Developmental Models: Latent Growth Models

Brad Verhulst & Lindon Eaves

Two Broad Categories of Developmental Models

- Autoregressive Models:
 - The things that happened yesterday affect what happens today, which affect what happens tomorrow
 - Simplex Models
- Growth Models
 - Latent parameters are estimated for the level (stable) and the change over time (dynamic) components of the traits

The Univariate Simplex Model (in singletons)

With a Univariate Simplex Model, the Y_t causes Y_{t+1} and is caused by Y_{t-1}

Note that the disturbance terms are uncorrelated

Latent Growth Model

Note that the means for the latent variables are being estimated within the model

Identification of Mean Structures

• SEMs with Mean Structures must be identified both at the level of the Mean and at the level of the Covariance.

You can only estimate each mean once

- If your model is unidentified at either the mean or the covariance level, your model is unidentified
 - An overidentified covariance structure will not help identify the mean structure and vice versa.

Mean Structures in Factor Models

$$E(\mathbf{Y}) = \bot E(X) \text{ or } E(\mathbf{Y}) = M$$
$$E(y_1) = I_1 m_F \text{ or } m_1$$

You must choose one of the other, as both $\Lambda E(\xi)$ and M are not simultaneously identified

Latent Growth Models (LGM)

- Latent Growth Models are (probably) the most common SEM with mean structures in a single sample.
- Data requirements for LGM:
 - 1. Dependent Variables measured over time
 - 2. Scores have the same units and measure the same thing across time
 - Measurement Invariance can be assumed
 - 3. Data are time structured (tested at the same intervals)
 - The intervals do not have to be equal
 - 6 months, 9 months, 12 months, 18 months

Growth Model for Two Twins

Intuitive Understanding of the LGM

- Each time point is represented as an indicator of all of the latent growth parameters
 - The constant is analogous to the constant in a linear regression model.
 - All of the (unstandardized) loadings are fixed to 1.
- The linear effect is analogous to the regression of the observations on time (with loadings of 0, 1, ..., t)
 - If latent slope loadings are set to -2,1,0,1,2,...,t , then the intercept will be at the third measurement occasion
- The quadratic increase is analogous to a non-linear effect of time on the observed variables and is interpreted in a very similar way to the linear effect.
- Cubic, Quartic and higher order time effects
 - Be cautious in your interpretation as they may only be relevant in your sample.
 - Interpretations of high order non-linear effects are difficult.

Interpretation of the Latent Growth Factors

- Residuals: The variance in the phenotype that is not explained by the latent growth structure
- Factor Loadings: The same as you would interpret loadings in any factor model (but they are typically not interpreted)
- Factor Means: The average effect of the intercept/linear/quadratic in the population (more on this next)
- Factor Covariance: Random Effects of the Latent Growth Parameters (more on this too)

Means of the Latent Parameters

- μ_C : Mean of the latent Constant
 - The average level of the latent phenotype when the linear effect is zero
- μ_L : Mean of the latent Linear slope
 - The average increase (decrease) over time
- μ_Q : Mean of the latent Quadratic slope
 - The average quadratic effect over time

Variances of the Latent Growth Parameters

- ψ_{ii} : Variance of the latent growth parameters
 - Dispersion of the values around the latent parameter
 - Large variances indicate more dispersion
 - Large variance on a Latent slope may indicate that the average parameter increase but some of the latent trajectories may be negative
- Typically the variance of higher order parameters are smaller than the variances of lower order parameters

 $-\psi_{11} > \psi_{22} > \psi_{33}$

Covariances between the Latent Growth Parameters

- ψ_{ii} : Covariance of the latent growth parameters
 - Generally expressed in terms of correlations
 - Important to keep in mind what the absolute variance in the constituent growth parameters are
 - E.G. if the variance of the linear increase is really small, the correlation may be very large as an artifact of the variance
- ψ_{12} : Covariance between the intercept and the linear increase
 - $\psi_{12} > 0$: the higher an individual starts, the faster they increase
 - ψ_{12} < 0: the higher an individual starts, the slower they increase

Presenting LGC Results

• The basic formula for the average effect of the growth parameters is very similar to the simple regression equation:

$$Y_t = m_c + m_L / L + m_Q / Q + ... + m_k / K$$

- These expected values can easily be plotted against time.
- It is also possible to include either the standard errors of the parameters or the variances of the growth parameters in the graphs.
- Some people like to include the raw observations also.

Example Presentation of the LGC

Age

Alternative Specifications

Instead of fixing the loadings to 0, 1, 2, 3, if we fix the loadings to -3, -1, 1, 3, it will reduced the (non-essential) multicolinearity

• Importantly, the model fit will not change!

• So what correlations are the right ones?

Caveat

- If the starting point is zero, then it might be best to pick a value in the middle of the range for the intercept, or generate an orthogonal set of contrasts
 - Just because you started your study when people were 8, 14, 22, doesn't mean that 8, 14 or 22 are meaningful starting points.
- If zero is a meaningful then it might be a good idea to keep that value as 0.
 - Critical Event
 - Treatment (with pretests and follow-up tests)

LGM on Latent Factors

Autoregressive LGM

