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Ordinal data

• Measuring instrument discriminates 
between two or a few ordered categories 
e.g.:

– Absence (0) or presence (1) of a disorder

– Score on a single Q item e.g. : 0 - 1, 0 - 4

• In such cases the data take the form of
counts, i.e. the number of individuals within
each category of response



Analysis of ordinal variables

• The session aims to show how we can 

estimate correlations from simple count data 

(with the ultimate goal to estimate h2, c2, e2)

• For this we need to introduce the concept of 

‘Liability’ or ‘liability threshold models’

• This is followed by a more mathematical 

description of the model

• Practical session



Liability

• Liability is a theoretical construct. It’s the 

underlying continuous variable of a variable which 

we were only able to measure in terms of a few 

ordered categories  

• Assumptions: 

(1) Standard Normal Distribution

(2) 1 or more thresholds (cut-offs) to discriminate 

between the ordered response categories



The Standard Normal Distribution

Standard Normal Distribution (SND) or z-distribution:

• Mathematically described by the SN Probability Density 
function ( =phi), a bell-shaped curve with:

– mean (µ) = 0 and SD (σ) = 1

– z-values are the number of SD away from the mean

• Convenience: area under curve =1, translates directly to 

probabilities

-3 3-1 0 1 2-2

68%



Standard Normal Cumulative Probability function

• Observed ordinal measure (Y) with C categories is related to 

the underlying continuous variable (y) by means of C-1 

thresholds (Tc)

• Probability that y is in category c (i.e., the probability that y is 

between the two thresholds) is the area under the standard 

normal curve bounded by the two thresholds on the z scale 

(Tc & Tc+1)

-3 3TC+1

P(Tc ≤ y ≤ Tc+1)

0TC
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Area under the curve

• Mathematically, the area under a curve can be worked out

using integral calculus. This is the mathematical notation

for the area between the thresholds (category 1):



Area under the curve

• Category 0: The area between –infinity and threshold Tc:

• Category 2: The area between threshold Tc+1 and +infinity



Ordinal trait measured in twin pairs: 2 

categories (1 Threshold) 

Contingency Table with 4 observed cell counts 
representing the number of pairs for all possible 
response combinations

0 1 Tot

0 a b row1

1 d e row2

Tot col1 col2 TOT

a = 00

e = 11

b = 01

d = 10



Joint Liability

r =.00 r =.90
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• The observed cell proportions relate to the proportions of the

BND with a certain correlation between the latent variables

(y1 and y2), each cut at a certain threshold

• i.e. the joint probability of a certain response combination is 

the volume under the BND surface bounded by appropriate 

thresholds on each liability



Expected cell  proportions 

Numerical integration of the BND over the two liabilities
e.g. the probability that both twins are above Tc : 

Φ is the bivariate normal probability density function,

y1 and y2 are the liabilities of twin1 and twin2, 

with means of 0, and  the correlation between the two liabilities

Tc1 is threshold (z-value) on y1, Tc2 is threshold (z-value) on y2



Expected cell  proportions 



Estimation of Correlations and Thresholds 

y2                           

y1
0 1

0 .87 .05

1 .05 .03

• Since the BN distribution is a known mathematical

distribution, for each correlation (∑) and any set of thresholds

on the liabilities we know what the expected proportions are

in each cell.

• Therefore, observed cell proportions of our data will inform on 

the most likely correlation and threshold on each liability.

r = 0.60

Tc1=Tc2 = 1.4 (z-value)



• The likelihood for each observed ordinal response pattern 

is computed by the expected proportion in the 

corresponding cell of the BN distribution

• The maximum-likelihood equation for the whole sample is 

-2* log of of the likelihood of each vector of observation, 

and summing across all observations (pairs)

• This -2LL is minimized to obtain the maximum likelihood 

estimates of the correlation and thresholds

• Tetra-choric correlation if y1 and y2 reflect 2 categories (1 

Threshold); Poly-choric when >2 categories per liability 

Bivariate Ordinal Likelihood



• Estimate correlation in liabilities separately for

MZ and DZ pairs from their Count data

• Variance decomposition (A, C, E) can be applied

to the underlying latent variable or liability of the

trait

• Estimate of the heritability of the liability

Twin Models



ACE Liability Model
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Summary

• OpenMx models ordinal data under a threshold 
model

• Assumptions about the (joint) distribution of the 
data (Standard Bivariate Normal)

