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What is power?

What affects power?

How do we calculate power?

What is ascertainment?

What happens with ascertained samples?
What is simulation?

Why do we simulate?

How do we simulate?
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Definitions of power

The probability that the test will reject the
null hypothesis if the alternative
hypothesis is true

The chance the your statistical test will
yield a significant result when the effect
you are testing exists
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Null Hypothesis
Alternative Hypothesis
Distribution of test statistics



Null Hypothesis

The baseline hypothesis, generally assumed to
be the absence of the tested effect

Alternative Hypothesis
The hypothesis for the presence of an effect

Distribution of test statistics

The frequencies of the values of the tests
statistics under the null and the alternative



We are going to simulate a normal
distribution using R

We can do this with a single line of code,
but let’s break it up



R has functions for many distributions
Normal, x2, gamma, beta (others)

Let's start by looking at the random
normal function: rnorm()
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Normal {stats}

(Q~ Help Search

The Normal Distribution

Description

Density, distribution function, quantile function and random generation for the normal distribution with mean equal to mean and standard deviation

equal to sd.

Usage

dnorm({x, mean = 0, sd = 1, log = FALSE)

prorm{g, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)

gnorm{p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)

rnorm(n, mean = 0, sd = 1)

Arguments

g vector of quantiles.
vector of probabilities.

n number of observations. If 1ength(n) > 1, the length is taken to be the number required. .

mean vector of means. =
vector of standard deviations. b
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rnorm(n, mean = 0,sd = 1)

R on name Mean of distribution

with default value

Number of Observations to simulate

Standard deviation of distribution
with default value



This script will plot 4 samples from the
normal distribution

Look for changes in shape
Thoughts?
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You have to comment

The presentation will not continue without
audience participation
No this isn‘t a game of chicken
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Sampling variance
We saw that the ‘normal’ distribution from 100
observations looks stranger than for 1,000,000
observations
Where else may this sampling variance
happen?
How certain are we that we have created
a good distribution?
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Rather than just simulating the normal
distribution, let’s simulate what our
estimate of a mean looks like as a
function of sample size

We will run the R script
mean_estimate_sim.R



This script will plot 4 samples from the
normal distribution

Look for changes in shape
Thoughts?




You have to comment

The presentation will not continue without
audience participation
No this isn‘t a game of chicken
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We see an inverse relationship between
sample size and the variance of the
estimate

This variability in the estimate can be
calculated from theory

SE, = s/Vn

SE, is the standard error, s is the sample

standard deviation, and n is the sample
size



istential Crisi

What does this variability mean?
Again—this is where you comment




The sampling variability in my estimate
affects my ability to declare a parameter
as significant (or significantly different)
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The probability that the test will reject the
null hypothesis if the alternative
hypothesis is true



Mean different from 0 hypotheses:
h, (null hypothesis) is p=0
h, (alternative hypothesis) isuy # 0

- Two-sided test, where y > 0 or gy < O are one-
sided

Null hypothesis usually assumes no effect
Alternative hypothesis is the idea being
tested



H, is true

H, is true
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o=type 1 error rate
B=type 2 error rate
1-B=statistical power
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Statistica

Rejection of Hg

Analysis

Non-rejection of Hg

Truth

Type I error
at rate «

Nonsignificant result

(1- a)

Ho true
Significant result Type 1L CHiy
(1-B) at rate j
Ha true
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The probability of rejection of the null
hypothesis depends on:

The significance criterion (o)

The sample size (N)

The effect size (A)

The probability of detecting a given effect
Size in a population from a sample size, N,
using a significance criterion, a.
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Sampling
distribution If
H, were true
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Increased effect size
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distribution If
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More conservative o
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Less conservative o
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distribution If
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Sampling
distribution If
H, were true
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Increased sample size
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Type of Data
Continuous > Ordinal > Binary

Do not turn “true” binary variables into
continuous

Multivariate analysis
Remove confounders and biases
MZ:DZ ratio



Larger effect sizes
Reduce heterogeneity

Larger sample sizes

Change significance threshold
False positives may become problematic



certainme

Why being picky can be good and bad




Intelligence

-2

-4

Made it
Still trying

-4
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Attractiveness
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you're meant to say som
aiting...
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Bias in your parameter estimates
Bias is a difference between the “true value”
and the estimated value

Can apply across a range of scenarios

Bias estimates of means, variances,
covariances, betas etc.



