o Mo
g "Aa o im0 caliR ' 2 llefi28 2
[ it s 2 ¥ ] S
o il | | |
I T T T T T
1 2 4 5 (5]

Cli T 8
Chromosome



Nature genetics
Author Manuscript Europe PMC Funders

Genome-wide meta-analysis identifies new susceptibility loci for migraine

Verneri Anttila, Bendik S. Winsvold, [...], and Aarno Palotie
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Sciencexpress Reports

GWAS of 126,559 Individuals
|ldentifies Genetic Variants Associated
with Educational Attainment

There are 6 twin cohorts and total of 52 cohorts (11%)
* Finnish twin cohort

* Netherlands twin register

* QIMR (Queensland twin register)

* Swedish twin register

* TwinsUK

* Minnesota Twin — family study

Twin registries supplied > 35% of total sample size



Some consortia protocols require
discarding family members

Molecular psychiatry

Author Manuscript NiIH Public Access

A mega-analysis of genome-wide association studies for major
depressive disorder

Twin registries supplied 31% cases and 19% controls
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MZ pairs
or

MZ singletons?



MZ pairs or MZ singletons?

« Compute effective sample size:

N, = (2*N)/ (1+r)

N

/ntra-class correlation

ranges from N (r =1) to 2* N (r=0)



Assume a study of depression including
MZ pairs: take pairs or MZ singletons?

Study 1 ~1890 +
Study 2 7786 +
Study 3 7300
= 2976 pairs -> 2976 individuals analyzed

r (MDD) = .35 -> N, =4409



MZ pairs or MZ singletons?

Study 1 71890 +
Study 2 7786 +
Study 3 7300
= 2976 MZ twin pairs

DISCARDED:

4409-2976 = ‘unrelated’ -> by restricting the
sample to MZ singletons, the equivalent of 1433

unrelated individuals was discarded.



Power

0.9

08

0.7

06

05

04

MZ pairs er-MZ-siagietons™

A\
A\
a
\A\

A\
A
2000 1818 1667 1538 1429 1333 1250 1176 1111
I | | | I
0.0 0.2 0.4 06 0.8

MZ correlation

The figure illustrates how power
varies as a function of the MZ
correlation. The figure also includes
the corresponding gains in effective
sample size estimated for a sample
of 1000 MZ twin pairs and a gene
explaining 1% of the phenotypic
variance.

Conclusion: Retaining both MZ
twins of a pair almost always
increases power. Type | error rate is
not affected. Reducing MZ twin
pairs to singletons is not justified.



FAMILY-BASED GWAS:
using efficiently
correlated observations

Given the availability of family-based samples, an important questions is:
what is the most efficient analytic strategy in the context of GWAS?

We will see that the choice of the model for the familial covariance matrix —
the V matrix is central to the efficiency of family-based analyses.



Not about partitioning the association effects into a between family
component and a within family component.

The between family effects reflect both the genuine and the possible spurious
association between locus alleles and a trait (or allelic association between
locus alleles and trait locus alleles).

The within family effects reflect only the genuine association.

Behavior Genetics, Vol. 34, No. 2, March 2004 (© 2004)

Combined Linkage and Association Tests in Mx

D. Posthuma.'” E. J. C. de Geus.! D. I. Boomsma.! and M. C. Neale’




Family-based GWAS: regression model

Yij =bo+b, *g; +§;

i is indicator of family (i=1..Nfam) and j is subjects (j=1..N), y, b and € are vectors,
X is the matrix of observed predictors — the genotypes, b is the vector of
parameter for the observed predictor and y is the vector of observed phenotypes
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Family-based GWAS

(model in matrix notation)

y=Xb + E

E=y-Xb

X ~N(0, V)

vector of residuals is normally distributed with zero mean and the familial covariance matrix V.



THE FAMILIAL COVARIANCE
MATRIX V

The power of the family-based analyses depends on the model one choses
for the familial covariance matrix.