• The relative proportions of observations in the 
cells of the Contingency Table are translated into 
proportions under the SBN

• The most likely thresholds and correlations are 
estimated

• Genetic/Environmental variance components are 
estimated based on these correlations derived 
from MZ and DZ data



For a 2x2 CT with 1 estimated TH on each liability, the 2

statistic is always zero, i.e. with 3 observed statistics, 

estimating 3 parameters, DF=0 (it is always possible to 

find a correlation and 2 TH to perfectly explain the 

proportions in each cell). No goodness of fit of the normal 

distribution assumption.

This problem is resolved if the CT is at least
2x3 (i.e. more than 2 categories on at least one liability)
A significant 2 reflects departure from normality.

Test of BN assumption
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Power issues

sub-clinicalcases

controls

cases

• Ordinal data / Liability Threshold Model: less 
power than analyses on continuous data

Neale, Eaves & Kendler 1994

• Solutions:

1. Bigger samples

2. Use more categories

controls



Practical Example

R Script: ThresholdLiab.R

Data File: CASTage8.csv 



Sample & Measures

• CAST data collected at age 8 in the TEDS sample

• Parent report of CAST: Childhood Asperger 

Syndrome Test (Scott et al., 2002)

• Includes children with autism

spectrum disorder

• Twin pairs: 501 MZ  & 503 DZ males



The CAST score dichotomized at around 96% (i.e. scores of

>15), is the clinical cut-off point for children at risk for

Autism Spectrum Disorder

However, for the purpose of this exercise, we will use 2 cut

offs to create 3 categories:

<9 un-affacted (0)

9-15 sub-clinical (1)

>15 ASD (2)
0
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Clinical Aspects of the CAST



Inspection of the data

CAST score categorized (0,1,2), the proportions: 

Ccast    |      Freq.     Percent    

------------+--------------------------

0 |        804       80.08     

1 |        158       15.74     

2 |         42          4.18      

------------+---------------------------

Total |      1,004      100.00
-3 3

1.75.84

4%

20%

Z-values

Z-value Th1 = .84

Z-value Th2 = 1.75



How to find Z-values 
– Standard Normal Cumulative Probability 

Tables  

– Excel

• =NORMSINV()

-3 3
1.40-1.4

92%8%



CTs of the MZ and DZ pairs

MZ 0 1 2 Tot

0 385 23 6 414

1 28 37 4 69

2 3 3 12 18

Tot 416 63 22 501

DZ 0 1 2 Tot

0 334 37 19 390

1 56 32 1 89

2 12 2 10 24

Tot 402 71 30 503

table(mzData$OFcast1, 

mzData$OFcast2 )

table(dzData$OFcast1, 

dzData$OFcast2 )



Castdata <- read.table ('CASTage8.csv', header=T, sep=‘,’, na.strings=".")

# Make the integer variables ordered factors

Castdata$OFcast1  <-mxFactor(Castdata$Ccast1, levels=c(0:2) )

Castdata$OFcast2  <-mxFactor(Castdata$Ccast2, levels=c(0:2) )

selVars <-c('OFcast1' , 'OFcast2')

useVars <-c('OFcast1' , 'OFcast2', 'age1', 'age2')

# Select Data for Analysis

mzData <- subset(Castdata, zyg==1, useVars)

dzData  <- subset(Castdata, zyg==2, useVars)

R Script: ThresholdLiab.R

Ordinal variables MUST be specified as ordered factors in the included data.

The function prepares ordinal variables as ordered factors in preparation

for inclusion in OpenMx models. Factors contain a ‘levels’ argument.



