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Path Analysis
• Path analysis was developed around 1918 by 

Sewall Wright 

• Combines knowledge we have with regard to 

causal relations with degree of observed 

correlations

• Guinea pigs: interrelationships of factors 

determining weight at birth and at weaning (33 

days)

Wright, S. (1921). "Correlation and causation". J. Agricultural Research 20: 557–585

Birth weight 

Early gain 

Litter size 

Gestation period 

Environmental conditions

Health of dam

Heredity factors



Path Diagram



Path Analysis
• Present linear relationships between variables by means of 

diagrams ; Derive predictions for the variances and 

covariances of the variables under the specified model

• The relationships can also be represented as structural 

equations and covariance matrices 

• All three forms are mathematically complete, it is possible to 

translate from one to the other

• Structural equation modelling (SEM) represents a unified 

platform for path analytic and variance components models 



• In SEM models, expected relationships between 

observed variables are expressed by:

– A system of linear model equations or

– Path diagrams which allow the model to be 

represented in schematic form 

• Both allow derivation of predicted variances and 

covariances of the variables under the specified 

model

• Aims of this session: Derivation of predicted Var-

Cov Matrices using:

(1) Path Tracing & (2) Covariance Algebra
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Twin 1

E C A
1 1 1

Twin 2

A C E
1 1 1

Model for an MZ PAIR

1

1

Note: a, c and e are the same cross twins

e ac a ec



Twin 1

E C A
1 1 1

Twin 2

A C E
1 1 1

Model for a DZ PAIR

1

.5

Note: a, c and e are also the same cross groups

e ac a ec



(1) Path Tracing

• The covariance between any two variables is the 

sum of all legitimate chains connecting the 

variables

• The numerical value of a chain is the product of all 

traced path coefficients within the chain 

• A legitimate chain is a path along arrows that 

follow 3 rules:



(i) Trace backward, then forward, or simply forward 

from one variable to another. NEVER forward 

then backward. Include double-headed arrows from 

the independent variables to itself. 

These variances will be 1 for standardized variables

CovBC : a*VA*b

NOT

c*VD*d

VA

B C

D

A

e e

e

a b

c d



(ii) Loops are not allowed, i.e. we can not  

trace twice through the same variable

CovAB : a*VC*b

NOT

a* VC *c*e*d* VC

A B

C

D E

a b

c d

e

e

e e

VD VE



(iii) A maximum of one curved arrow per path.

So, the double-headed arrow from the independent

variable to itself is included, unless the chain includes

another double-headed arrow (e.g. a correlation path)

C

D E

c d

e

e

VD VE CovCD : c*VD +

d*e NOT d*VE*e



Since the variance of a variable is 

the covariance of the variable with 

itself, the expected variance will be 

the sum of all paths from the variable 

to itself, which follow Wright’s rules

The Variance
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Variance of Twin 1 AND Twin 2 

(for MZ and DZ pairs)
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Twin 1

E
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C A
1 1 1

Variance of Twin 1 AND Twin 2 

(for MZ and DZ pairs)

a



Twin 1

E
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C A
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Variance of Twin 1 AND Twin 2 

(for MZ and DZ pairs)
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Twin 1

E

e c

C A
1 1 1

Variance of Twin 1 AND Twin 2 

(for MZ and DZ pairs)

a*1*a = a2

+
a



Twin 1

E

e c

C A
1 1 1

Variance of Twin 1 AND Twin 2 

(for MZ and DZ pairs)

a*1*a = a2

+
c*1*c = c2

e*1*e = e2
+

Total Variance = a2 + c2 + e2

a



Twin 1

E C A
1 1 1

Covariance Twin 1-2: MZ pairs

Twin 2

A C E
1 1 1
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Covariance Twin 1-2: MZ pairs
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Twin 1

E C A
1 1 1

Covariance Twin 1-2: MZ pairs

Total Covariance = a2 +

Twin 2

A C E
1 1 1

1

1

e ac a ec



Twin 1

E C A
1 1 1

Covariance Twin 1-2: MZ pairs

Total Covariance = a2 + c2

Twin 2

A C E
1 1 1

1

1

e ac a ec



Twin 1

E C A
1 1 1

Covariance Twin 1-2: DZ pairs

Twin 2

A C E
1 1 1

.5
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e ac a ec



Twin 1

E C A
1 1 1

Covariance Twin 1-2: MZ pairs

Twin 2

A C E
1 1 1

.5

1

e ac a ec



Twin 1

E C A
1 1 1

Covariance Twin 1-2: DZ pairs

Total Covariance = .5a2 +

Twin 2

A C E
1 1 1

.5
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e ac a ec



Twin 1

E C A
1 1 1

Covariance Twin 1-2: DZ pairs

Total Covariance = .5a2 + c2

Twin 2

A C E
1 1 1

.5

1

e ac a ec
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Twin 1

E D A
1 1 1

Twin 2

A D E
1 1 1

ADE Model 

1(MZ) / 0.25 (DZ)

1/.5

e ad a ed
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ACE or ADE

Cov(mz) =     a2 + c2 or a2 +  d2

Cov(dz)  = ½ a2 + c2 or ½ a2  + ¼ d2

VP = a2 + c2 + e2            or a2 + d2 + e2

3 unknown parameters (a, c, e  or a, d, e), 

and only 3 distinctive predicted statistics: 

Cov MZ, Cov DZ, Vp) 

this model is just identified



The twin correlations indicate which of the two 

components is more likely to be present:

Cor(mz) =     a2 + c2 or a2 +  d2

Cor(dz)  = ½ a2 + c2 or ½ a2 + ¼ d2

If a2 =.40, c2 =.20 

rmz = 0.60                 

rdz = 0.40  

If a2 =.40, d2 =.20 

rmz = 0.60                      

rdz = 0.25

Effects of C and D are confounded

ADE

ACE



Three Fundamental Covariance Algebra Rules

Cov (aX,bY) = ab Cov(X,Y)

Cov (X,Y+Z) = Cov (X,Y) + Cov (X,Z)

Var (X) = Cov(X,X)

(2) Covariance Algebra
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The variance of a dependent variable (Y) caused by independent 

variable A, is the squared regression coefficient multiplied

by the variance of the independent variable  

Y

a

Y = aA

Example 1

A

1
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a

Cov(A,A)a

aA)Cov(aAZ)Cov(Y







Example 2

Y

a

Y = aA

A

Z

a

Z = aA

A
11

.5



Summary

• Path Tracing and Covariance Algebra have the 

same aim: 

To work out the predicted variances and 

covariances of variables, given a specified 

model 

• The Ultimate Goal:

To fit predicted variances/covariances to 

observed variances/covariances of the data in 

order to estimate the model parameters:

regression coefficients,correlations