V has block diagonal form, with the diagonal blocks V1...VNfam representing the
residual covariance matrix for each family. O denotes a matrix of zeros -
observations on individuals belonging to different families are independent.

EIX~N(, V)

"V, O O
O V, O

O O VN

am



The conditional (on the tested SNP) familial covariance matrix can be modeled to
accommodate the effects of additive genetic factors, shared and unshared

environment; these collectively contribute to the trait variance and are known as
variance components (one can also consider dominance components).

€X ~ N(0, V)
V(©)
®@=[0’,, 0., 0% ]



V modeled as an ACE
V@) =A®c?, +CQc’+I1®c?

Expected (==OBSERVED)
proportion of the genome

shared |BD

~

Genetic Relationship Matrix

e.g., 2 parents + 2 DZ twins..



Equivalently, estimation may be based on the observed proportion of
the genome shared between relatives. Estimation based on expected
and observed genetic relationship should give equivalent results
(Visscher et al 2006).

Note that the genetic relationships within the family cluster need not
be the same (e.g., parental correlation vs. parent-offspring
correlation); furthermore, clusters might be more complicated
genetically, containing more than one type of sibling (e.g., MZ, DZ, half
siblings, with or without parents).



V modeled as an ACE

V) =A®c? +C®c’+|®c?

1111000 0

11110000
11110000




Circles =additive genetic

V mOd eled aS a 1 AE effects (random effects in
the linear mixed approach,
latent variable in SEM),
squares are observed

_ phenotypes.
V(@) — A ® GZA + I ® GZE The weights associated
with the random effects
are fixed at values that
indicate the proportion of
additive genetic variance
shared between relatives.
The implied covariance
matrix: parents are
uncorrelated, and each
pair within the cluster
share half their genome.

This is the additive genetic specification in linear mixed, where
var(Apl) =var(Ap2) = var(Atl) = var(At2) = var(A)
It may look unfamiliar but it is equivalent to the more familiar path diagram




V modeled as an AE
Ve)=A®ac%, +1®c%

path diagram
(SEM specification)

[ phl J [ ph2 } [ oh3 ] [ oha ] (E excluded)




Twin Res 2004

"The Use of Linear Mixed Models to
Estimate Variance Components from Data
on Twin Pairs by Maximum Likelihood

Peter M. Visscher, Beben Benyamin, and lan White
Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Scotland, United Kingdom

t is shown that maximum likelihood estimation of  with pu the overall mean and A, C and E random addi-
variance components from twin data can be para-  tive genetic, common environmental and residual
meterized in the framework of linear mixed models.  effects, respectively. The phenotypic variance in the
Standard statistical packages can be used to analyze [, 5ylation is partitioned as
univariate or multivariate data for simple models
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Twin Res Hum Genet 2006

Implementation of a Combined
Association-Linkage Model for Quantitative
Traits in Linear Mixed Model Procedures
of Statistical Packages

A. Leo Beem and Dorret |. Boomsma
Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands

transmission disequilibrium test for quantitative There are several reasons for wanting to perform
traits which combines association and linkage  such analyses with a procedure available in widely used
analyses is currently available in several dedicated  statistical packages. First, the data do not need to be



V modeled as an AE
Ve)=A®c?, +|® o’

Block diagonal structure can be relaxed to
ACCOMMODATE DISTANT RELATEDNESS

b.lb.ll—\o

(e.g., fastLMM, GCTA)
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ESTIMATION?



Maximum Likelihood
b, = (XtV((:) )1X)1XtV((:) 'y

var(b,, ) = (X! V(@) 'X)’



The familial covariance matrix is used in the estimation of the parameter of
interest (i.e., the SNP effect) and of its variance.

Estimation can be performed by maximum likelihood and involves maximizing
the log likelihood function (i.e., finding the values for the parameters that
render the derivatives of the likelihood function to equal zero).