# Matrices for expected Means (SND) & correlations

mean <-mxMatrix( type="Zero", nrow=1, ncol=ntv, name="M" ) 

corMZ <-mxMatrix(type="Stand", nrow=ntv, ncol=ntv, free=T, values=.6, 

lbound=-.99, ubound=.99, name="expCorMZ") 

CorDZ <-mxMatrix(type="Stand", nrow=ntv, ncol=ntv, free=T, values=.3, 

lbound=-.99, ubound=.99, name="expCorDZ") 
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The Threshold model

Tmz11 Tmz12

Twin 1 Twin 2

Tmz21 Tmz22

Tmz11 Tmz21

Tmz12 Tmz22

Tdz11 Tdz12

Twin 1 Twin 2

Tdz21 Tdz22

Tdz11 Tdz21

Tdz12 Tdz22



Tmz11 Tmz21= Tmz11+ imz11

imz11Twin 1 Twin 2

Tmz12 Tmz22= Tmz12+ imz12

imz12

Specification

Tdz11 Tdz21= Tdz11+ idz11

idz11Twin 1 Twin 2

Tdz12 Tdz22= Tdz12+ idz12

idz12



Expected Thresholds: L %*% ThMZ ="expThreMZ"

* =
1 0
1 1

TMZ11 TMZ12

iMZ11 iMZ12

A multiplication is used to ensure that any threshold is higher 

than the previous one. This is necessary for the optimization

procedure involving numerical integration over the MVN 

Threshold 1 for twin 1 and twin2TMZ11 TMZ12

TMZ21 TMZ22 Threshold 2 for twin 1 and twin2

Note: this only works if the increments are POSITIVE values, therefore a 

BOUND statement around the increments are necessary

TMZ11 TMZ12

TMZ11 + iMZ11 TMZ12 + iMZ12

expThmz



# nth max number of thresholds; ntv number of variables per pair

Tmz <-mxMatrix(type="Full", nrow=nth, ncol=ntv, free=TRUE, 

values=c(.8, 1), lbound=c(-3, .001 ), ubound=3,  

labels=c("Tmz11","imz11", "Tmz12","imz12"), name="ThMZ")

The positive bounds on the increments 
stop the thresholds going ‘backwards’, 
i.e. they preserve the ordering of the 
categories

Z-value Th1 = .84

Z-value Th2 = 1.75

Start Values & Bounds

TMZ11 TMZ12

iMZ11 iMZ12
=

.8 (-3 - 3) .8 (-3 - 3)

1 (.001 - 3) 1 (.001 - 3)



# Specify matrices to hold the definition variables (covariates) and their effects

obsAge <- mxMatrix( type="Full", nrow=1, ncol=2, free=F, 

labels=c("data.age1","data.age2"), name="Age")

betaA <-mxMatrix( type="Full", nrow=nth, ncol=1, free=T, values=c(-.2), 

labels=c('BaTH'), name="BageTH" )

ThresMZ <-mxAlgebra( expression= L%*%ThMZ + BageTH %x% Age, 

name = expThresMZ )

Threshold model: add effect of AGE

‘BageTH’

%x% =
BaTH
BaTH age1 age2

Effect of age on Th1 tw1 Effect of age on Th1 tw2 

Effect of age on Th2 tw1 Effect of age on Th2 tw2

‘Age’: definition variables



# Objective objects for Multiple Groups

objMZ <- mxFIMLObjective( covariance="expCorMZ", means="M", 

dimnames=selVars, thresholds="expThresMZ" )

objDZ <- mxFIMLObjective( covariance="expCorDZ", means="M", 

dimnames=selVars, thresholds="expThresDZ" )

Objective functions are functions for which free parameter values are chosen

such that the value of the objective function is minimized

mxFIMLObjective: Objective functions which uses Full–Information maximum

likelihood, the preferred method for raw data



# Objective objects for Multiple Groups

objMZ <- mxFIMLObjective( covariance="expCorMZ", means="M", 

dimnames=selVars, thresholds="expThresMZ" )

objDZ <- mxFIMLObjective( covariance="expCorDZ", means="M", 

dimnames=selVars, thresholds="expThresDZ" )

Ordinal data requires an additional argument for the thresholds

Also required is ‘dimnames’ (dimension names) which corresponds to the

ordered factors you wish to analyze, defined in this case by ‘selVars’



# RUN SUBMODELS

# SubModel 1: Thresholds across Twins within zyg group are equal

Sub1Model    <- mxModel(SatModel, name=“sub1”)

Sub1Model    <- omxSetParameters( Sub1Model, 

labels=c("Tmz11", “imz11", "Tmz12", “imz12"), 

newlabels=c("Tmz11", “imz11", "Tmz11", “imz11"), …

# SubModel 2: Thresholds across Twins & zyg group 

Sub2Model <- mxModel(SatModel, name="sub2")

Sub2Model <- omxSetParameters(Sub2Model, 

labels=c("Tmz11",“imz11","Tmz12",“imz12"), 

newlabels=c("Tmz11",“imz11","Tmz11",“imz11"), ....