For testing means, ascertainment
InCreases power

For characterizing variance:covariance
structure, ascertainment can lead to bias



For testing means, ascertainment
InCreases power

For characterizing variance:covariance
structure, ascertainment can lead to bias
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Now for someti
ompletely diff

OK only 50% different from a genetics point of view




2, THE POWER OF DISCRIMINATING BETWEEN SIMPLE MODELS
(i) Theory
If we have a set of observed mean squares 0, their expected values
calculated on the basis of the * true ** model of variation F; and the expected

values calculated on the basis of a ** false ” model, E,, then we wish, for
each i to test the null hypothesis

Ho: 8(0) = E,
If Hy is true and the degrees of freedom v; are large then 0;~N(E,, 2E7(v)
approxbantaly, Wcammﬂohmbetmdbythcmthﬂc!ﬁzgl—fﬁz
which is approximately chi-square with one degree of freedom. The power
. function of this test is not known for all alternative hypotheses. Conse-
quently we follow Mitra (1958) and consider the limiting power function of
the test for large sample sizes and alternative models not too far from the
hypothesised model. To express this idea suppose
Hy: 8(0) = Fy = EctpufV'n

where p; = Vv (F,~E,) is the deviation between the two models. Given
that v, is large, then if H, is true

0~ N(E,, 2Ef{v)

while if &, is true then
0y~ N(Fy, 2FF{v)~N(F, EFv)(L 4 o(vi ))).

where o{v; %) denotes a term of the order of v ¥

Thus

HO—E) (‘/‘T’(F'_'E"'. 1+a(r.“))

- e} J2E}
and the asymptotic power function of
v,{!Q!-EE'E
2E}

is non-central chi-square with non-centrality parameter
one degree of freedom. In general, to test

v(F,—E)
257 and
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—




2, THE POWER OF DISCRIMINATING BETWEEN SIMPLE MODELS

(i) Theory
If we have a set of observed mean squares 0, their expected values
calculated on the basis of the * true ** model of variation F; and the expected
values calculated on the basis of a “ false ” model, E,;, then we wish, for
each i to test the null hypothesis
Ho: 8(0) = E,
If Hy is true and the degrees of freedom v; are large then O~ N(E;, 2E?v)
approximately. We assume H, is to be tested by the statistic %
which is approximately chi-square with one degree of freedom. The power
. function of this test is not known for all alternative hypotheses. Conse-
quently we follow Mitra (1958) and consider the limiting power function of
the test for large sample sizes and alternative models not too far from the
hypothesised model. To express this idea suppose
Hy: 8(0) = Fy = EctpufV'n
where p, = V/'v,(F,—E,) is the deviation between the two models. Given
that v, is large, then if H, is true
0~ N(E,, 2Ef{v)
while if H, is true then
0y~ N(F,, 2FF{v)) ~ N(Fy, (2B [v)(1 +o(v ¥))).
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is non-central chi-square with non-centrality parameter
one degree of freedom. In general, to test
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Martin, Eaves, Kearsey, and Davies Power of the Twin Study, Heredity, 1978




W can we determi
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We’'ll run through three different scripts

power_approximation.R

This lays out a theoretical consideration for
correlations

test C sim 2014.R

Creates a function for running a simulated ACE
model to drop C

run_C sim_2014.R
This will run the function from test C _sim.R



We’'ll walk through the script to explore
the core statistical concepts we discussed
earlier

Most of the rest of this session will be
done in R ©. PR
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Just like we simulated estimates of means
we can simulate chi squares from
dropping C

We get to play God [well more than usual]

We fix the means and variances as parameters
to simulate

We fit the model ACE model
We drop C

We generate our alternative sampling
distribution of statistics




This script does not produce anything, but
rather creates a function

I will walk through the script explaining

the content

We will make this function and then run

the function once to see what happens

Then we can generate a few more
simulations (though I'm not super keen

on the computation power of the T mums
machines)
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Now we understand what the function is
doing, we can run it many times

We are going to use sapply again

This time we will sapply the new function
we made

In addition to generating our chis, we
create an object of the chis to assess our
power and see what our results look like
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“All models are wrong but some are useful”
--George Box

Simulation is useful for refining intuition
Helpful for grant writing
Calibrates need for sample size

Many factors affect power
Ascertainment
Measurement error
Many others



Simulation is super easy in R

ClassicMx did not have such routines

We can evaluate our power easily using R
as well

We can generate pictures of our power
easily



Genetic Power Calculator
Good for genetic studies with genotype data
Also includes a probability function calculator

Wiki has pretty good info on statistical
power


http://pngu.mgh.harvard.edu/~purcell/gpc/
http://en.wikipedia.org/wiki/Statistical_power
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