Usually V is not known but it has to be estimated from the data by an iterative
process. This involves:

a.starting with V, as an identity matrix

b. computing an estimate of beta

c. Use this estimate to form the residuals (y-Xb) and

d. update V

e. The updated V is then used to get a new estimate of beta

And so on, until convergence is achieved.



Maximum Likelihood

b, = (XIV(A )1X)1Xtv(é) 'y
correct model

var(b,, ) = (X' V(@) 'X)"!



One can arrive at a correct estimate of the variance of
beta (of the SNP effect) under the condition that the model
imposed on the familial covariance matrix V is correctly
specified (true).

A correct estimate of the variance is needed as this is
used to assess the statistical significance of the SNP
effect (e.g. by the means of a Wald test (b/sqrt(varb)).

A correct estimates ensures the conclusions drawn based
on the data at hand are correct.

If variance is underestimated, this will inflate the type |
error rate (false positives). Overestimation will result in a
power loss (false negatives).



What if my model for Vis misspecified?
e.g.: model = ACE , but ignore C

the variance/standard errors are no longer correct if you ignore the family clustering
due to common environment. The effect of misspecification on the estimate will
depend on the contribution of the common environment to the trait variance: the
larger the C variance component, the more likely the standard errors will be
underestimated.

So what to do? This is where the sandwich comes in. You can use a sandwich to
arrive at correct standard errors.



Maximum Likelihood
b, = (Xtv((?))_lx)_ X'v(e)'y
SANDWICH misspecification?
correction /
l V(@) = [GZA/ GZE]

N N

var(b . )= (XtV(@m )’ X)lxtv(@m J"(y - Xb)y-Xb)V(®,, )’ X(XtV(@m )st)l



What if the degree of
misspecification is even larger?

e.g..: model an ACE trait but ignore AC



VYV modeled as an E

V(@)= 1® o2,

You assume there is

no significant

covariance between

family members. Phl th




VY modeled as an E

V(@)= 1® o2,
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ESTIMATION?

Estimation can also be performed by Least Squares. Least squares is fast as it is a non-
iterative procedure. This aspect is very important in the context of GWAS given that
you perform millions of association tests.

Under IID conditions (data are identically and independently distributed) the estimates
obtained by using ML and the Unweighted Least Squares function are identical.



Unweighted Least Squares

b = (X°X) X’y

var(b) s = (X’X)" 67%¢

V(®) = 52,1



Unweighted Least Squares

b= (X°X) X’y

var(b), ¢ = (X°X)! 67¢

— Misspecification:
V(@) — 6’5 standard errors are likely
underestimated (too small).




What to do? The least squares estimates of beta are still
good, because least squares is still consistent even if
the residuals are not independently, identically and
normally distributed. The ULS estimates are consistent

in the sense that as N is larger, the estimates tend to
their true population values.

However, the standard errors are incorrect; they are too
small (the type | error rate will be inflated). A sandwich

correction is equally applicable here, in order to arrive
at correct standard errors.



Unweighted Least Squares

b= (X°X) X’y

sanpwicy  var(b)y s = X°X)"! 6%

correction

| Qe=e

var(f) R_ULS) (X'X) "X (y - Xb)y - Xb)' X(X'X)




Least squares — implemented in plink
ML — implemented by LMM (fastLMM)

LEAST SQUARES: - non-iterative, very fast;

- correct standard errors; . e .
" misspecijfication
- E model for the covariance matrix

ML : - iterative;

- fast; misspecification for ACE traits
- AE model for the covariance matrix



SIMULATION: ACE trait
Aim: compare the power of ULS & ML

N=4000

o2,=.

c2=.2

o2:=1-0%-c?%,

maf=.5 # minor allele frequency
effsize=1% # SNP effect size

alpha=10"-7



SIMULATION: ACE trait
Aim: compare the power of ULS & ML

Family ML standard Sandwich Sandwich Sandwich
structure ACE model corrected ML corrected ML corrected
(true) ULS
false: false: false:
AE model CE model E model
4 sibs mean(b1l) -0.142 -0.142 -0.142 -0.142
mean (st.err.) [0.023 0.024 0.024 0.031
mean (t-value) [-6.03 -5.98 -5.98 -4.65
power
75.7 74.2 74.2 25.1




The loss in power incurred by the sandwich corrected ULS procedure is
large. The degree of model misspecification is extreme in this case.