Sub2Model <- omxSetParameters(Sub2Model, 

labels=c("Tdz11",“idz11","Tdz12",“idz12"), 

newlabels=c("Tmz11",“imz11","Tmz11",“imz11"), ....

omxSetParameters: function to modify the attributes of parameters in a model

without having to re-specify the model



# ACE MODEL

# Matrices to store a, c, and e Path Coefficients

pathA    <- mxMatrix( type=“Lower", nrow=nv, ncol=nv, free=TRUE, values=.6, 

label="a11", name="a" ) 

pathC    <- mxMatrix( type=“Lower", nrow=nv, ncol=nv, free=TRUE, values=.6, 

label="c11", name="c" )

pathE    <- mxMatrix( type=“Lower", nrow=nv, ncol=nv, free=TRUE, values=.6, 

label="e11", name="e" )    
# Algebra for Matrices to hold A, C, and E Variance Components

covA     <- mxAlgebra( expression=a %*% t(a), name="A" )

covC     <- mxAlgebra( expression=c %*% t(c), name="C" ) 

covE     <- mxAlgebra( expression=e %*% t(e), name="E" )

covP     <- mxAlgebra( expression=A+C+E, name="V" )

# Constrain Total variance of the liability to 1

matUnv <-mxMatrix( type="Unit", nrow=nv, ncol=1, 

name="Unv" )

varL <-mxConstraint( expression=diag2vec(V)==Unv, name="VarL" )

1

C AE

L

A + C + E    1  



Part (1)
• Run script up to ‘Descriptive Statistics’ and check 

that the MZ and DZ Contingency tables are the 

same as in the slides

• Run script up to sub2Model and check that you get 

the same answers as in the results slide

• What are the conclusions about the thresholds, i.e. 

what is the final model?

• What kind of Genetic model would you run on this 

data given the correlations?

R Script: ThresholdLiab.R

Data File: CASTage8.csv 



Part (2)

• Run the Genetic model and check that you get 

the same estimates (with 95% CI) as in the 

results slide 

• Exercise: Add sub-model AE at the end of 

the ACE model to test significance of C. 

For an example, see code in Hermine’s 

ACE script. 



MODEL ep -2LL df 2(df) P-val

1 All TH free  11 2199.8 1997 - -

2 Sub1: THs tw1=tw2 in MZ&DZ 7 2204.0 2001 4.19 (4) .38 ns

3 Sub2: One overall  set of THs 5 2208.2 2003 8.33 (6) .21 ns

1 Thresh/inc: MZ tw1 = 1.85, .84 MZ tw2 = 1.7, .73

DZ tw1 = 1.67, .91 DZ tw2 = 1.75, .72

2 Thresh/inc: MZ = 1.90, .78

DZ = 1.74, .81

3 Thresh/inc: 1.81, .80

The Twin correlations for model 3 are: 

r MZM = 0.82 (.74 - .87) r DM = 0.43 (.29 - .56)

BetaAge: -.12 (-.18 / .02) 



ACE Estimates for the ordinalized 

CAST score in Boys at age 8

h2 c2 e2

ACE .77

.49/.87

.05

0/.31

.18

.13/.26

Name  ep -2LL df AIC     

Model 1 : ACE 6 2208.2 2004 -1799.84



More Scripts
• Univariate Ordinal example with estimated Means and 

Variances (CAST variable with 3 categories)

– Script: UnivM&Sdord.R (This topic will be covered tomorrow  

by Sarah in tomorrows extra morning session)

• Bivariate Ordinal example with unequal thresholds 

(IQ, 2 categories, ADHD, 3 categories)

– Script: BivThreshLiab23.R

• Bivariate combined Continuous-Ordinal example (IQ, 

continuous, ADHD, 3 categories)

– Script: BivOrdCont.R (This topic will be covered tomorrow  

afternoon)