Power of the sandwich corrected ML procedure with an AE or a CE model
for the familial covariance matrix is appreciably larger;

Note also that the ML procedure with a misspecified model preserves the
power to the level afforded by full correct modeling (ML with an ACE model
for the V, the true model used for simulation).

Specifying a simpler model for the familial covariance matrix - an AE or a CE
model (equivalent to using an exchangeable model for the working
correlation matrix in the R-package GEE) in combination with a sandwich
correction suffices to maintain the power almost equal to that conferred by
correct full modelling (which can be computationally intensive).

ML sandwich correction has not yet been implemented by any of the
current software for GWAS that can handle family data.



CONCLUSIONS

e Model the familial covariance matrix V as an AEora CE & use a
SANDWICH

« USE the GEE library in R because it \
—-is fast \
--comes with a sandwich correction \
--covers the generalized linear model \
--families supported: Gaussian , binomial, poisson, Gamma, quasi\
--can be accessed from PLINK \
--see EXAMPLE : http://cameliaminica.nl/scripts.php




Families might be highly variable in composition, hence full correct modeling
of the conditional covariance matrix can be complicated. Hence choosing a
simpler model for the background (AE or CE, but not an E!) and using a
sandwich correction is an efficient and computationally feasible strategy.
Note that generalized estimating equations (gee) procedure, as implemented
in R has four useful aspects.
- a choice of models for the familial covariance matrix, including the
independence model (equivalent to the ULS with a sandwich procedure) and
exchangeable model (equivalent to the CE model in linear mixed modeling).
- it includes sandwich corrected standard errors of the parameters b
(robustness to misspecification of the familial covariance matrix);
- covers generalized linear model (distributions supported in gee : Gaussian,
binomial (binary traits), poisson (counts), Gamma, and quasi)
- can be accessed from Plink and so provides a computationally feasible
strategy for running genome-wide scans in family data.



USEFUL SOFTWARE:

PLINK1.7 + R-GEE+sandwich (also in PLINK1.9) :
http://pngu.mgh.Harvard.edu/~purcell/plink/rfunc.shtml
https://www.cog-genomics.org/plink2/

see EXAMPLE GEE: http://cameliaminica.nl/scripts.php

MERLIN and MERLIN-offline:
http://genepi.qimr.edu.au/staff/sarahMe/merlin-offline.html

GCTA-MLM-LOCO:
http://www.complextraitgenomics.com/software/gcta/mimassoc.htmi

FAST-LMM:https://github.com/MicrosoftGenomics/FaST-LMM



The Gee+Plink approach requires best-guess genotypes
(but it comes with a sandwich correction and it can
handle continuous, dichotomous traits, counts).

Best-guess data are also required by GCTA and fast-
Imm.

Merlin handles dosages.

SNPs should be well imputed.



served.

PERSPECTIVE

nature |
gCﬂCtICS

Advantages and pitfalls in the application of
mixed-model association methods

Jian Yang!>8, Noah A Zaitlen®®, Michael E Goddard*?, Peter M Visscher!?° & Alkes L Price®"?

Mixed linear models are emerging as a method of choice that mixed linear models can also be used to estimate components of
for conducting genetic association studies in humans and heritability explained by genotyped markers'*!4 and to predict complex
other organisms. The advantages of the mixed-linear-model traits using genetic data'>!6,

association (MLMA) method include the prevention of MLMA methods are effective in preventing false positive associations
false positive associations due to population or relatedness due to sample structure in studies of humans and model organisms!-5.
structure and an increase in power obtained through the In particular, simulations show that the correction for confounding is

2014



